1.

3. Prove that for any odd integer a, a and a
number n.

(a)
(b)

(a)
(b)

Solutions to Practice Final 1

What is ¢(20'%) where ¢ is Euler’s ¢-function?
Find an integer x such that 140x = 133 (mod 301). Hint: ged(140,301) = 7.

Solution

$(20100) = (4100 . 5100) — (5(9200 . 5100y — (9200 _ 199y (5100 _ 599) _
= 2199(2 — 1)599(5 — 1) = 2199 . 5% . 4 = 2201 . 5%

Note that 140 = 22.5-7 and 301 = 7-43 are prime decompositions. also 133 = 7-19.
therefore

1402z = 133 (mod 301) means 7-20z = 7 -19 (mod 7 - 43) and is equivalent to
20x = 19 (mod 43).

Since 43 is prime and it does not divide 20, by the Little Fermat theorem we have

that 20”2 = 1 (mod 43) and hence 20 - 20" - 19 = 19 (mod 43). Therefore we can
take z = 20* - 19.

Prove, by mathematical induction, that 1 +2 +3 + ... + n = "("H

natural number n.

for every

Prove that for p an odd prime (that is, p is a prime that is not equal to 2),
1P4+27 437+ ..+ (p—1)»=0 (mod p).

Solution

so the formula is true
n(n+1)

First we check the formula for n = 1. we have 1 = w

there. suppose the formula is proved forn > land 1+2+4+3+...+n =

2
Then 1 +2+3+...+n+ (TL + 1) _ n(n+1) + (n + 1) n(n+1)42r2(n+1) _ (n+1)(n+2)

which means that the formula is true for n+1 also. By induction this means that
the formula holds for all natural n.

Prove that for p an odd prime (that is, p is a prime that is not equal to 2),
P+20 437+ ...+ (p—1)P=0 (mod p).

By Little Fermat theorem we have that ! =1 (mod p) foranya=1,...,p—1.
Multiplying this by a gives @ = a (mod p) any @ = 1,...,p — 1. Therefore
P+ 43P+ .. +(p—1P=1+2+...(p— )_u(modp)bypart(a).
Note that p — 1 is even which means that & = %= is an integer. therefore

P+22 437+ .. +(p—1)P=kp=0 (mod p)

4nt1 have the same last digit for every natural



d.

Solution

If a is odd and is divisible by 5 then the last digit of a is 5. therefore, the last digit of
any power of a is also 5 and the statement is clear.

Now suppose (a,5) = 1. Since a is odd this means (a, 10) = 1 also. By Euler’s theorem
a1 =1 (mod 10). we have ¢(10) = ¢(2-5) = (2—1)-(5—1) = 4. Thus a* = 1
(mod 10). therefore a** =1 (mod 10) for any natural k and hence a***! = a (mod 10)
which means that a***! and @ have the same last digit.

Recall that a “perfect square” is a number of the form n? where n is a natural number.
Show that 9120342526523 is not the sum of two perfect squares. Hint: Consider values
modulo 4.

Solution

If a =0 (mod 4) or a =2 (mod 4) then > =0 (mod 4). If a =1 (mod 4) or a = 3
(mod 4) then a* = 1 (mod 4). Thus the only possible values of a®> (mod 4) or 0 and
1.

Therefore the only possible values (mod 4) for a®> +b* are 0 +0 = 0,0+ 1 = 1 and
1+1=2.

On the other hand we have 9120342526523 = 91203425265-100+23 = 23 = 3 (mod 4)
(we used that 100 = 0 (mod 4). thus 9120342526523 can not be written as a? + b?.

(a) Are there rational numbers a and b such that V3=a+b/2? Justify your answer.

(b) Prove that ﬁﬁ is irrational.

Solution

(a) Suppose V3 = a + bv/2 where a and b are rational. taking squares of both sides
we get 3 = a® 4 2abyv/2 + 2b%,3 — a® — 2b*> = 2ab\/2. Note that we can not have

a = 0 since it would mean /3 = b\/§, \/g = b is rational. This is easily seen to

be impossible. Similarly we can not have b = 0 as this would mean that v/3 = a

is rational. Thus 3 — a% — 2% = 2aby/2 means V2 = # is rational. this is

impossible and therefore we can not write V3 = a + b\/2 with rational a,b.

(b) Suppose \/if/ﬁ = ¢ is rational. then /5 = ¢(v/2 + v/11). Note that ¢ can not
be equal to zero.

taking squares of both sides we get 5 = ¢*(2 + 11 + 24/22). This means q% =

13 4+ 24/22,1/22 = 5;}2‘12 is rational. This is a contradiction and hence —=¥5— is
irrational.




6. (a) What is the cardinality of the set of roots of polynomials with constructible coef-
ficients? Justify your answer.

(b) Let N denote the set of all natural numbers. What is the cardinality of the set of
all functions from N to {1,3,5}? Justify your answer.

Solution

(a) Let S be the set of roots of polynomials with constructible coefficients. It’s easy
to see that |S| > |N|. On the other hand, it was proved in class that a root of
a polynomial with constructible coefficients is also a root of a polynomial with
rational coefficients. Therefore all elements of S are algebraic and hence |S| < |NJ.
By Schroeder-Berenstein this implies that |S| = |N].

(b) Let N denote the set of all natural numbers. What is the cardinality of the set S
of all functions from N to {1,3,5}7
First observe that any such function corresponds to a sequence ay, as, as, ... where
each a; is equal either 1, 3 or 5. Consider the map
f: S — Rgiven by f(ay,as,as,...) = 0.a1aza;3. ... Clearly f is 1-1 which means
that [S| < |R].
On the other hand recall that |R| = |P(N)| and P(N) is equal to the set of
functions from N to {0, 1}. Since [{0,1}| < |{1,3,5}| we have that |R| = |P(N)| <
|51
By Schroeder-Berenstein theorem this implies that |S| = |R|.

7. Let 6 be an angle between 0 and 90 degrees. Suppose that cosf = %. Prove that g is
not a constructible angle.

Solution

let x = cos %. Suppose  is constructible. using the formula cos(f) = 4 cos® g -3 cosg
we see that 42 — 3z = 2. therefore 162* — 122 = 3. If z is constructible then so is
y = 2z which must satisfy 2y — 6y = 3,2y> — 6y — 3 = 0. this is a cubic polynomial
with rational coefficients. If it has a constructible root it must have a rational one.
Suppose § is a rational root of 2y® — 6y — 3 = 0 where p, ¢ are relatively prime integers.
Then p|3 and ¢|2. Thus the only possibilities for § are +1,£3, :I:%, :I:%. Plugging those
numbers into 2y — 6y — 3 we see that none of them are roots. This is a contradiction
and hence, x is not constructible.

8. For each of the following numbers, state whether or not it is constructible and justify
your answer.

(a) cosf where the angle & is constructible

3



Solution

(a) cos(f) =4cos® —3cos§, therefore it’s constructible if cos 6 is.

8 2
23 — 25 = 0. This is a cubic polynomial with rational coefficients. If it has a
constructible root it must have a rational root which has to be an integer dividing
25. The only possibilities are +1, £5, +25. None of these are roots of 3 —25 = 0
25
V5
(¢) V/7++/5 belongs to Fy for the tower of fields Q = Fy, C I} = Fy(v/5) C Fy =
Fi(vVT7+ \/5) Therefore \/7 + /5 is constructible.

(d) (0.029)'/3 = ¢ 7235 is not constructible by the same argument as in (b).

(b) /2 = Y25 1f it were constructible then so would be /25 which is a root of

and hence is not constructible.

(e) 22.5° = 2. Since we can bisect an angle with ruler and compass, the angle

45° = % is constructible and 22.5° = % is also constructible. Intersect-

ing the angle with the unit circle we can construct the point with coordinates

(cos 22.5°,sin 22.5°). Therefore tan 22.5° = S22Z52 js a]s0 constructible.

9. Find all complex solutions of the equation 2% + 23 + 1 = 0.

Solution

Let z = 23. Then z satisfies 22+ 2+ 1 =0so z = _1i2‘/j3 = ’liz‘/gi. We have two
possibilities

1) z = _HT‘@ = cos(—7/3) + isin(—7/3). Solving 2* = x = cos(—n/3) + isin(—7n/3)
we get z = cos(—m/9 + Z5) + isin(—n/9 + 2£) where k = 0,1,2. This gives 3
solutions
when k£ = 0 we get z; = cos(—n/9) + isin(—n/9)
when k =1 we get zp = cos(—m/9 + &) + isin(—m/9 + &) = cos(3) + isin(3F)
when k = 2 we get z3 = cos(—7/9 + ) + isin(—7/9 + ) = cos(1F) + isin(F)



2) @ = ~15Y8 — cos(4n/3) + isin(4m/3). Solving 23 = x = cos(47/3) + i sin(47/3) we
get z = cos(4m/9 + 225) + isin(4m/9 + 22%) where k = 0,1,2. As before, this gives
3 solutions
when k£ = 0 we get z4 = cos(4n/9) + isin(4r/9)
when k = 1 we get z5 = cos(4m/9 + ZF) + isin(47/9 + 3 ) = cos(13%) + isin(4FF)

9 9
when k = 2 we get zg = cos(4m/9 + &) + isin(47/9 + F) = cos(12%) + isin(12T)



