Boundaries at Infinity

Vivian He

University of Toronto

December 2022

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

The Sublinearly Morse Boundary

Morse: invariant under quasi-isometry

Sublinear: random walks converge to the sublinearly Morse boundary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Gromov Boundary

Definition

The Gromov boundary of a hyperbolic metric space X is the set $\partial X = \{ [\gamma] \mid \gamma \text{ is a geodesic ray } \}.$

The topology is generated by the following open neighbourhoods around $[\gamma]$:

$$U([\gamma], r) = \left\{ [\gamma'] \mid \liminf_{s,t \to \infty} (\gamma(s), \gamma'(t))_o \geq r \right\}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Let (X_1, d_1) and (X_2, d_2) be metric spaces. A function $f: X_1 \to X_2$ is a quasi-isometry if there exists constants $q \ge 1$ and $Q \ge 0$ such that for any two points $x, y \in X_1$,

$$\frac{1}{q}d_1(x,y)-Q\leq d_2(f(x),f(y))\leq qd_1(x,y)+Q.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

Let (X_1, d_1) and (X_2, d_2) be metric spaces. A function $f: X_1 \to X_2$ is a quasi-isometry if there exists constants $q \ge 1$ and $Q \ge 0$ such that for any two points $x, y \in X_1$,

$$rac{1}{q}d_1(x,y)-Q\leq d_2(f(x),f(y))\leq qd_1(x,y)+Q.$$

Theorem

Let X_1, X_2 be hyperbolic metric spaces, and let $f : X_1 \rightarrow X_2$ be a quasi-isometry. Then f induces a homeomorphism on the Gromov boundaries ∂X_1 and ∂X_2 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem (Morse lemma)

Let X be a hyperbolic space, and $\gamma \in (q, Q)$ -quasi-geodesic in X. Then there is a constant m(q, Q) such that γ is in the m(q, Q)-neighbourhood of the geodesic segment connecting its endpoints.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Theorem (Morse lemma)

Let X be a hyperbolic space, and $\gamma \in (q, Q)$ -quasi-geodesic in X. Then there is a constant m(q, Q) such that γ is in the m(q, Q)-neighbourhood of the geodesic segment connecting its endpoints.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Morse Boundary

Definition

A geodesic γ is M–Morse if any quasi–geodesics with endpoints on γ is contained in the M–nbhd $\gamma.$

Definition (Cashen-Mackay, Charney-Sultan, Cordes) The Morse boundary of a geodesic metric space X is the set $\partial X = \{ [\gamma] \mid \gamma \text{ is a } M\text{-Morse (quasi-)geodesic ray for some } M \}.$

Theorem (Kaimanovich)

In a hyperbolic group G, almost all sample paths $\{x_n\}$ of the random walk (G, μ) converge to a (random) point in the Gromov boundary.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Tree of Flats

Image by Alex Sisto

The Sublinearly Morse Boundary

Definition (Qing-Rafi-Tiozzo)

A quasi-geodesic γ is sublinearly Morse if every quasi-geodesic β with endpoints on γ is contained in the $M\kappa(|x|)$ -nbhd of γ , where M is a constant and κ is a sublinear function.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

The Sublinearly Morse Boundary

Definition

The sublinearly Morse boundary of a geodesic metric space X is the set $\partial X = \{ [\gamma] \mid \gamma \text{ is a sublinearly Morse quasi-geodesic ray} \}.$

Theorem (H.)

The sublinearly Morse boundary contains the Morse boundary as a topological subspace.

Summary: Boundaries

	Gromov	Morse	Sublinearly
	Boundary	Boundary	Morse Boundary
Compact	1	×	X
Metrizable	1	1	✓
Invariant Under	1	~	~
Quasi-Isometries			
Random Walk	1	Y	/
Converges	•	~	✓