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Random Walks on Groups
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Figure 1: The Cayley Graph of

F2 = 〈a, b〉.
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Figure 2: The Cayley Graph of

Z2 = 〈a, b | [a, b]〉.
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Random Walks on Groups

Let G be a finitely generated group acting on a metric space X (usually

its Cayley graph). Let µ be a probablity measure on G . Fix o ∈ X .

A random walk is the series of random variables {Zn} defined by

Zn = g1g2 . . . gn · o,

where each gi is identically distributed according to µ.
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Let G be a finitely generated group acting on a metric space X (usually

its Cayley graph). Let µ be a probablity measure on G . Fix o ∈ X .

A random walk is the series of random variables {Zn} defined by

Zn = g1g2 . . . gn · o,

where each gi is identically distributed according to µ.

Example. G = F2 = 〈a, b〉, µ(g) =
󰀫
1/4 if g ∈ {a, b, ā, b̄}
0 otherwise.
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Random Walks on Groups

Example. G = F2 = 〈a, b〉, µ(g) =
󰀫
1/4 if g ∈ {a, b, ā, b̄}
0 otherwise.
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Random Walks on Groups

Example. G = F2 = 〈a, b〉, µ(g) =
󰀫
1/4 if g ∈ {a, b, ā, b̄}
0 otherwise.
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Random Walks on Groups

Example. G = F2 = 〈a, b〉, µ(g) =
󰀫
1/4 if g ∈ {a, b, ā, b̄}
0 otherwise.
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Random Walks on Groups

Example. G = F2 = 〈a, b〉, µ(g) =
󰀫
1/4 if g ∈ {a, b, ā, b̄}
0 otherwise.
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Random Walks on Groups

Example. G = F2 = 〈a, b〉, µ(g) =
󰀫
1/4 if g ∈ {a, b, ā, b̄}
0 otherwise.
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Random Walks on Groups

Example. G = F2 = 〈a, b〉, µ(g) =
󰀫
1/4 if g ∈ {a, b, ā, b̄}
0 otherwise.
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Random Walks on Groups

Example. G = F2 = 〈a, b〉, µ(g) =
󰀫
1/4 if g ∈ {a, b, ā, b̄}
0 otherwise.
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Z5 = bab̄

4



Central Limit Theorem

Question: How quickly is the random walk drifting away from o?
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Central Limit Theorem

Theorem (Central Limit Theorem)
Let G be a finitely generated group [under some conditions]. Let (Zn)n≥1

be a simple random walk on G. Then there exists constants λ,σ such

that
dX (o,Zno)− λn

σ
√
n

→ N (0, 1) in distribution.
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Theorem (Central Limit Theorem)
Let G be a finitely generated group [under some conditions]. Let (Zn)n≥1

be a simple random walk on G. Then there exists constants λ,σ such

that
dX (o,Zno)− λn

σ
√
n

→ N (0, 1) in distribution.

Conditions:

• Free groups (Sawyer-Steger 1987, Ledrappier 2001)
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Central Limit Theorem

Theorem (Central Limit Theorem)
Let G be a finitely generated group [under some conditions]. Let (Zn)n≥1

be a simple random walk on G. Then there exists constants λ,σ such

that
dX (o,Zno)− λn

σ
√
n

→ N (0, 1) in distribution.

Conditions:

• Free groups (Sawyer-Steger 1987, Ledrappier 2001)

• Hyperbolic Groups (Björklund 2010, Benoist-Quint 2016)

• Mapping Class Group and Out(Fn) (Horbez 2018)

• Groups with hyperbolic characteristics?
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Hyperbolicity and More



Hyperbolicity

Figure 3: δ–hyperbolicity.
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Figure 4: F2 is 0–hyperbolic.
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Hyperbolicity
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Figure 5: Z2 is not hyperbolic. Figure 6: Fuchsian groups are

hyperbolic.
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Key Geometric Property

Schottky set: powers of loxodromic elements
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Generalizations of Hyperbolicity

Figure 7: The Cayley graph of Z2 󰂏 Z.
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Generalizations of Hyperbolicity

Theorem (Mathieu-Sisto, 2019)
Let G be an acylindrically hyperbolic group and µ be a probability

measure on G with finite exponential moment. Let (Zn)n≥1 be a simple

random walk on G. Then there exists constants λ,σ such that

dX (o,Zno)− λn

σ
√
n

→ N (0, 1) in distribution.

Example: Mapping Class Group (acts acylindrically on the curve complex)
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Generalizations of Hyperbolicity

Theorem (Mathieu-Sisto, 2019)
Let G be an acylindrically hyperbolic group and µ be a probability

measure on G with finite exponential moment. Let (Zn)n≥1 be a simple

random walk on G. Then there exists constants λ,σ such that

dX (o,Zno)− λn

σ
√
n

→ N (0, 1) in distribution.

Example: Mapping Class Group (acts acylindrically on the curve complex)

Issue: not invariant under quasi-isometry

Definition (Quasi-isometry)
Let X ,Y be metric spaces, a function f : X → Y is a

(q,Q)–quasi-isometry if

1

q
dX (a, b)− Q ≤ dY (f (a), f (b)) ≤ qdX (a, b) + Q.
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Superlinear Divergence



Superlinear Divergence

Definition (Goldsborough-Sisto)
A subset A is(f , θ)–divergent if for any d > 0 and any path p outside of

a d–neighbourhood of A,

d(πZ (p−),πZ (p+)) > θ =⇒ l(p) > f (d).

Note: the projection is not the closest point projection, but a coarsely

Lipschitz projection
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Bottleneck Property
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Bottleneck Property: Half or Double

Lemma
Let Z be (f , θ)–divergent. There exists K0 such that if a geodesic α

satisfies

d(α(0),Z ) > K0 and d
󰀃
πZα(0),πZα(t)

󰀄
≥ θ.

Then either

d(α(t),Z ) ≥ 2 · d(α(0),Z ) or d(α(t),Z ) ≤ 1

2
· d(α(0),Z ).
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Bottleneck Property: Half or Double

Proof.
Suppose 2K0 > d(α(t),Z ) > K0/2, then by superlinear divergence of Z ,

d(α(0),α(t)) > f (K0/2).

On the other hand,

d(α(0),α(t)) < K0 + θ + 2K0.

This fails for sufficiently large K0.
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Bottleneck Property
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Central Limit Theorem

Theorem (Chawla-Choi-H.-Rafi)
Let G be a finitely generated group with exponential growth, and

suppose that G has a superlinear-divergent quasi-geodesic. Let (Zn)n≥1

be a simple random walk on G. Then there exist constants λ,σ such that

dX (o,Zno)− λn

σ
√
n

→ N (0, 1) in distribution.
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Application

Groups that contain superlinear divergent geodesics:

• relatively hyperbolic groups

• acylindrically hyperbolic 3-manifold groups

• RACG of thickness at least 2
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