Random Walks on Groups and Superlinear Divergent Geodesics

Joint with Kunal Chawla, Inhyeok Choi, and Kasra Rafi

Vivian He

University of Toronto

2. Hyperbolicity and More

3. Superlinear Divergence

Cayley Graph

Figure 1: The Cayley Graph of $F_2 = \langle a, b \rangle$.

Figure 2: The Cayley Graph of $\mathbb{Z}^2 = \langle a, b \mid [a, b] \rangle$.

Let G be a finitely generated group acting on a metric space X (usually its Cayley graph). Let μ be a probablity measure on G. Fix $o \in X$. A random walk is the series of random variables $\{Z_n\}$ defined by

$$Z_n = g_1 g_2 \dots g_n \cdot o,$$

where each g_i is identically distributed according to μ .

Let G be a finitely generated group acting on a metric space X (usually its Cayley graph). Let μ be a probablity measure on G. Fix $o \in X$. A random walk is the series of random variables $\{Z_n\}$ defined by

$$Z_n = g_1 g_2 \dots g_n \cdot o,$$

where each g_i is identically distributed according to μ .

Example.
$$G = F_2 = \langle a, b \rangle$$
, $\mu(g) = \begin{cases} 1/4 & \text{if } g \in \{a, b, \bar{a}, \bar{b}\} \\ 0 & \text{otherwise.} \end{cases}$

Example.
$$G=F_2=\langle a,b
angle,\ \mu(g)=iggl\{ egin{array}{c} 1/4\\ 0 \end{array}
ight.$$

if
$$g \in \{a, b, \bar{a}, \bar{b}\}$$

otherwise.

Example.
$$G=F_2=\langle a,b
angle,\ \mu(g)=iggl\{ egin{array}{c} 1/a\\ 0 \end{array}
ight.$$

if
$$g \in \{a, b, \bar{a}, \bar{b}\}$$

otherwise.

Example.
$$G=F_2=\langle a,b
angle,\ \mu(g)=iggl\{ egin{array}{c} 1/4\\ 0 \end{array}
ight.$$

if
$$g \in \{a, b, \bar{a}, \bar{b}\}$$

otherwise.

Example.
$$G = F_2 = \langle a, b \rangle$$
, $\mu(g) = \begin{cases} 1/4 & \text{if } g \in \{a, b, \bar{a}, \bar{b}\} \\ 0 & \text{otherwise.} \end{cases}$

Example.
$$G = F_2 = \langle a, b \rangle$$
, $\mu(g) = \begin{cases} 1/4 & \text{if } g \in \{a, b, \bar{a}, \bar{b}\} \\ 0 & \text{otherwise.} \end{cases}$

Example.
$$G = F_2 = \langle a, b \rangle$$
, $\mu(g) = \begin{cases} 1/4 & \text{if } g \in \{a, b, \bar{a}, 0\} \\ 0 & \text{otherwise.} \end{cases}$

 \overline{b}

Example.
$$G = F_2 = \langle a, b \rangle$$
, $\mu(g) = \begin{cases} 1/4 & \text{if } g \in \{a, b, \bar{a}, \bar{b}\} \\ 0 & \text{otherwise.} \end{cases}$

Question: How quickly is the random walk drifting away from o?

Theorem (Central Limit Theorem) Let G be a finitely generated group [under some conditions]. Let $(Z_n)_{n\geq 1}$ be a simple random walk on G. Then there exists constants λ, σ such that

$$rac{d_X(o, Z_n o) - \lambda n}{\sigma \sqrt{n}} o \mathcal{N}(0, 1)$$
 in distribution.

Let G be a finitely generated group [under some conditions]. Let $(Z_n)_{n\geq 1}$ be a simple random walk on G. Then there exists constants λ, σ such that

$$\frac{d_X(o, Z_n o) - \lambda n}{\sigma \sqrt{n}} \to \mathcal{N}(0, 1) \qquad \text{in distribution.}$$

Conditions:

• Free groups (Sawyer-Steger 1987, Ledrappier 2001)

Let G be a finitely generated group [under some conditions]. Let $(Z_n)_{n\geq 1}$ be a simple random walk on G. Then there exists constants λ, σ such that

$$\frac{d_X(o, Z_n o) - \lambda n}{\sigma \sqrt{n}} \to \mathcal{N}(0, 1) \qquad \text{in distribution.}$$

Conditions:

- Free groups (Sawyer-Steger 1987, Ledrappier 2001)
- Hyperbolic Groups (Björklund 2010, Benoist-Quint 2016)

Let G be a finitely generated group [under some conditions]. Let $(Z_n)_{n\geq 1}$ be a simple random walk on G. Then there exists constants λ, σ such that

$$\frac{d_X(o, Z_n o) - \lambda n}{\sigma \sqrt{n}} \to \mathcal{N}(0, 1) \qquad \text{in distribution.}$$

Conditions:

- Free groups (Sawyer-Steger 1987, Ledrappier 2001)
- Hyperbolic Groups (Björklund 2010, Benoist-Quint 2016)
- Mapping Class Group and $Out(F_n)$ (Horbez 2018)

Let G be a finitely generated group [under some conditions]. Let $(Z_n)_{n\geq 1}$ be a simple random walk on G. Then there exists constants λ, σ such that

$$rac{d_X(o, Z_n o) - \lambda n}{\sigma \sqrt{n}} o \mathcal{N}(0, 1)$$
 in distribution.

Conditions:

- Free groups (Sawyer-Steger 1987, Ledrappier 2001)
- Hyperbolic Groups (Björklund 2010, Benoist-Quint 2016)
- Mapping Class Group and $Out(F_n)$ (Horbez 2018)
- Groups with hyperbolic characteristics?

Hyperbolicity and More

Hyperbolicity

Figure 3: δ -hyperbolicity.

Figure 4: *F*₂ is 0-hyperbolic.

Hyperbolicity

Figure 5: \mathbb{Z}^2 is not hyperbolic.

Schottky set: powers of loxodromic elements

Generalizations of Hyperbolicity

Figure 7: The Cayley graph of $\mathbb{Z}^2 \star \mathbb{Z}$.

Theorem (Mathieu-Sisto, 2019)

Let G be an acylindrically hyperbólic group and μ be a probability measure on G with finite exponential moment. Let $(Z_n)_{n\geq 1}$ be a simple random walk on G. Then there exists constants λ, σ such that

$$\frac{d_X(o, Z_n o) - \lambda n}{\sigma \sqrt{n}} \to \mathcal{N}(0, 1) \quad \text{in distribution.}$$

Example: Mapping Class Group (acts acylindrically on the curve complex)

Theorem (Mathieu-Sisto, 2019)

Let G be an acylindrically hyperbólic group and μ be a probability measure on G with finite exponential moment. Let $(Z_n)_{n\geq 1}$ be a simple random walk on G. Then there exists constants λ, σ such that

$$\frac{d_X(o, Z_n o) - \lambda n}{\sigma \sqrt{n}} \to \mathcal{N}(0, 1) \qquad \text{in distribution.}$$

Example: Mapping Class Group (acts acylindrically on the curve complex) Issue: not invariant under quasi-isometry

Definition (Quasi-isometry) Let X, Y be metric spaces, a function $f : X \to Y$ is a (q, Q)-quasi-isometry if

$$\frac{1}{q}d_X(a,b)-Q\leq d_Y(f(a),f(b))\leq qd_X(a,b)+Q.$$

Superlinear Divergence

Definition (Goldsborough-Sisto) A subset A is (f, θ) -divergent if for any d > 0 and any path p outside of a d-neighbourhood of A,

$$d(\pi_Z(p_-),\pi_Z(p_+)) > \theta \implies l(p) > f(d).$$

Note: the projection is not the closest point projection, but a coarsely Lipschitz projection

Bottleneck Property

Lemma

Let Z be (f, θ) -divergent. There exists K_0 such that if a geodesic α satisfies

 $d(\alpha(0), Z) > K_0$ and $d(\pi_Z \alpha(0), \pi_Z \alpha(t)) \ge \theta$.

Then either

 $d(\alpha(t), Z) \ge 2 \cdot d(\alpha(0), Z)$ or $d(\alpha(t), Z) \le \frac{1}{2} \cdot d(\alpha(0), Z).$

Bottleneck Property: Half or Double

 $d(\alpha(0),\alpha(t)) > f(K_0/2).$

On the other hand,

$$d(\alpha(0),\alpha(t)) < K_0 + \theta + 2K_0.$$

This fails for sufficiently large K_0 .

Bottleneck Property

Theorem (Chawla-Choi-H.-Rafi)

Let G be a finitely generated group with exponential growth, and suppose that G has a superlinear-divergent quasi-geodesic. Let $(Z_n)_{n\geq 1}$ be a simple random walk on G. Then there exist constants λ, σ such that

$$rac{d_X(o, Z_n o) - \lambda n}{\sigma \sqrt{n}} o \mathcal{N}(0, 1)$$
 in distribution.

Groups that contain superlinear divergent geodesics:

- relatively hyperbolic groups
- acylindrically hyperbolic 3-manifold groups
- RACG of thickness at least 2