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Random Walks on Groups

Observation in this example:

Let dn denotes the distance at step n. Then

dn+1 =

dn + 1 with probability 3/4;

dn − 1 with probability 1/4.

• The distance grows linearly.

• On average, the distance follows a

normal distribution (Central Limit

Theorem).



Central Limit Theorem

Theorem. Let G be a finitely generated group [under some

conditions]. Let (Zn)n≥1 be a simple random walk on G.

Then there exist constants λ, σ such that

dX(o, Zno)− λn

σ
√
n

→ N (0, 1) in distribution.
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History of CLT

• CLT for free groups (Sawyer-Steger 1987,

Ledrappier 2001)

• CLT for hyperbolic group (Bjorkland 2010,

Benoist-Quint 2016)

• CLT for acylindrically hyperboilc groups

(Mathieu-Sisto 2020)



Superlinear Divergence

Definition (Goldsborough-Sisto). A subset A is

(f, θ)–divergent if for any d > 0 and any path p outside of a

d–neighbourhood of A,

d(πZ(p−), πZ(p+)) > θ =⇒ l(p) > f(d).



Bottleneck Property

A superliner divergent geodesics “attracts” geodesics.
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Central Limit theorem

Theorem (Chawla-Choi-H.-Rafi). Let G be a finitely

generated group with exponential growth, and suppose that

G has a superlinear-divergent quasi-geodesic γ : Z → G. Let

(Zn)n≥1 be a simple random walk on G. Then there exist

constants λ, σ such that

dX(o, Zno)− λn

σ
√
n

→ N (0, 1) in distribution.

• The proof uses the pivotal time technique developped

by Gouezel.



Thank you!


