Square-tiled surfaces and curve counting

Ontario Topology Seminar

Vivian He

University of Toronto

Curve Counting

Curve Counting

X: a hyperbolic surface of genus g and n boundary components.

Question: How many simple closed geodesic curves are there on X of length at most L?

Asymptotic Answer

X: a hyperbolic surface of genus g and n boundary components.

Question: How many simple closed geodesics curves are there on X of length at most L? (denoted N(X, L))

Asymptotic Answer

X: a hyperbolic surface of genus g and n boundary components.

Question: How many simple closed geodesics curves are there on X of length at most L? (denoted N(X,L))

Asymptotic answer:

Theorem (Mirzakhani '08)

$$\lim_{L\to\infty} \frac{N(X,L)}{L^{6g-6+2n}}$$
 exists and is positive.

Follow up: What happens for a specific *L*?

For specific L (sufficiently large)

We find a lower bound.

Theorem (H. (in progress))
There exists C, L_0 such that when $L > L_0$,

$$N(X, L) \geq CL^{6g-6+2n}$$

C is independent of the metric

 L_0 depends on the systole.

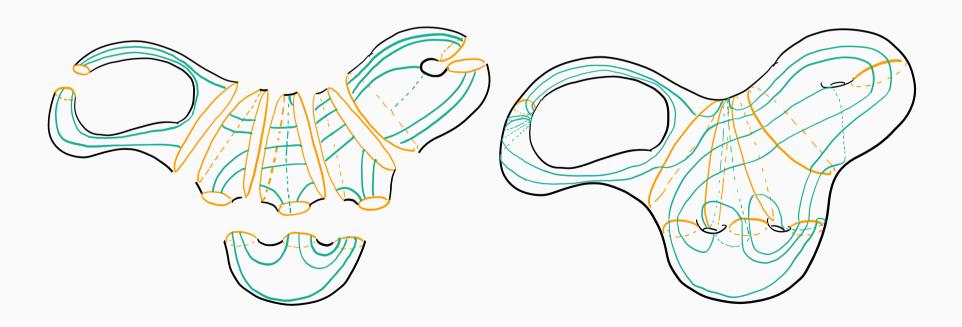
Strategy of Proof

We will construct a collection of simple closed curves as follows:

- Fix a "nice" pair of pants decomposition
- On each pair of pants, construct a collection of arcs

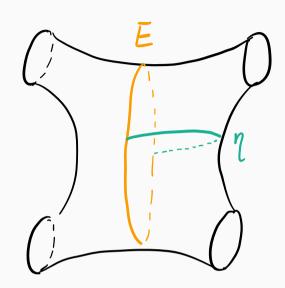
Strategy of Proof

- Glue the arcs together along boundary components via a fractional twist
- This results in a collection of multi-curves. We claim that a positive proportion of them are, in fact, simple.

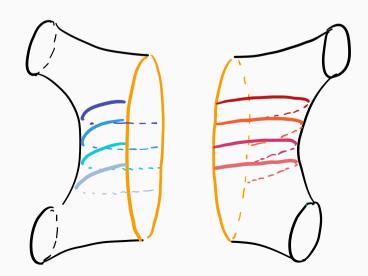


Proof Idea (Special Case: a sphere of 4 boundary components)

(Based upon work of Rivin)

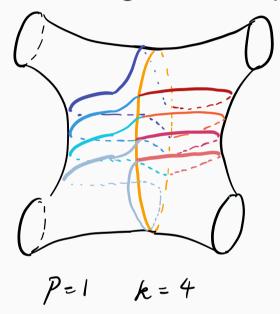


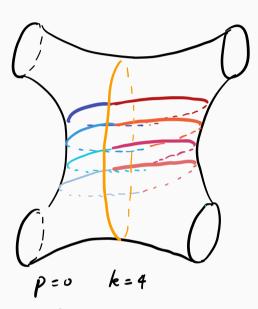
Take *k* arcs in each pair of pants



Proof Idea (Special Case: a sphere of 4 boundary components)

Glue them together via a p/2k fractional twist





The resulting curve is sometime simple (p = 1, k = 4) and sometimes not (p = 0, k = 4)

The resulting multicurve is simple if and only if gcd(k, p) = 1

Proof Idea (Special Case: a sphere of 4 boundary components)

Let's count them.

A multi-curve obtained by k copies of η on each side and a p/2k fractional twist along E has length

$$2kI(\eta) + pI(E)$$

The multi-curve is simple if and only if gcd(k, p) = 1. So we count

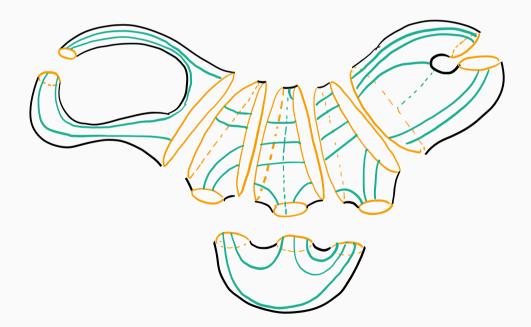
$$\left\{ (k,p) \in \mathbb{Z}^2 : 2kI(\eta) + pI(E) \le L \quad \text{and} \quad \gcd(k,p) = 1 \right\}$$

$$\approx \frac{6}{\pi^2} \frac{L^2}{4I(\eta)I(E)}$$

$$\geq \frac{3}{2\pi^2} L^2.$$

In general, this fails.

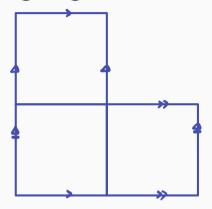
The coprime trick doesn't generalize in higher genus.



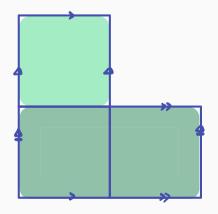
Square-Tiled Surfaces

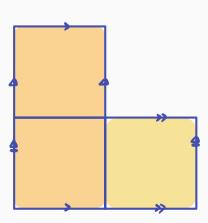
Square-Tiled Surface

A square-tiled surface is a special type of translation surface obtained by gluing together unit squares along their edges by translations. A

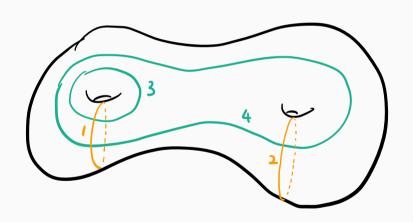


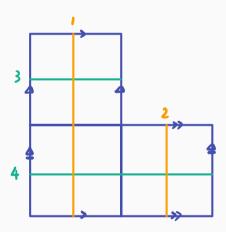
square-tiled surface can be decomposed into horizontal(or vertical) cylinders.



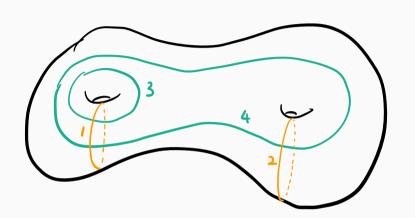


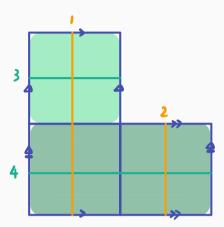
Given a pair of filling multi-curves on a surface, we can construct a square-tiled surface by taking the dual graph.



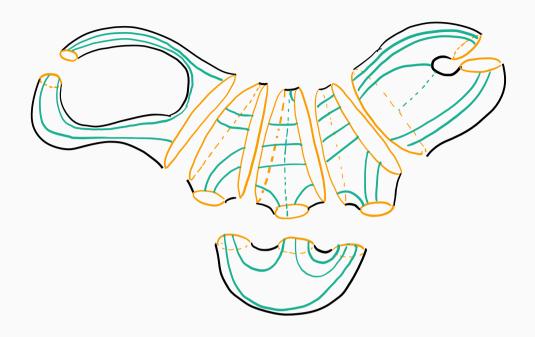


This is a one-to-one correspondence.





The number of components in the horizontal (vertical) multi-curve corresponds to the height (width) of the square-tiled surface.



Our question: fix a pair of pants decomposition and arcs on each pair of pants, glue them together, what proportion of the resulting multi-curves are simple?

Translation: fix a horizontal cylinder decomposition, what proportion of square-tiled surfaces with this horizontal cylinder decomposition has height 1?

Fix a horizontal cylinder decomposition Γ , what proportion of square-tiled surfaces with this horizontal cylinder decomposition has height 1?

We claim that:

$$\lim_{n\to\infty}\frac{N_1(\Gamma,n)}{N(\Gamma,n)}=\lim_{n\to\infty}\frac{N_1(n)}{N(n)}>0$$

where

 $N(\Gamma, n)$: the number of square-tiled surface with horizontal cylinder decomposition Γ and n squares

 $N_1(\Gamma, n)$: the number of square-tiled surface with horizontal cylinder decomposition Γ , n squares, and height 1

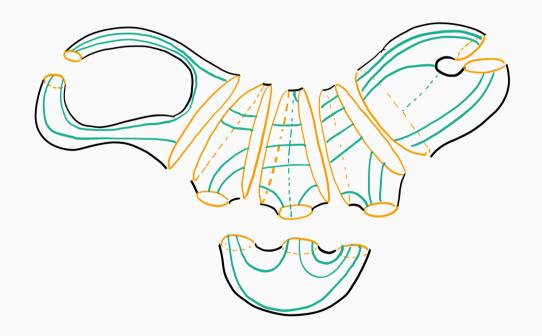
N(n): the number of square-tiled surface with n squares

 $N_1(n)$: the number of square-tiled surface with n squares and height 1

This is due to the independence of horizontal and vertical cylinder decomposition, generalizing a theorem of Delecroix-Goujard-Zograf-Zorich.

Heuristics

- The number of copies of arcs contributes to 3g 3 + n dimensions.
- The number of viable fractional twists contributes to 3g 3 + n dimensions.



3g-3+11 carves in the parts decomposition

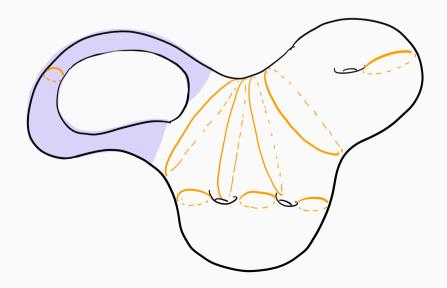
Dependence on metric

Theorem (H. (in progress))
There exists C, L_0 such that when $L > L_0$,

$$N(X, L) \geq CL^{6g-6+2n}$$

C is independent of the metric

 L_0 depends on the systole.



Thank you!

Are there questions?