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Introduction to Stein’s Method and Normal Approximation

Introduction

Stein’s method is a sophisticated approach for proving generalized central limit theorem, pioneered
in the 1970s by Charles Stein, one of the leading statisticians of the 20th century. In the ordinary
central limit theorem, if X1,X2, · · · ,Xn are independent and identically distributed random vari-
ables, then the simple average of these random variables follows the standard normal distribution
(Gaussian distribution)

∑
n
i=1 Xi−nµ

σ
√

n
∼ N(0,1),

where E(Xi) = µ , Var(Xi) = σ2.

The usual method to prove central limit theorem when random variables X1,X2, · · · ,Xn are
independent and identically distributed is to demonstrate convergence in distribution

P(
∑

n
i=1 Xi−nµ

σ
√

n
≤ x)−→

∫ x

−∞

1√
2π

e−
t2
2 dt,as n→ ∞,

where the probability on the left-hand side can be computed by Fourier transform. The Fourier
transform will decompose as a product because of independence. But what if these random vari-
ables X ,

i s are not independent? The technique mentioned above to prove central limit theorem is
no longer useful. As a result, Stein came up with a new approach to prove that a random variable
W approximately follows Gaussian distribution by bounding the Wassertein distance between two
random variables, W and Z, where Z follows standard normal distribution, even if the condition of
independence is violated. In this paper, we will introduce four techniques to bound the Wassertein
distance between W and Z, including dependency graph, method of exchangeable pairs, size-bias
coupling and zero-bias coupling, based on which we can prove ordinary central limit thorem,
Hoeffding combinatorial central limit theorem, Lindeberg-Feller central limit theorem and other
normal approximations in the Wasserstein metric.

1 Fundamentals of Stein’s Method

In this section, we will introduce an overview of Stein’s method, including the motivation and sig-
nificance of this approach, some basic idea of probability metrics, relationship between Kolmogorov-
Smirnov distance and Wasserstein distance, as well as how Stein’s idea derived from these nice
properties in the probability metric.

1.1 Overview

Given a collection of samples, it will be easier for us to make statistical analysis if we can obtain
the approximate distribution (for instance, normal distribution, poisson distribution, exponential
distribution, etc.) of the random variable that we are interested in. The ordinary central limit thorem
can help us obtain the approximate distribution given that a sequence of such random variables are
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Introduction to Stein’s Method and Normal Approximation

independent.

However, in real applications, random variables are not always independent and identically
distributed (independence is an indispensable condition for the ordinary central limit theorem).
Thus we need a more sophisticated approach to obtain the limiting distribution, and Stein’s method
helps us to deal with such problems on the basis of the following idea:

Let W be a random variable and Z be a standard Gaussian random variable, i.e. Z ∼ N(0,1).
The density function of Z is

f (x) =
1√
2π

e−
x2
2 ,

and the cumulative distribution function is

P(Z ≤ x) =
∫ x

−∞

1√
2π

e−
t2
2 dt.

To show that W is approximately Gaussian distributed, we need to prove that P (W ≤ x) ≈ P
(Z ≤ x).
Recall the fact:

P(W ≤ x) = Eg(W ),

where

g(u) =
{

1 if u≤ x,
0 if u > x.

The most intuitive way to prove convergence in distribution is that if we can show

Eg(W )≈ Eg(Z), (1)

then we can conclude that random variable W approximately follows standard Gaussian distribu-
tion.

In Stein’s method, we can obtain this approximation of distribution by bounding the Wassertein
distance between W and Z when g is 1-Lipschitz from the perspective of probability metric.

Now we will start the introduction of Stein’s method in more details, including why getting
the upper bound of Wassertein distance works, some important properties of the solution to Stein’s
equation for both general g and specific g, some useful techniques to bound Wassertein distance,
like dependency graph, method of exchangeable pairs, size-bias coupling, zero-bias coupling, and
application of Stein’s method in proving generalized central limit theorem using these techniques.

1.2 Probability metrics

Definition 1 For two probability measures µ and ν , the probability metric is:

dG (µ,ν) = sup
g∈G

∣∣∣∫ g(x)dµ(x)−
∫

g(x)dν(x)
∣∣∣, (2)
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Introduction to Stein’s Method and Normal Approximation

where G is some family of test functions.

As for two random variables W and Z, the probability metric has the form

dG (W,Z) = sup
g∈G

∣∣∣∫ g(x)dFW (x)−
∫

g(x)dFZ(x)
∣∣∣= sup

g∈G

∣∣∣Eg(W )−Eg(Z)
∣∣∣, (3)

where FW (x) and FZ(x) are distribution functions of random variables W and Z respectively.

Kolmogorov-Smirnov distance and Wasserstein distance for random variables W and Z can
be defined as follows for special g:

1. If g = 1[·≤x] is an indicator function, then the Kolmogorov-Smirnov distance can be defined
as follows

Kolm(W,Z) = sup
x∈R
|P(W ≤ x)−P(Z ≤ x)|.

2. If G is a collection of 1-Lipschitz functions, the Wasserstein distance can be defined as
follows

Wass(W,Z) = sup
g∈G
|Eg(W )−Eg(Z)|.

Lemma 1 Suppose W, Z are two random variables, and Z has a density with respect to Lebesgue
measure bounded by a constant C. Then Kolm(W,Z)≤ 2

√
CWass(W,Z).

Proof. Fix ε > 0. Define g1
x,ε(w) to be 1 when w≤ x, 0 when w≥ x+ ε , and linear between.

P(W ≤ x)−P(Z ≤ x) = P(W ≤ x)−E[g1
x,ε(Z)]+E[g1

x,ε(Z)]−P(Z ≤ x)

≤ E[g1
x,ε(W )]−E[g1

x,ε(Z)]+E[g1
x,ε(Z)]−P(Z ≤ x)

≤ 1
ε

Wass(W,Z)+Cε,

since g1
x,ε(w) is 1

ε
-Lipschitz, and the density of Z is bounded by C.

If we take ε =

√
Wass(W,Z)

C , then we have

P(W ≤ x)−P(Z ≤ x)≤ 2
√

CWass(W,Z).

Define g2
x,ε(w) to be 1 when w ≤ x− ε , 0 when w ≥ x, and linear between. Then we can get the

same upper bound for P(Z ≤ x)−P(W ≤ x).
Therefore,

Kolm(W,Z) = sup
x∈R
|P(W ≤ x)−P(Z ≤ x)| ≤ 2

√
CWass(W,Z). (4)

In particular, if Z ∼ N(0,1), then C = 1√
2π

. This finishes the proof. ut
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1.3 Stein’s idea

From Gaussian integration by parts, we know that if X is a random variable with mean 0 and
E(x2) = σ2, then the density function of X is

ϕ(x) =
1√

2πσ
e−

x2

2σ2 .

Note that xϕ(x) =−σ2ϕ ′(x). Then given a continuously differential function f : R→ R, ExF(x)
satisfies

ExF(x) =
∫ +∞

−∞

xF(x)ϕ(x)dx =−σ
2F(x)ϕ(x)

∣∣∣+∞

−∞

+σ
2
∫

∞

−∞

F ′(x)ϕ(x)dx

= σ
2EF ′(x),

when the limits lim
x→∞

F(x)ϕ(x) = 0 and integrals on both sides are finite.

Therefore, for standard Gaussian distribution, we have ExF(x) = EF ′(x), as a result of the
special case with σ = 1. Based on this result, we have the following nice property for standard
normal distribution, which is also known as Stein’s Identity.

Lemma 2 (Stein’s Identity) If Z ∼ N(0,1), then

E f ′(Z) = EZ f (Z), (5)

for all absolute continuous functions f : R→ R with E| f ′(Z)|< ∞.
Conversely, if E[ f ′(Z)] = E[Z f (Z)] for all bounded, continuous and piecewise continuously differ-
entiable functions f with E| f ′(Z)|< ∞, then Z has a standard normal distribution.

We will later show the proof of this lemma in the next section. Stein’s method is deduced from the
above idea. If a random variables W satisfies (5) approximately, i.e. E f ′(W )≈ EW f (W ), then we
can conclude that W is approximately a standard Gaussian random variable.

Recall the probability metric of two random variables:

dG (W,Z) = sup
g∈G
|Eg(W )−Eg(Z)|,

where G is some given class of functions.

If we can find another class of function f ∈F such that

sup
g∈G

∣∣Eg(W )−Eg(Z)
∣∣≤ sup

f∈F

∣∣E[ f ′(W )−W f (W )]
∣∣, (6)

then we can bound dG (W,Z) by bounding |E[ f ′(W )−W f (W )]|. On the basis of this relationship,
Stein’s method can be characterized by the following equation

f ′(w)−w f (w) = g(w)−Eg(Z), (7)
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which is also known as Stein’s equation.

If F is a class of functions such that for every g ∈ G , there exists f ∈F such that (7) holds,
for Z ∼ N(0,1), then (6) holds, which is obvious by taking expectation on both sides of (7)

E[ f ′(W )−W f (W )] = Eg(W )−Eg(Z). (8)

Noticeably, there are several boundary conditions for the solution of equation (7), which will be
explained in details in section 2.

Lemma 3 Given a function g : R→ R that is bounded, then there exists absolutely continuous f
solving (3) for all x, satisfying

| f |∞ ≤
√

π

2
|g(w)−Eg(Z)|∞ and | f ′|∞ ≤ 2|g(w)−Eg(Z)|∞.

And if g is Lipschitz, then

| f |∞ ≤ |g′|∞, f ′|∞ ≤
√

π

2
|g′|∞, and | f ′′|∞ ≤ 2|g′|∞.

(Proof of Lemma 3 will be given in the next section.)

Particularly, if g is 1-Lipschitz, the probability metric becomes Wasserstein distance, and if F is
defined as a family of functions satisfying

F = {∀ f ∈F , | f |∞ ≤ 1, f ′|∞ ≤
√

2
π
, and | f ′′|∞ ≤ 2},

then we have

Wass(W,Z) = sup
g∈G

∣∣Eg(W )−Eg(Z)
∣∣≤ sup

f∈F

∣∣E[ f ′(W )−W f (W )]
∣∣. (9)

From Lemma 1 we have already known that Kolm(W,Z) ≤ 2
√

CWass(W,Z), hence if we can
show that the upper bound of Wass(W,Z) approximates 0, then we can conclude that
|P(W ≤ x)−P(Z ≤ x)| → 0. Finally, by definition of convergence in distribution, we get

W ·∼ N(0,1).

In section 3, we will see some applications of Stein’s method to show normal approximation by
bounding Wasserstein distance.
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2 Detailed Illustration of Stein’s method

In this section, we will give the proof of Stein’s identity and study the solution of Stein’s equation

f ′(w)−w f (w) = g(w)−Eg(Z),

for both general g and special g.

2.1 Stein’s Identity (proof)

To prove Lemma 2 (Stein’s Identity), we first need the following result.

Lemma 4 For fixed z ∈ R and Φ(z) = P(Z ≤ z), the cumulative distribution function of Z, the
unique bounded solution f (w) of the equation

f ′(w)−w f (w) = 1(w≤z)−Φ(z)

is given by

f (w) =

{ √
2πe

w2
2 Φ(w)(1−Φ(z)), w≤ z

√
2πe

w2
2 Φ(z)(1−Φ(w)), w > z

(10)

Proof. Multiply both sides of the equation by e−
w2
2 :

e−
w2
2 [ f ′(w)−w f (w)] = e−

w2
2 [1(w≤z)−Φ(z)],

and the above equation yields

( f (w)e
−w2

2 )′ = e−
w2
2 [1(w≤z)−Φ(z)].

Integration yields

f (w)e
−w2

2 =
∫ w

−∞

[1(x≤z)−Φ(z)]e−
x2
2 dx, (11)

and since f is unique, there is no constant term in (11). Then multiply both sides by e
w2
2 , we have

f (w) = e
w2
2

∫ w

−∞

[1(x≤z)−Φ(z)]e−
x2
2 dx

=−e
w2
2

∫
∞

w
[1(x≤z)−Φ(z)]e−

x2
2 dx 1

which is equivalent to (10), since

1Two forms of solution come from the fact that
∫

∞

−∞
[1(x≤z)−Φ(z)]e−

x2
2 dx = 0.
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a. w≤ z

f (w) = e
w2
2

∫ w

−∞

[1(x≤z)−Φ(z)]e−
x2
2 dx

= e
w2
2 (1−Φ(z))

√
2π

∫ w

−∞

1√
2π

e
−x2

2 dx

=
√

2πe
w2
2 Φ(w)(1−Φ(z))

b. w > z

f (w) =−e
w2
2

∫
∞

w
[1(x≤z)−Φ(z)]e−

x2
2 dx

= e
w2
2

∫
∞

w
e−

x2
2 Φ(z)dx

=
√

2πe
w2
2 Φ(z)

∫
∞

w

1√
2π

e−
x2
2 dx

=
√

2πe
w2
2 Φ(z)(1−Φ(w)).

ut

Based on the result in Lemma 4, now we can show the proof of Stein’s identity.

Proof of Lemma 2 (Stein’s Identity) . “=⇒” Suppose that Z ∼ N(0,1), and E| f ′(Z)| < ∞, we
can then write E f ′(Z) as an integral and exchange the order of integral to get the final result using
Fubini theorem 2.

E f ′(Z) =
1√
2π

∫ +∞

−∞

f ′(z)e−
z2
2 dz

=
1√
2π

∫ 0

−∞

f ′(z)e−
z2
2 dz+

1√
2π

∫ +∞

0
f ′(z)e−

z2
2 dz

=
1√
2π

∫ 0

−∞

f ′(z)
∫ z

−∞

(−x)e−
x2
2 dxdz+

1√
2π

∫ +∞

0
f ′(z)

∫ +∞

z
xe−

x2
2 dxdz

=
1√
2π

∫ 0

−∞

(
∫ x

0
f ′(z)dz)(−xe−

x2
2 )dx+

1√
2π

∫ +∞

0
(
∫ x

0
f ′(z)dz)xe−

x2
2 dx

=
1√
2π

∫ +∞

−∞

( f (x)− f (0))xe−
x2
2 dx

= EZ f (Z)− 1√
2π

f (0)
∫ +∞

−∞

xe−
x2
2 dx

= EZ f (Z),

which implies that if Z ∼ N(0,1), then we have E f ′(Z) = EZ f (Z).
2Suppose A and B are complete measure space. Suppose f (x,y) is A×B measurable. If

∫∫
A×B | f (x,y)|d(x,y)< ∞,

then
∫

A(
∫

B f (x,y)dy)dx =
∫

B(
∫

A f (x,y)dx)dy =
∫∫

A×B f (x,y)d(x,y).

9
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“⇐=” Suppose that E f ′(Z) = EZ f (Z).
Recall Stein’s equation:

f ′(w)−w f (w) = g(w)−Eg(Z),

where Z ∼ N(0,1).
Taking g(w) = 1[w≤x], the solution implied in Lemma 4 satisfies the conditions of Lemma 2
(Stein’s Identity), thus we have

0 = E[ f ′(W )−W f (W )] = E[1(w≤x)]−Φ(z) = P(W ≤ x)−P(Z ≤ x).

Therefore, W ∼ N(0,1). This finish the proof. ut

2.2 Solution to Stein’s equation

Lemma 5 For a given real valued measurable function g with E|g(Z)|< ∞,and Z ∼ N(0,1), the
Stein’s equation for g is:

f ′(w)−w f (w) = g(w)−Eg(Z),

and the unique, bounded solution to this differential equation is

f (w) = e
w2
2

∫ w

−∞

e
−x2

2
[
g(x)−Eg(Z)

]
dx =−e

−w2
2

∫ +∞

w
e
−x2

2
[
g(x)−Eg(Z)

]
dx. (12)

Proof. Mutilplying both sides of Stein’s equation by e−
w2
2 yields(

f (w)e
−w2

2
)′
= e

−w2
2
(
g(w)−Eg(Z)

)
.

Integration yields

f (w)e
−w2

2 =
∫ w

−∞

e
−x2

2 [g(x)−Eg(Z)]dx+Ce
w2
2

f (w) = e
w2
2

∫ w

−∞

e
−x2

2 [g(x)−Eg(Z)]dx+C.

In order to get a unique and bounded solution f (w), C must be 0. So the final solution for Stein’s
equation is

f (w) = e
w2
2

∫ w

−∞

e
−x2

2 [g(x)−Eg(Z)]dx

=−e
w2
2

∫ +∞

w
e
−x2

2 [g(x)−Eg(Z)]dx.

10
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We have two forms of solution as a result of the following fact:∫ +∞

−∞

e
−x2

2 [g(x)−Eg(Z)]dx =
∫ +∞

−∞

e
−x2

2 g(x)dx−Eg(Z)
∫ +∞

−∞

e
−x2

2 dx

=
√

2π

∫
R

1√
2π

e
−x2

2 g(x)dx−
√

2πEg(Z)

=
√

2πEg(X)−
√

2πEg(Z)

= 0.

This finishes the proof. ut

Additionally, we have another form of solution,

f (w) =−
∫ 1

0

1
2
√

t(1− t)
E[Zg(

√
tw+

√
1− tZ)]dt, Z ∼ N(0,1), (13)

if g is Lipschitz.

Proof. We need to check that (13) satisfies f ′(w)−w f (w) = g(w)−Eg(Z).
First, let’s take first derivative on f (w) with respect to w.

f ′(w) =−
∫ 1

0

1
2
√

1− t
E[Zg′(

√
tw+

√
1− tZ)]dt.

By Stein’s identity EZ f (Z) = E f ′(Z), we have

E[Zg(
√

tw+
√

1− tZ)] =
√

1− tE[g′(
√

tw+
√

1− tZ)].

Combining the above calculations, we obtain that

f ′(w)−w f (w) =−
∫ 1

0
E
[ Z

2
√

1− t
g′(
√

tw+
√

1− tZ)
]
dt +

∫ 1

0
E
[ w

2
√

t(1− t)
·Z ·g(

√
tw+

√
1− tZ)

]
dt

=−
∫ 1

0
E
[ Z

2
√

1− t
g′(
√

tw+
√

1− tZ)
]
dt+∫ 1

0
E
[ w

2
√

t(1− t)
·
√

1− t ·E
[
g′(
√

tw+
√

1− tZ)
]
dt

=
∫ 1

0
E(

−Z
2
√

1− t
+

w
2
√

t
)g′(
√

tw+
√

1− tZ)dt

= E
∫ 1

0

dg(
√

tw+
√

1− tZ)
dt

dt

= E
[
g(
√

tw+
√

1− tZ)
∣∣∣1
0

]
= g(x)−Eg(Z).

11
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This finishes the proof. ut

2.3 Boundary conditions for the solution of Stein’s equation

In this section, we will show the proof of Lemma 3, the boundary conditions for the solution of
Stein’s equation.

Lemma 6 If g : R→ R is bounded, then | f |∞ ≤
√

π

2

∣∣∣g(w)−Eg(Z)
∣∣∣
∞

Proof. We need to consider two cases, w > 0 and w≤ 0.

a. w > 0
Recall the solution of Stein’s equation for general g

f (w) =−e
w2
2

∫ +∞

w
e
−x2

2
[
g(x)−Eg(Z)

]
dx.

The supremum norm of f satisfies

| f |∞ ≤ |g(w)−Eg(Z)|∞ · e
w2
2

∫ +∞

w
e
−x2

2 dx.

Let h(w) = e
w2
2
∫+∞

w e
−x2

2 dx, then h′(w) =−1+we
w2
2
∫+∞

w e
−x2

2 dx. Define

ϕ(x) =
1√
2π

e
−x2

2 , 1−Φ(x) =
∫

∞

x
ϕ(t)dt, r(x) =

1−Φ(x)
ϕ(x)

.

By Mill’s ratio inequality:
x

1+ x2 < r(x)<
1
x
, ∀x > 0,

then we have we
w2
2
∫

∞

w e
−x2

2 dx < 1 and h′(w) < 0,which implies that h(w) is decreasing on
[0,+∞], and thus

h(w)≤ h(0) =
√

π

2
.

Therefore,

| f |∞ ≤
√

π

2

∣∣∣g(w)−Eg(Z)
∣∣∣
∞

,

when w > 0.

b. w≤ 0
In this case, we use another form of the soluiton

e
w2
2

∫ w

−∞

e
−x2

2 [g(x)−Eg(Z)]dx,

12
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and the same method as w > 0 as well as the symmetry of standard Gaussian distribution to
get the upper bound of | f |∞.

Therefore,

| f |∞ ≤
√

π

2

∣∣∣g(w)−E(g(Z))
∣∣∣
∞

, ∀w.

This finishes the proof. ut

Lemma 7 If g : R→ R is bounded, then | f ′|∞ ≤ 2|g(w)−Eg(Z)|∞.

Proof. We only consider the case when w > 0, and the upper bound can be attained using the same
manner by using another form of the solution when w < 0.
By taking first derivative with respect to w, we have

f ′(w) = w f (w)+g(w)−Eg(Z)

= g(w)−Eg(Z)+w(−e
w2
2 )
∫ +∞

w
e
−x2

2 [g(w)−Eg(Z)]dx,

and hence
| f ′(w)|∞ ≤ |g(w)−Eg(Z)|∞(1+we

w2
2

∫ +∞

w
e
−x2

2 dx).

By Mill’s ratio inequality r(x)< 1
x , we can get

we
w2
2

∫ +∞

w
e
−x2

2 dx < 1,when w > 0.

Therefore,
| f ′|∞ ≤ 2|g(w)−Eg(Z)|∞.

ut

Lemma 8 If g is Lipschitz, but not necessarily bounded, then | f |∞ ≤ |g′|∞.

Proof. If g is Lipschitz, then we have another form of solution that have been proved in the previous
subsection

f (w) =
∫ 1

0

1
2
√

t(1− t)
E[Zg(

√
tw+

√
1− tZ)]dt, Z ∼ N(0,1).

Suppose that
f (Z) = g(

√
tw+

√
1− tZ),

and based on Stein’s identity that for any absolutely continuous function f

EZ f (Z) = E f ′(Z),

then we can obtain that

E[Zg(
√

tw+
√

1− tZ)] =
√

1− tE[g′(
√

tw+
√

1− tZ)]. (14)
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Introduction to Stein’s Method and Normal Approximation

Plugging in (14) into the solution, we can get

f (w) =−
∫ 1

0

1
2
√

t(1− t)
·
√

1− tE[g′(
√

tw+
√

1− tZ)]dt,

and thus

| f |∞ ≤ |g′|∞
∫ 1

0

1
2
√

t
dt = |g′|∞.

This finishes the proof. ut

Lemma 9 If g is Lipschitz, but not necessarily bounded, then | f ′|∞ ≤
√

π

2 |g
′|∞.

Proof. If g is Lipschitz, then we have

f (w) =−
∫ 1

0

1
2
√

t(1− t)
E[Zg(

√
tw+

√
1− tZ)]dt,

and taking the first derivative with respect to w, we obtain that

f ′(w) =−
∫ 1

0

1
2
√

1− t
E[Zg′(

√
tw+

√
1− tZ)]dt.

So the supremum norm of f ′(w) satisfies

| f ′|∞ ≤ |g′|∞ ·E|Z| ≤ 2|g′|∞
∫ +∞

0
x

1√
2π

e−
x2
2 dx =

√
π

2
|g′|∞.

ut

Lemma 10 If g is Lipschitz, but not necessarily bounded, then | f ′′|∞ ≤ 2|g′|∞.

Proof. By taking second derivative on Stein’s equation with respect to w, we get

f ′′(w) = g′(w)+ f (w)+w f ′(w)

= g′(w)+ f (w)+w
[
w f (w)+g(w)−Eg(Z)

]
.

14



Introduction to Stein’s Method and Normal Approximation

Rewrite g(w)−Eg(Z) as an integral:

g(w)−Eg(Z) = g(w)− 1√
2π

∫ +∞

−∞

g(y)e−
y2
2 dy

=
1√
2π

∫ +∞

−∞

(g(w)−g(y))e−
y2
2 dy

=
1√
2π

[
∫ w

−∞

(g(w)−g(y))e−
y2
2 dy+

∫ +∞

w
(g(w)−g(y))e−

y2
2 dy]

=
1√
2π

[
∫ w

−∞

e−
y2
2

∫ w

y
g′(z)dzdy−

∫ +∞

w
1
∫ y

w
e−

y2
2 g′(z)dzdy]

=
1√
2π

[
∫ w

−∞

g′(z)
∫ z

−∞

e−
y2
2 dydz−

∫ +∞

w
g′(z)

∫ +∞

z
e−

y2
2 dydz]

=
∫ w

−∞

g′(z)Φ(z)dz−
∫ +∞

w
g′(z)(1−Φ(z))dz

Next, using Φ(z) = P(Z ≤ z) and Φ̄(z) = P(Z > z), we can rewrite f (w) as follows

f (w) = e
w2
2

∫ w

−∞

e
−y2

2 [g(y)−Eg(z)]dy

= e
w2
2

∫ w

−∞

e
−y2

2
(∫ y

−∞

g′(z)Φ(z)dz−
∫

∞

y
g′(z)Φ̄(z)dz

)
dy

= e
w2
2

∫ w

−∞

g′(z)Φ(z)
∫ w

z
e
−y2

2 dydz− e
w2
2
[∫ w

−∞

g′(z)Φ̄(z)
∫ z

−∞

e
−y2

2 dydz+∫ +∞

w
g′(z)Φ̄(z)

∫ w

−∞

e
−y2

2 dydz
]
. (15)

And Since

√
2πe

w2
2

∫ w

−∞

g′(z)Φ(z)
∫ w

z

1√
2π

e
−y2

2 dydz =
√

2πe
w2
2

∫ w

−∞

g′(z)Φ(z)(Φ(w)−Φ(z))dz

=
√

2πe
w2
2

∫ w

−∞

g′(z)Φ(z)(Φ̄(z)− Φ̄(w))dz,

we can rewrite (15) as follows

(15) =
√

2πe
w2
2

∫ w

−∞

g′(z)Φ(z)(Φ̄(z)− Φ̄(w))dz−
√

2πe
w2
2
[∫ w

−∞

g′(z)Φ̄(z)Φ(z)dz+
∫

∞

w
g′(z)Φ̄(z)Φ(w)dz

]
=
√

2πe
w2
2
[∫ w

−∞

g′(z)Φ(z)(Φ̄(z)− Φ̄(w))dz−
∫ w

−∞

g′(z)Φ̄(z)Φ(z)dz−
∫

∞

w
g′(z)Φ̄(z)Φ(w)dz

]
=−
√

2πe
w2
2
[∫ w

−∞

g′(z)Φ(z)Φ̄(w)dz+
∫

∞

w
g′(z)Φ̄(z)Φ(w)dz

]
=−
√

2πe
w2
2
[
Φ̄(w)

∫ w

−∞

g′(z)Φ(z)dz+Φ(w)
∫

∞

w
g′(z)Φ̄(z)dz

]
.
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Combining all these calculations together, we get

f ′′(w) = g′(w)+ f (w)+w
[
w f (w)+g(w)−Eg(z)

]
= g′(w)+w

[
g(w)−Eg(z)

]
+(1+w2) f (w)

= g′(w)+w
[∫ w

−∞

g′(z)Φ(z)dz−
∫ +∞

w
g′(z)Φ̄(z)dz

]
−
√

2π(1+w2)e
w2
2
[
Φ̄(w)

∫ w

−∞

g′(z)Φ(z)dz

+Φ(w)
∫

∞

w
g′(z)Φ̄(z)dz

]
= g′(w)+

[
w−
√

2π(1+w2)e
w2
2 Φ̄(w)

]∫ w

−∞

g′(z)Φ(z)dz+[
−w−

√
2π(1+w2)e

w2
2 Φ(w)

]∫ +∞

w
g′(z)Φ̄(z)dz.

Hence the supremum norm of f ′′(w) satisfies

| f ′′
∣∣
∞
≤ |g′

∣∣
∞

[
1+|w−

√
2π(1+w2)e

w2
2 Φ̄(w)|

∫ w

−∞

Φ(z)dz+
∣∣−w−

√
2π(1+w2)e

w2
2 Φ(w)

∣∣∫ ∞

w
Φ̄(z)dz

]
.

(16)
Recall Mill’s ratio inequality (x > 0)

x
1+ x2 ≤ e

x2
2

∫
∞

x
e−

t2
2 dt <

1
x
,

which is equivalent to

xe
−x2

2
√

2π(1+ x2)
≤ 1−Φ(x)≤ e

−x2
2

x
√

2π
. (17)

It’s easy to see that (17) implies

−x+
√

2π(1+ x2)e
x2
2 (1−Φ(x))≥ 0.

Additionally, since x+
√

2π(1+x2)e
x2
2 Φ(x)> 0, based on the fact that x > 0, then we can remove

the absolute value sign. Moreover, by simple integration, we can obtain that∫ w

−∞

Φ(z)dz = wΦ(w)+
1√
2π

e
−w2

2 , 3 (18)

and ∫
∞

w
(1−Φ(z))dz =−w(1−Φ(w))+

1√
2π

e
−w2

2 . 4 (19)

3∫ w
−∞

Φ(z)dz =
∫ w
−∞

(z)′Φ(z)dz, and then using integration by parts, we can get the above result.
4∫ ∞

w (1−Φ(z))dz =
∫

∞

w (z)′(1−Φ(z))dz, and then using integration by parts, we can get the above result.

16



Introduction to Stein’s Method and Normal Approximation

Finally, by substituion, we get[
−w+

√
2π(1+w2)e

w2
2 Φ̄(w)

]∫ w

−∞

Φ(z)dz+
[
w+
√

2π(1+w2)e
w2
2 Φ(w)

]∫ ∞

w
Φ̄(z)dz = 1.

Therefore,
| f ′′|∞ ≤ 2|g′|∞.

ut

Lemma 11 A less constrained bound: | f ′′|∞ ≤ 4|g′|∞, when g is Lipschitz.

Proof. Recall
f ′(w)−w f (w) = g(w)−Eg(Z),

and
f ′′(w)−w f ′(w) = g′(w)+ f (w). (20)

Let h(w) = g′(w)+ f (w), then we have Eh(Z) =E[g′(Z)+ f (Z)]. Since Z ∼N(0,1), and f ′ is also
absolutely continuous, then by Stein’s Identity we have

E f ′′(Z) = EZ f ′(Z).

Hence,
Eh(Z) = E[g′(Z)+ f (Z)] = E[ f ′′(Z)−Z f ′(Z)] = 0,

and (20) can be rewritten as

f ′′(w)−w f ′(w) = h(w)+E[h(Z)], (21)

where h := g′+ f . Therefore, f ′ is the solution for the new Stein’s equation (21), and thus also
satisfies the boundary condition that we have proved before:

| f ′′|∞ ≤ 2
∣∣g′+ f −E[g′(Z)+ f (Z)]

∣∣
∞
= 2|g′+ f |∞

≤ 2(|g′|∞ + | f |∞)
≤ 2(|g′|∞ + |g′|∞) = 4|g′|∞

This finishes the proof. ut

2.4 Example-Ordinary Central Limit Theorem in the Wasserstein metric

Let X1,X2, ...,Xn be independent random variables with E(Xi) = 0, E(X2
i ) = 1 and E|X3

i |< ∞. Let
W = X1+X2+···+Xn√

n , and then W ∼ N(0,1).

Proof. Take any f ∈C1with f ′ absolutely continuous, and satisfying | f | ≤ 1, | f ′| ≤
√

2
π
, | f ′′| ≤ 2.

17



Introduction to Stein’s Method and Normal Approximation

Let Wi =W − Xi√
n , which implies that Wi⊥Xi (“⊥” is the sign for independence). Note that

E
(
Xi f (W )

)
= E[Xi( f (W )− f (Wi))+Xi f (Wi)] = E[Xi( f (W )− f (Wi))]

= E
[
Xi( f (W )− f (Wi)− (W −Wi) f ′(Wi))

]
+E
[
Xi(W −Wi) f ′(Wi)

]
.

Note that f ′′(x) = f ′(x+h)− f ′(x)
h , and thus we can obtain

E[W f (W )] =
1√
n

n

∑
i=1

E[Xi f (W )],

and
| f (W )− f (Wi)− (W −Wi) f ′(Wi)| ≤

1
2
(W −Wi)

2| f ′′|∞,

thus

E
[
Xi( f (W )− f (Wi)− (W −Wi) f ′(Wi))

]
≤ 1

2
| f ′′|∞ ·E

∣∣∣Xi
X2

i
n

∣∣∣≤ 1
n
E|Xi|3.

Again,

E
[
Xi(W −Wi) f ′(Wi)

]
=

1√
n
E[X2

i ] ·E[ f ′(Wi)] =
1√
n
E[ f ′(Wi)],

since Wi is independent of Xi. Based on the above calculations, we can get

∣∣EW f (W )− 1
n

n

∑
i=1

E[ f ′(Wi)]
∣∣≤ 1

n
3
2

n

∑
i=1

E|Xi|3.

Finally, note that

∣∣1
n

n

∑
i=1

E[ f ′(Wi)]−E[ f ′(W )]
∣∣≤ | f ′′|∞

n

n

∑
i=1

E|W −Wi|

≤ 2

n
3
2

n

∑
i=1

E|Xi|.

Combining all these together, we obtain that

∣∣E[ f ′(W )−W f (W )]
∣∣≤ 1

n
3
2

n

∑
i=1

E|Xi|3 +
2

n
3
2

n

∑
i=1

E|Xi|.

Since E(X2
i ) = 1, we can say that E|Xi|3 ≥ 1, and E|Xi| ≤

(
E|Xi|3

) 1
3 ≤ E|Xi|3. Therefore,

Wass(W,Z)≤ 3

n
3
2

n

∑
i=1

E|Xi|3,

18
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which converges to 0, since E|Xi|3 < ∞. Finally, we can conclude that W ·∼ N(0,1). ut

3 Appication of Stein’s method

Based on the idea from Stein’s method, we know that if we can figure out that Wasserstein distance
between random variables W and Z approximates 0, where Z is standard Gaussian, then we can
conclude that W approximately follows standard normal distribution. Unlike the proof of ordinary
central limit theorem in the Wasserstein metric, it not quite easy to compute the upper bound of
Wass(W,Z) directly in most cases. In this section, we will introduce some useful techniques that are
mostly used to obtain the upper bound of Wasserstein distance Wass(W,Z), including dependency
graph, method of exchangeable pairs, size-bias coupling and zero-bias coupling.

3.1 Dependency Graph

We firstly will introduce the definitions of dependency graph and dependency neighborhoods.

Definition 2 {Xi}i∈V are random variables. A dependency graph for {Xi}i∈V is any graph G with
vertex set V such that if S,T are two disjoint subsets of V so that there is no edge of G between any
vertex in S to any vertex in T , then {Xi}i∈S and {Xi}i∈T are mutually independent.

Definition 3 (Dependency neighborhoods) We say that a collection of random variables {X1, X2,

· · · , Xn} has dependency neighborhoods Ni ⊆ {1, · · · , n}, i = 1, · · · ,n, if for i ∈ Ni, Xi is indepen-
dent of {X j} j/∈Ni .

Lemma 12 Given a graph G, let D = 1+maximum degree5 of G. Let W = ∑
n
i∈V Xi, then

Var(W )≤ D ∑
i∈V

Var(Xi). (22)

Proof. Var(W ) can be expressed as the following:

Var(W ) = Var(
n

∑
i∈V

Xi) = ∑
i, j
[E(XiX j)−E(Xi)E(X j)].

We denote the neighborhood of i by Ni, and if j ∈ Ni, then j ∼ i.
WLOG, we assume that E(Xi) = 0, then

Var(W ) = ∑
i, j

E(XiX j) = ∑
i, j∼i

E(XiX j).

19
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Note that XiX j ≤
X2

i +X2
j

2 , thus Var(W ) satisfies the following inequality

Var(W )≤ ∑
i, j∼i

E(
X2

i +X2
j

2
)

≤ ∑
i, j∼i

Var(Xi)+Var(X j)

2

≤ D ∑
i∈V

Var(Xi),

This finishes the proof. ut

3.1.1 Application of Dependency Graph

In this section, we will introduce an example about how to use Lemma 12 to compute the upper
bound of Wasserstein distance. This example also illustrates that a sum of locally dependent ran-
dom variables will be approximately normal.

Example Suppose that E(Xi) = 0, Var(∑i Xi) = σ2, W = ∑i Xi
σ

and Z ∼ N(0,1), and then we have

Wass(W,Z)≤ 2
σ2
√

π

√
D3 ∑

i
E|Xi|4 +

D3

σ3 ∑
i
E|Xi|3.

Proof. Let Wi =
1
σ ∑ j/∈Ni X j. Obviously, Wi is independent of Xi, and W −Wi =

1
σ ∑ j∈Ni X j. Take

any f such that | f | ≤ 1, | f ′| ≤
√

2
π
, | f ′′|∞ ≤ 2.

Let’s first look at E[W f (W )]. By assumption, E(Xi) = 0, and thus we have

E[W f (W )] =
1
σ

∑
i
E[Xi f (W )]

=
1
σ

∑
i
E[Xi f (W )]− 1

σ
∑

i
E[Xi f (Wi)]

=
1
σ

∑
i
E
[(

Xi( f (W )− f (Wi)
)]

= (I) + (II),

where (I) = 1
σ ∑iE[Xi( f (W )− f (Wi)− (W −Wi) f ′(W ))] and (II) = 1

σ ∑iE[Xi(W −Wi) f ′(W )].
Note that W −Wi =

1
σ ∑ j∈Ni X j. As a result of Taylor expansion and conditions satisfies by f , we

20
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can get

(I)≤ 1
σ

∑
i
E
∣∣Xi(W −Wi)

2 · f ′′

2

∣∣
≤ 1

2σ
| f ′′|∑

i
E
∣∣Xi(W −Wi)

2∣∣
≤ 1

σ3 ∑
i
E|Xi( ∑

j∈Ni

X j)
2|.

Plugging in W −Wi =
1
σ ∑ j∈Ni X j to equation (II), we have

(II) =
1
σ

∑
i
E
[
Xi(W −Wi) f ′(W )

]
=

1
σ

∑E[Xi(
1
σ

∑
j∈Ni

X j) f ′(W )]

= E
[

f ′(W )
( 1

σ2 ∑Xi( ∑
j∈Ni

X j)
)]
.

Let T = 1
σ2 ∑Xi(∑ j∈Ni X j), then the expectation of T satisfies

E(T ) =
1

σ2 ∑E[Xi ·σ(W −Wi)]

=
1
σ

∑E[XiW ] =
1
σ
E[W ∑

i
Xi]

= E(W 2) = 1.

Next, we can bound the absolute value of (II)− f ′(W ) by

|(II)− f ′(W )|=
∣∣E[ f ′(W )(T −1)]

∣∣
≤ | f ′|∞ ·E|T −1|=

√
2
π

√
E|T −1| ·E|T −1|

≤
√

2
π

√
E(T −1)2 =

√
2
π

√
Var(T ),

Note that |EW f (W )−E f ′(W )| ≤ (I)+ |(II)− f ′(W )|. Combining the above results, we can obtain
that

|EW f (W )−E f ′(W )| ≤
√

2
π

√
Var(T )+

1
σ3 ∑E

∣∣Xi( ∑
j∈Ni

X j)
2∣∣
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and 1
σ3 ∑E

∣∣Xi(∑ j∈Ni X j)
2
∣∣ can be bounded by

1
σ3 ∑E|Xi( ∑

j∈Ni

X j)
2| ≤ 1

σ3 ∑
i

∑
j,k∈Ni

E|XiX jXk|

≤ 1
3σ3 ∑

i
∑

j,k∈Ni

(E|Xi|3 +E|X j|3 +E|Xk|3)

≤ D2

σ3 ∑
i
E|Xi|3,

where the last two inequalities come from A-G inequality: X1+···+Xn
n ≥ n

√
X1X2 · · ·Xn

6.

To get the upper bound of Var(T ), let’s first compute the upper bound of Var(∑Xi(∑ j∈Ni X j)).

Var(∑Xi( ∑
j∈Ni

X j)) = Var( ∑
i, j∈Ni

XiX j),

where

Var(XiX j)≤ E(X2
i X2

j )≤
E(X4

i )+E(X4
j )

2
.

Finally, using the result in Lemma 5, we can obtain that

Var( ∑
i, j∈Ni

XiX j)≤ 2D2
∑
i∼ j

Var(XiX j)≤ 2D2×D∑
i
E(X4

i ),

because of the following reason: XiX j is independent of XkXl if k, l /∈ {Ni ∪N j}. |Ni ∪N j| ≤ 2D
and since Ni,N j ⊆ V , each vertex in Ni ∪N j has at most D neighbors, which implies that the
maximum degree of the new dependency graph is 2D2 and {XiX j, i ∈ V, j ∈ Ni} is a collection
with a dependency graph of maxmimum degree 2D2.

Thus,

Var(T )≤ 1
σ4 ·2D3

∑
i
EX4

i .

Combining all these results together, we get

Wass(W,Z)≤ 2
σ2
√

π

√
D3 ∑

i
E|Xi|4 +

D3

σ3 ∑
i
E|Xi|3.

ut

6XiX jXk = 3
√

X3
i X3

j X3
k ≤

X3
i +X3

j +X3
k

3
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3.2 Method of Exchangeable Pairs

Definition 4 (W,W ′) is an exchangeable pair of random variables if (W,W ′) and (W,W ′) have

the same distribution, i.e. (W,W ′) d
= (W ′,W ).

The following lemma gives an upper bound of the Wasserstein distance between random variables
W and Z using the method of exchangeable pair.

Lemma 13 Suppose (W,W ′) is an exchangeable pair and there is a constant λ ∈ (0,1) such that

E(W ′−W |W ) =−λW. (23)

Also assume that E(W 2) = 1, then we have the following inequality:

Wass(W,Z) = sup
∣∣E f ′(w)−E(W f (W ))

∣∣
≤
√

2
π

Var[E(
1

2λ
(W ′−W )2|W )]+

1
3λ

E|W ′−W |3,

where Z ∼ N(0,1).

Based on the definition of exchangeable pair, we have E(W ) = E(W ′) and E(W 2) = E(W ′2) = 1.
Additionally, from equation (23), we have the following conclusions:

1. E(W ) = 0, since
E[E(W −W ′|W )] = E(W −W ′) = E(λW ) = 0.

2. E(W ′−W )2 = 2λ , since

E(W ′−W )2 = E[W 2 +W ′2−2WW ′]

= E[2W 2−2WW ′]

= E[2W (W −W ′)]

= E(E[2W (W −W ′)|W ])

= E(2WE[(W −W ′)|W ])

= E
(
2WE(λW )

)
= 2λE(W 2) = 2λ

Next, we will prove Lemma 13.
Proof. Take any twice differentiable function f such that

| f | ≤ 1, | f ′| ≤
√

2
π
, | f ′′|∞ ≤ 2.

Let F ′(x) = f (x), and by Taylor expansion, we have

0 = E(F(W ′)−F(W )) = E[(W ′−W ) f (W )]+
1
2
E[(W ′−W )2 f ′(W )]+ r, (24)
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where r = 1
6E
[
(W ′−W )3 f ′′(W̃ )

]
, W̃ is between W and W ′, and thus |r| ≤ 1

6 | f
′′|∞ ·E|W ′−W |3 ≤

1
3E|W

′−W |3. Since there exists λ ∈ (0,1) such that

E(W ′−W |W ) =−λW,

multiplying both sides by f (W ) and taking expectation, then we have

E
[
(W ′−W ) f (W )

]
=−λE[W f (W )].

Based on the relationship implied by equation (24), we can get

−λE[W f (W )] = E
[
(W ′−W ) f (W )

]
=−1

2
E
[
(W ′−W )2 f ′(W )

]
− r

=−E
[1

2
E((W ′−W )2 f ′(W )|W )

]
− r

=−E
[1

2
f ′(W )E((W ′−W )2|W )

]
− r.

Next we can bound E
[

f ′(W )−W f (W )
]

using the above computations,

|E f ′(W )−E[W f (W )]| ≤ |E[ f ′(W )(E(
1

2λ
(W ′−W )2|W )−1)]|+ 1

3λ
E|W ′−W |3

≤
√

2
π
E|E( 1

2λ
(W ′−W )2|W )−1|+ 1

3λ
E|W ′−W |3.

Let Y = E( 1
2λ
(W ′−W )2|W )], then we have E(Y ) = 1, and

E
[
Y −E(Y )

]
=
√

E2
[
Y −E(Y )

]
≤
√
E
[
(Y −E(Y ))2

]
=
√

Var(Y ),

where the last inequality comes from Jessen’s inequality. Therefore,

Wass(W,Z)≤
√

2
π

Var[E(
1

2λ
(W −W ′)2|W )]+

1
3λ

E|W ′−W |3.

ut

Remark: this inequality also holds if W and W ′ have the same distribution, but not necessarily
exchangeable.

3.2.1 Construction of an Exchangeable Pair

General idea for construction: Let X ′1,X
′
2, · · · ,X ′n be an independent copy of X1,X2, · · · ,Xn, and

choose index I uniformly at random from {1,2, · · · ,n}. i.e. (X ′1,X
′
2, · · · ,X ′n) is independent of

(X1,X2, · · · ,Xn).
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Example
X1,X2, · · · ,Xn is a sequence of random variables, let W = ∑

n
i Xi and

W ′ =
n

∑
j 6=I

X j +X ′I =W +X ′I −XI,

then (W,W ′) is an exchangeable pair.

Proof. In order to prove that (W,W ′) d
= (W ′,W ), we need to show that

P(W ∈ A, W ′ ∈ B) = P(W ′ ∈ A,W ∈ B).

Let S−i = X1 + · · ·+Xi−1 +Xi+1 + · · ·+Xn. Since P(I = i) = 1
n , we have

P(W ∈ A, W ′ ∈ B) =
1
n

n

∑
i=1

P(W ∈ A,W ′i ∈ B).

Since X ′i is an independent copy of Xi, we have X ′i ⊥ Xi, X ′i ⊥ S−i, Xi ⊥ S−i, where “⊥” denotes

independence, and then we can conclude that (S−i, Xi, X ′i )
d
= (S−i, X ′i , Xi).

Note that W = S−i +Xi, W ′ = S−i +X ′i , thus we obtain that

1
n

n

∑
i=1

P(W ∈ A,W ′i ∈ B) =
1
n

n

∑
i=1

P(W ′i ∈ A,W ∈ B)

= P(W ′ ∈ A,W ∈ B).

Therefore, W and W ′ is an exchangeable pair. ut

3.2.2 Application of exchangeable pairs in proving Central Limit Theorem

In this part, we will prove the Ordinary Central Limit Theorem for weighted sum of independent
random variables and Hoeffding Central limit theorem, in which random variables are not inde-
pendent, using the method of exchangeable pairs.

3.2.2.1 Weighted sum of independent random variables

Let X1,X2, · · · ,Xn be independent random variables with mean 0, variance 1 and E|Xi|4 ≤ ∞.
Let

W =
1√
n

n

∑
i=1

Xi

then W approximately follows standard Gaussian distribution.

Proof. Let X ′1,X
′
2, · · · ,X ′n be the independent copy of X1,X2, · · · ,Xn, and choose index I uniformly
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and randomly from {1,2, · · · ,n}. In addition, X ′i is independent of Xi, and Xi, X ′i have the same
distribution.

Since (W,W ′) is an exchangeable pair, then we need to check if there exists λ ∈ (0,1) such
that

E(W ′−W |W ) =−λW.

Let W ′ = 1√
n ∑

n
j 6=I X j +

X ′I√
n = W +

X ′I−XI√
n , then we have W ′−W =

X ′I−XI√
n , and we can compute

E(W ′−W |W ) as follows

E(W ′−W |W ) =
1√
n
E(X ′I −XI|W )

=
1√
n
× 1

n

n

∑
i=1

E(X ′i −Xi|W )

=
1
n
E(

n

∑
i=1

1√
n
(X ′i −Xi|W ))

=
1
n
E(

n

∑
i=1

1√
n

X ′i )−
1
n
E(W |W ) =−1

n
W.

Hence, in our example, λ = 1
n , and we have

Wass(W,Z)≤
√

2
π

Var[E(
1

2λ
(W −W ′)2|W )]+

1
3λ

E|W −W ′|3.

Let’s first compute the upper bound of 1
3λ

E|W −W ′|3. By replacing W ′−W by X ′I−XI√
n , we have

1
3λ

E|W −W ′|3 = n
3
E|X

′
I −XI√

n
|3

=
n

3n
3
2
E|X ′I −XI|3 =

1

3n
3
2

n

∑
i=1

E|X ′i −Xi|3

≤ 8

3n
3
2

n

∑
i=1

E|Xi|3

Next we wiil compute the upper bound of Var[E( 1
2λ
(W −W ′)2|W )]. Since

E(
1

2λ
(W −W ′)2|W ) =

1
2
E[(X ′I −XI)

2|W ] =
1

2n
[

n

∑
i
E(X ′i −Xi)

2|W ],
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where E(X ′i −Xi)
2|W ] can be expressed as follows

E[(X ′i −Xi)
2|W ] = E(X ′2i |W )+E(X2

i |W )+2E(X ′i Xi|W )

= 1+E(X2
i |W )+0

= 1+E(X2
i |W ),

thus we obtain that

Var[E(
1

2λ
(W −W ′)2|W )] = Var[

1
2n

n

∑
i=1

(1+E(X2
i |W ))]

= Var[
1

2n

n

∑
i=1

E(X2
i |W )].

However, Var[ 1
2n ∑

n
i=1E(X2

i |W )] is not easy to compute. Thus we need the following property to
compute the upper bound of Var[E( 1

2λ
(W −W ′)2|W )].

Remark
Var
(
E(

1
2λ

(W −W ′)2|W )
)
≤ Var

(
E(

1
2λ

(W −W ′)2|F )
)

for any σ -field F that is larger than the σ -field generated by W . Thus we can compute the upper
bound of Var(E( 1

2λ
(W −W ′)2|F )) instead. Let’s first prove why this inequality holds.

Proof. Recall that Var(X) = E(X2)−E2(X), thus we have

Var(E((W −W ′)2|W )) = E{E[(W −W ′)2|W ]}2−E2(E[(W −W ′)2|W ])

= E{E[(W −W ′)2|W ]}2−E2[(W −W ′)2]

Var(E((W −W ′)2|F )) = E{E[(W −W ′)2|F ]}2−E2[(W −W ′)2]

Hence, we only need to compare E{E[(W −W ′)2|W ]}2 and E{E[(W −W ′)2|F ]}2 to get the
relationship between Var(E((W−W ′)2|W )) and Var(E((W−W ′)2|F )). Let X =(W−W ′)2,
then we will compare E[E(X |W )]2 and E[E(X |F )]2.
Take W = ∑

n
i=1 Xi and F = (X1, · · · ,Xn), then we have

E(X |W ) = E(X |F ) = E[E(X |F )|W ],

because of the fact that σ(W ) ⊆F , W contains less information than F , and F includes
more randomness. Thus,

E[E(X |W )]2 = E[E(E(X |F )|W )]2.

Let Y = E(X |F ), E2(Y |W )≤ E[Y 2|W ], which comes from Jensen’s inequality, and then we
can get

E[E(X |W )]2 ≤ E[E(Y 2|W )] = E(Y 2) = E[E(X |F )]2.
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Therefore,

Var(E(
1

2λ
(W −W ′)2|W ))≤ Var(E(

1
2λ

(W −W ′)2|F ))

ut

Given the property mentioned above, then we can compute the upper bound of the variance as
follows

Var[E(
1

2λ
(W −W ′)2|W )] = Var[

1
2n

n

∑
i=1

E(X2
i |W )]

≤ Var[
1

2n

n

∑
i=1

E(X2
i |(X1, · · · ,Xn))]

= Var[
1

2n

n

∑
i=1

E(X2
i |Xi)]

=
1

4n2

n

∑
i=1

Var(X2
i ) =

1
4n2

n

∑
i=1

[E(X4
i )−E2(X2

i )]

≤ 1
4n2

n

∑
i=1

E(X4
i )

Therefore, if E(X4
i )< ∞,

Wass(W,Z)≤

√
1

2n2π

n

∑
i=1

E(X4
i )+

8

3n
3
2
E|Xi|3 → 0, as n → ∞

and W ·∼ N(0,1). ut

3.2.2.2 Hoeffding Combinatorial Central Limit Theorem

Suppose (ai, j)
n
i, j=1 is an array of numbers. Let π be a uniform random permutation of {1,2, · · · ,n}.

Let W = ∑
n
i=1 aiπ(i). Then we have Wasserstein distance bounded by

Wass(W,Z)≤ L

√
1
n ∑

i, j
a4

i j +
L̃
n ∑

i, j
|ai j|3,

where L, L̃ are some constants.

Proof. WLOG, we can assume that

n

∑
i=1

ai j = 0,
n

∑
j=1

ai j = 0,
1

n−1

n

∑
i, j=1

a2
i j = 1,
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based on which we can show that

W −E(W )√
Var(W )

∼ N(0,1).

at the end of our proof.

Let’s first prove why this assumption does not compromise generality. Let σ =
√

Var(W ) and
µ = E(W ). Define

ai. =
1
n

n

∑
j=1

ai j, a. j =
1
n

n

∑
i=1

ai j, a.. =
1
n2

n

∑
i, j=1

ai j,

and
ãi j =

ai j−ai.−a. j +a..
σ

.

Since E(W ) = µ , we can express µ in terms of a.. based on the definition of ai., a. j, a.. and ãi j

µ = E(W ) = E(
n

∑
i=1

aiπ(i)) =
1
n ∑

i, j
ai j =

1
n
·n2a.. = na..,

and we can also find the explicit form of ãi. and ã. j

ãi. =
1
n

n

∑
j=1

ãi j =
1
n

n

∑
j=1

(
ai j−ai.−a. j +a..

σ
)

=
1
σ
· 1

n

n

∑
j=1

(ai j−ai.−a. j +a..)

=
1

σn
(

n

∑
j=1

ai j−
n

∑
j=1

ai.−
n

∑
j=1

a. j +
n

∑
j=1

a..)

=
1

σn
(

n

∑
j=1

ai j−
n

∑
j=1

1
n

n

∑
j=1

ai j−
1
n ∑

i, j
ai j +

1
n ∑

i, j
ai j)

=
1

σn
(

n

∑
j=1

ai j−
n

∑
j=1

ai j−
1
n ∑

i, j
ai j +

1
n ∑

i, j
ai j))

= 0.
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Similarly, we can also get ã. j = 0. Next, rewrite W̃ and we obtain that

W̃ =
1
σ

n

∑
i=1

ãiπ(i) =
1
σ

n

∑
i=1

(aiπ(i)−ai.−a.π(i)+a..)

=
1
σ
(

n

∑
i=1

aiπ(i)−
n

∑
i=1

ai.−
n

∑
i=1

a.π(i)+na..)

=
1
σ
(

n

∑
i=1

aiπ(i)−na..)7

=
1
σ
(W −µ).

Hence,

E(W̃ ) =
1
σ
(E(W )−µ) =

1
σ
(µ−µ) = 0.

Note that
W −E(W )√

Var(W )
=

W̃ −E(W̃ )√
Var(W̃ )

,

as a result of the following fact:

W̃ −E(W̃ )√
Var(W̃ )

=
1
σ
(∑n

i=1 aiπ(i)−na..)− 1
σ
E(∑n

i=1 aiπ(i)−na..)√
1

σ2 Var(∑n
i=1 aiπ(i)−na..)

=

(
W −E(W )

)
−
(
na..−E(na..)

)√
Var(∑n

i=1 aiπ(i)−na..)

=
W −E(W )√

Var(W )
,

since na.. is constant.

Thus, if we can show that W̃−E(W̃ )√
Var(W̃ )

∼ N(0,1), then we can conclude that W−E(W )√
Var(W )

∼ N(0,1).

Now, let’s continue proving why the assumption made at the beginning does not compromise
generality. By simple computations, we obtain that Var(W̃ ) satisfies

Var(W̃ ) = Var(
W −µ

σ
) =

1
σ2 Var(W ) =

σ2

σ2 = 1,

and both E[ãiπ(i)] and E[ã jπ( j)] equal to 0

E[ãiπ(i)] =
1
n

n

∑
j=1

ãi j = ãi. = 0, E[ã jπ( j)] = 0.

7
∑

n
i=1 aiπ(i) = ∑

n
i=1

1
n ∑

n
k=1 akπ(i) =

1
n ∑ j,k ak j = ∑i, j ai j = na...
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Rewrite Var(W̃ )

Var(W̃ ) = Var[
n

∑
i=1

ãiπ(i)]

=
n

∑
i=1

Var(ãiπ(i))+∑
i6= j

cov(ãiπ(i), ã jπ( j))

=
n

∑
i=1

[
E(ã2

iπ(i))−E2(ãiπ(i))
]
+∑

i6= j

[
E(ãiπ(i)ã jπ( j))−E(ãiπ(i))E(ã jπ( j))

]
=

n

∑
i=1

E(ã2
iπ(i))+∑

i 6= j
E(ãiπ(i)ã jπ( j))

=
1
n

n

∑
i=1

n

∑
j=1

ã2
i j +

1
n(n−1) ∑

i6= j
∑
k 6=l

ãikã jl.

And since ãi.=
1
n ∑

n
j=1 ãi j = 0, we have ∑

n
j=1 ãi j = 0 and similarly, ∑

n
i=1 ãi j = 0. Then ∑i6= j ∑k 6=l ãikã jl

can be expressed as follows

∑
i 6= j

∑
k 6=l

ãikã jl = ∑
i

∑
j 6=i

∑
k

∑
l 6=k

ãikã jl

= ∑
i

∑
k

ãik ∑
j 6=i

(∑
l 6=k

ã jl)

= ∑
i

∑
k

ãik ∑
j 6=i

(−ã jk)

= ∑
i,k

ãik · ãik = ∑
i,k

ã2
ik.

Thus, Var(W̃ ) finally has the form

1 = Var(W̃ ) =
1
n

n

∑
i=1

n

∑
j=1

ã2
i j +

1
n(n−1)

n

∑
i=1

n

∑
j=1

ã2
i j =

1
n−1 ∑

i, j
ã2

i j

=
1

n−1 ∑
i, j
(
ai j−ai.−a. j +a..

σ
)2

Therefore,

Var(W ) = σ
2 =

1
n−1 ∑

i, j
(ai j−ai.−a. j +a..)2 =

1
n−1

(∑
i, j

a2
i, j−n

n

∑
i=1

a2
i.−n

n

∑
j=1

a2
. j +n2a2

..).

On the basis of the relationship that we have analyzed between W and W̃ , we can see that it’s
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reasonable to assume that

n

∑
i=1

ai, j = 0,
n

∑
j=1

ai, j = 0,
1

n−1

n

∑
i, j

a2
i, j = 1,

where ∑
n
j=1 ai, j = ãi., ∑

n
i=1 ai, j = ã. j, and 1

n−1 ∑
n
i, j a2

i, j is equivalent to

1
n−1

· 1
σ2 ∑

i, j
(ai j−ai.−a. j +a..)2 = Var(W̃ ) = 1,

and then we have E(W ) = 0, Var(W ) = 1.

Before computing the upper bound of Wasserstein distance, we first need to construct an
exchangeable pair (π,π ′), which will be applied to construct exchangeable pair (W,W ′).

Theorem 1 Let π ′(I) = π(J), π ′(J) = π(I) and π ′(k) = π(k) if k 6= I,J, where I,J are selected
uniformly at random on {1,2, · · · ,n}, where π ′ is denoted by π ◦(I,J). Then (π,π ′) is an exchange-
able pair.

Proof. We know that π is permutation from {1,2, · · · ,n}, and π(I) = 1
n ∑

n
i=1 π(i), then we have

P(π ∈ A,π ′ ∈ B) = P(π ∈ A,π ◦ (I,J) ∈ B)

=
1

n(n−1)∑
i, j

P(π ∈ A,π ◦ (i, j) ∈ B).

Let π̃ = π ◦ (i, j), which is still a uniform permutation of indices. and thus, π = π̃ ◦ (i, j). So we
finally get

P(π ∈ A,π ◦ (i, j) ∈ B) = P(π̃ ◦ (i, j) ∈ A, π̃ ∈ B) = P(π ∈ B,π ◦ (i, j) ∈ A),

where the last equality comes from the fact that π and π̃ have the same distribution.

Therefore, (π,π ′) d
= (π ′,π). ut

Now we can construct an exchageable pair for W . Let W ′ = ∑
n
i=1 aiπ(i). Then (W,W ′) is an

exchangeable pair. And obviously,

W ′−W = aIπ ′(I)+aJπ ′(J)−aIπ(I)−aJπ(J)

= aIπ(J)+aJπ(I)−aIπ(I)−aJπ(J)

Recall that if W and W ′ is an exchangeable pair, then E(W ′−W |W ) = −λW . To obtain λ , we
firstly compute E(W ′−W |π), and later we will see that E(W ′−W |W ) = E(W ′−W |π).

E(W ′−W |π) = 1
n(n−1) ∑

1≤i 6= j≤n
(aiπ( j)+a jπ(i)−aiπ(i)−a jπ( j)).
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Note that

1
n(n−1) ∑

i 6= j
aiπ(i) =

1
n(n−1)∑

i
∑
j 6=i

aiπ(i)

=
1

n(n−1)
· (n−1)∑

i
aiπ(i)

=
W
n
.

Similarly,
1

n(n−1) ∑
i 6= j

a jπ( j) =
W
n
.

Additionally, by assumption, we have ∑i 6= j aiπ( j)+aiπ(i) = 0 by fixing i, then we can obtain that

1
n(n−1) ∑

i 6= j
aiπ( j) =

1
n(n−1)∑

i
∑
i 6= j

aiπ( j) =−
1

n(n−1)∑
i

aiπ(i) =−
1

n(n−1)
W.

Similarly, 1
n(n−1) ∑i6= j a jπ(i) =− 1

n(n−1)W .

Combining all these together, we get the following equation

E(W ′−W |π) =− 2
n−1

W, which only depends on W . (25)

So we have
E(W ′−W |W ) = E(W ′−W |π) =− 2

n−1
W,

and hence in our example, λ = 2
n−1 .

Next we will bound the Wasserstein distance by computing the upper bound of Var[E( 1
2λ
(W ′−

W )2|W )] and E|W ′−W |3 separately in order to complete the proof of Hoeffding combinatorial
CLT.

In the previous part we have proved that Var(E( 1
2λ
(W −W ′)2|W ))≤ Var(E( 1

2λ
(W −W ′)2|F )), if

W is measurable in σ -field F , and F is larger, hence we can bound Var(E( 1
2λ
(W −W ′)2|W )) by

bounding Var(E( 1
2λ
(W −W ′)2|π)).

Let’s first bound E|W ′−W |3. Note that

E|W ′−W |3 = E[E|W ′−W |3|π],
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where E
(
|W ′−W |3|π

)
satisfies

E(|W ′−W |3|π) = 1
n(n−1) ∑

i, j 6=i
|aiπ(i)+a jπ( j)−aiπ( j)−a jπ(i)|3

≤ 16
n(n−1) ∑

i, j 6=i
(|aiπ(i)|3 + |a jπ( j)|3 + |aiπ( j)|3 + |a jπ(i)|3),

where the last inequality is based on the fact that (a+b−c−d)3 ≤ 16(a3 +b3 +c3 +d3). The we
can get

1
3λ

E|W ′−W |3 ≤ 1
3λ

E[
16

n(n−1) ∑
i, j 6=i

(|aiπ(i)|3 + |a jπ( j)|3 + |aiπ( j)|3 + |a jπ(i)|3)]

≤ n−1
6
× 16

n(n−1)∑
i

∑
i 6= j

4×E|aiπ(i)|3

≤ n−1
6
× 64

n(n−1)
× (n−1)× 1

n ∑
i, j
|ai j|3

≤ n−1
6
× 64

n2 ∑
i, j
|ai j|3.

Note that based on our assumption at the beginning we have ai j = O( 1√
n), then we have

1
3λ

E|W ′−W |3 ≤ C√
n
,

where C is a constant.
Now we will prove the concentration for the conditional variance in the upper bound of Wass(W,Z).
Let’s first look at E((W ′−W )2|π).

E((W ′−W )2|π) = 1
n(n−1) ∑

i6= j
(aiπ(i)+a jπ( j)−aiπ( j)−a jπ(i))

2. (26)

Let Ai j = aiπ(i)+a jπ( j)−aiπ( j)−a jπ(i). Then the above equation (26) becomes

E((W ′−W )2|π) = 1
n(n−1) ∑

i 6= j
A2

i j = X .
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Based on the fact that Var(X) = E(X2)− (E(X))2 and

Var(∑
i

Xi) = ∑
i

Var(Xi)+∑
i6= j

Cov(Xi,X j)

= ∑
i

Var(Xi)+∑
i6= j

[E(XiX j−E(Xi)E(X j)]

= ∑
i, j
[E(XiX j)−E(Xi)E(X j)],

we have

Var(X) =
1

n2(n−1)2 Var(∑
i 6= j

A2
i j)

=
1

n2(n−1)2 ∑
i6= j

∑
k 6=l

[E(A2
i jA

2
kl)−E(A2

i j)E(A2
kl)],

where

∑
i6= j

∑
k 6=l

[
E(A2

i jA
2
kl)−E(A2

i j)E(A2
kl)
]
= ∑

i 6= j,k 6=l

8[E(A2
i jA

2
kl)−E(A2

i j)E(A2
kl)
]

+ ∑
i 6= j 6=k 6=l

[
E(A2

i jA
2
kl)−E(A2

i j)E(A2
kl)
]
.

Let I = ∑i6= j,k 6=l
[
E(A2

i jA
2
kl)−E(A2

i j)E(A2
kl)
]
, then we have

I = ∑
i6= j,k 6=l

[E(A2
i jA

2
kl)−E(A2

i j)E(A2
kl)]≤ ∑

i 6= j,k 6=l
E(A2

i jA
2
kl)

≤ 4 ∑
i6= j,l

E(A2
i jA

2
il)≤ 4 ∑

i6= j,l

E(A4
i j)+E(A4

il)

2
(using the fact that xy≤ x2 + y2

2
)

≤ 2 ∑
i, j,l

[E(A4
i j)+E(A4

il)]

≤ 2[n∑
i, j

E(A4
i j)+n∑

i,l
E(A4

il)] = 4n∑
i, j

E(A4
i j).

Plugging in the original form

E(A4
i j) = E[(aiπ(i)+a jπ( j)−aiπ( j)−a jπ(i))

4],

and using the fact that
(a+b+ c+d)4 ≤ 8(a4 +b4 + c4 +d4),
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we can obtain that

E(A4
i j)≤ 8[E(a4

iπ(i))+E(a4
jπ( j))+E(a4

iπ( j))+E(a4
jπ(i))]

=
8
n
[2∑

l
a4

il +2∑
l

a4
jl].

Therefore,

I≤ 4n∑
i, j

E(A4
i j)

≤ 4n∑
i, j

16
n

(
∑

l
a4

il +∑
l

a4
jl
)

≤ 64∑
i, j
(∑

l
a4

il +∑
l

a4
jl) = 64(n∑

i,l
a4

il +n∑
j,l

a4
jl) = 64×2n∑

i, j
a4

i j.

Now we move on to compute II, where II = ∑i6= j 6=k 6=l[E(A2
i jA

2
kl)−E(A2

i j)E(A2
kl)].

a. Let’s first look at E(A2
i jA

2
kl).

A2
i jA

2
kl = (aiπ(i)+a jπ( j)−aiπ( j)−a jπ(i))

2(akπ(k)+alπ(l)−akπ(l)−alπ(k))
2.

and

(π(i),π( j),π(k),π(l)) = (i1, i2, i3, i4), with probability
1

n(n−1)(n−2)(n−3)
,

where {is}4
s=1 ∈ {1,2, · · · ,n}. Thus,

E(A2
i jA

2
kl) =

1
n(n−1)(n−2)(n−3)

×

∑
i1 6=i2 6=i3 6=i4

(ai,i1 +a j,i2−ai,i2−a j,i1)
2(ak,i3 +al,i4−ak,i4−al,i3)

2.

b. Next we compute E(A2
i j)E(A2

kl). Let A1 = (ai,i1 +a j,i2−ai,i2−a j,i1)
2 and A2 = (ak,i3 +al,i4−
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ak,i4−al,i3)
2. Then we have

E(A2
i j)E(A2

kl) =
1

n(n−1) ∑
i1 6=i2

(ai,i1 +a j,i2−ai,i2−a j,i1)
2×

1
n(n−1) ∑

i3 6=i4

(ak,i3 +al,i4−ak,i4−al,i3)
2

=
1

n2(n−1)2 ∑
i1 6=i2,i3 6=i4

(ai,i1 +a j,i2−ai,i2−a j,i1)
2(ak,i3 +al,i4−ak,i4−al,i3)

2

=
1

n(n−1)(n−2)(n−3) ∑
i1 6=i2 6=i3 6=i4

A1A2+

[
1

n2(n−1)2 −
1

n(n−1)(n−2)(n−3)
] ∑

i1 6=i2 6=i3 6=i4

A1A2+

1
n2(n−1)2 ∑

i1 6=i2,i3 6=i4

A1A2.

As a result, II can be rewritten as follows

II=− ∑
i6= j 6=k 6=l

[
(

1
n2(n−1)2−

1
n(n−1)(n−2)(n−3)

) ∑
i1 6=i2 6=i3 6=i4

A1A2+
1

n2(n−1)2 ∑
i1 6=i2,i3 6=i4

A1A2
]
.

Obviously, bounding |II| is enough. As for A1A2, we have the following inequality

A1A2 ≤
(ai,i1 +a j,i2−ai,i2−a j,i1)

4 +(ak,i3 +al,i4−ak,i4−al,i3)
4

2
≤ 4[(a2

i,i1 +a2
j,i2 +a2

i,i2 +a2
j,i1)+(a2

k,i3 +a2
l,i4 +a2

k,i4 +a2
l,i3)].

Let (∗)= ( 1
n2(n−1)2− 1

n(n−1)(n−2)(n−3))∑i1 6=i2 6=i3 6=i4 A1A2, and (∗∗)= 1
n2(n−1)2 ∑i1 6=i2,i3 6=i4 A1A2. Then

when n is large enough, sum of (∗) and sum of (∗∗) satisfy

∑
i 6= j 6=k 6=l

(∗)∼ 1
n5 ∑

i6= j 6=k 6=l
∑

i1 6=i2 6=i3 6=i4

A1A2

≤ C1

n5 ×n6
∑
i, j

a4
i j =C1na4

i j.

and

∑
i6= j 6=k 6=l

(∗∗)∼ 1
n4 ∑

i6= j 6=k 6=l
∑

i1 6=i2,i3 6=i4

A1A2

≤ C2

n4 (n
3×n2

∑
i, j

a4
i j) =C2n∑

i, j
a4

i j,
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where “∼” means approximation.

Thus,
|II| ≤ C̃n∑

i, j
a4

i j. (C′s are constants),

and
Var(X)≤ 1

n2(n−1)2 ×Ln∑
i, j

a4
i j. (L is constant) and

4
λ 2 Var(X)≤ L

n ∑
i, j

a4
i j.

Therefore,

Wass(W,Z)≤
√

2
π

Var[E(
1

2λ
(W −W ′)2|W )]+

1
3λ

E|W −W ′|3

≤ L

√
1
n ∑

i, j
a4

i j +
L̃
n ∑

i, j
|ai j|3.

Based on our assumption at the beginnig, we have ai j ∼O(1
n), and thus Wass(W,Z) is bounded by

C√
n , where C is some constant. Finally, we can conclude that W ·∼ N(0,1), as n→ ∞. This finishes

the proof of Hoeffding combinatorial central limit theorem. ut

3.3 Size-bias Coupling

3.3.1 Some basic idea about size-bias coupling

Definition 5 For a random variable E(X)> 0 with E(X) = µ < ∞, we say that the random vari-
able X s has the size-bias distribution with respect to X if for all f such that E|X f (X)| < ∞, we
have

E[X f (X)] = µE[ f (X s)].

Theorem 2 Let X ≥ 0 be a random variable such that E(X) = µ < ∞, and Var(X) = σ2. Let X s be
defined on the same space as X and have the size-bias distribution with respect to X. If W = X−µ

σ

and Z ∼ N(0,1), then

Wass(X ,Z)≤ µ

σ2

√
2
π

√
Var
(
E(X s−X |X)

)
+

µ

σ3E[(X
s−X)2].

Proof. Take any twice differentiable function f satisfying | f |∞ ≤ 1, | f ′|∞ ≤
√

2
π

, and | f ′′|∞ ≤ 2.
E[W f (W )] can be expressed as follows:

E[W f (W )] = E
[X−µ

σ
f (

X−µ

σ
)
]
= E

[X
σ

f (
X−µ

σ
)− µ

σ
f (

X−µ

σ
)
]

= E
[µ

σ

(
f (

X s−µ

σ
)− f (

X−µ

σ
)
)]
,

where the last equality is from the definition of size-bias distribution.
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Then a Taylor expansion yields

E[W f (W )] =
µ

σ
E
[X s−µ

σ
f ′(

X−µ

σ
)+

(X s−X)2

2σ2 f ′′(
X∗−µ

σ
)
]
,

for some X∗ lies between X and X s. Then using definition of W in terms of X we obtain that

|E[ f ′(W )−W f (W )]|=
∣∣E[ f ′(W )− µ

σ2 (X
s−X) f ′(W )]−E[

µ

2σ3 (X
s−X)2 f ′′(

X∗−µ

σ
)]
∣∣

≤
∣∣E[ f ′(W )(1− µ

σ2 (X
s−X))]

∣∣+ µ

2σ3

∣∣E[(X s−X)2 f ′′(
X∗−µ

σ
)]
∣∣.

Since | f ′|∞ ≤
√

2
π

, and by taking conditional expectation, we have

∣∣E[ f ′(W )(1− µ

σ2 (X
s−X))]

∣∣≤√ 2
π

∣∣E(1− µ

σ2 (X
s−X)

)∣∣=√ 2
π

∣∣∣E[E(1− µ

σ2 (X
s−X)|X)]

∣∣∣
≤
√

2
π
E
∣∣1− µ

σ2E(X
s−X |X)

∣∣,
Note that σ2 + µ2 = E(X2) = E(X ·X) = µE(X s), which implies that E(X s−X) = σ2

µ
. Then we

get √
2
π
E
∣∣1− µ

σ2E(X
s−X |X)

∣∣= µ

σ2

√
2
π
E
∣∣σ2

µ
−E(X s−X |X)

∣∣
=

µ

σ2

√
2
π
E
∣∣∣E[E(X s−X |X)]−E(X s−X |X)

∣∣∣.
Now by Cauchy-Schwarz inequality (|E(XY )| ≤

√
E(X2)

√
E(Y 2), which implies E2(X)≤E(X2)),

we have

µ

σ2

√
2
π
E
∣∣∣E[E(X s−X |X)]−E(X s−X |X)

∣∣∣≤ µ

σ2

√
2
π

√
E
[
E
(
E(X s−X |X)

)
−E(X s−X |X)

]2

=
µ

σ2

√
2
π

√
Var
(
E(X s−X |X)

)
and since | f ′′| ≤ 2, we can get

µ

2σ3

∣∣E[(X s−X)2 f ′′(
X∗−µ

σ
)]
∣∣≤ µ

2σ3 ·2E|(X
s−X)2|= µ

σ3E[(X
s−X)2].

Combining the above results, we finally bound the Wasserstein distance by

Wass(X ,Z)≤ µ

σ2

√
2
π

√
Var
(
E(X s−X |X)

)
+

µ

σ3E[(X
s−X)2].
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This finishes the proof. ut

3.3.2 Construction of size-bias coupling

Considering the fact that there is an explicit form of the upper bound of Wasserstein distance
Wass(W,Z) if we can construct a size-bias coupling, we need some approaches for this construc-
tion. In this section, we will introduce three methods about constructing a random variable X s that
has the size-bias distribution with respect to X , given some specific conditions.

Method 1
Let X = ∑

n
i=1 Xi, where Xi ≥ 0 and E(Xi) = µi. The following steps show the construction of size-

bias of X .

1. For each i = 1,2, · · · ,n, let X s
i has the size-bias distribution of Xi and independent of X j,

X s
j , j 6= i. Given X s

i = x, define the vector (X (i)
j ) j=i to have the same distribution of (X j) j 6=i

conditional on Xi = x.

2. Choose a random summand XI , where the index I is chosen proportional to µi, and indepen-
dent of all else. Let E(X) = µ , P(I = i) = µi

µ
.

3. Define X s = ∑ j 6=I X I
j +X s

I .

If X s is constructed by the above 3 steps, then X s has size-bias distribution of X .

Method 2
Let X1,X2, · · · ,Xn be non-negative independent random variables with E(Xi) = µi, and for each
i = 1,2, · · · ,n, let X s

i have the size-bias distribution of Xi, and X s
i is independent of X j and X s

j ,
i 6= j. If X = ∑

n
i=1 Xi, E(X) = µ , and I is chosen independent from all else with. If P(I = i) = µi

µ
,

then X s = X−XI +X s
I has the size-bias distribution of X .

Proof. Because of the independence stated in this method, the conditioning in the construction has
no effect.

Method 3
Let X1,X2, · · · ,Xn be zero-one random variables and P(Xi = 1) = pi. For each i = 1,2, · · · ,n, let
(X (i)

j ) j 6=i have the distribution of (X j)i 6= j conditional on Xi = 1. If X = ∑
n
i=1 Xi, E(X) = µ , and I

is chosen independent from all else with P(I = i) = pi
µ

, then X s = ∑ j 6=I X (I)
j + 1 has the size-bias

distribution of X .
Proof. Based on the notations in method 3, we have µ =∑

n
i=1 pi and X s =∑ j 6=I X (I)

j +1, (X (i)
j ) j 6=i =

(X j) j 6=i|Xi = 1. Then we can easily get

E[ f (X s)] =
n

∑
i=1

pi

µ
E[ f (1+∑

j 6=i
X (i)

j )].
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Additionally, we can also get the following relation by simple calculations:

E[Xi f (
n

∑
j=1

X j)] = piE[ f (1+∑
j 6=i

X j)|Xi = 1] = piE[ f (1+∑
j 6=i

X (i)
j )].

Finally, we obtain that

E[ f (X s)] =
n

∑
i=1

1
µ
E
[
Xi f (

n

∑
j=1

X j)
]
=

1
µ
E
[
(

n

∑
i=1

Xi) f (
n

∑
j=1

X j)
]

=
1
µ
E[X f (X)].

This finishes the proof. ut

3.3.3 Application of size-bias coupling

A very important application of size-bias coupling is to prove the concentration of measure for the
number of isolated vertives in the Erdös-Rényi random graph. A full version of proof can be found
in Ghosh’s paper [4].

From the mehtods introduced above, we can see that a necessary component is that W is
nonnegative. However, this is not quite natural, especially when the distribution of W is symmetric
around zero, since W should be closer to a standard Gaussian random variable Z. This shortcoming
motivates the introduction of zero-bias coupling.

3.4 Zero-bias coupling

3.4.1 Basic idea about zero-bias coupling

Definition 6 For a random variable W with E(W ) = 0 and Var(W ) = σ2 < ∞, we say that random
variable W z has the zero-bias distribution with respect to W if for all absolutely continuous f such
that E[W f (W )]< ∞, we have

E[W f (W )] = σ
2E[ f ′(W z)].

Theorem 3 If W is a random variable with E(W ) = 0 and Var(W ) = 1, and let W z defined on
the same space as W and have the zero-bias distribution with respect to W. If Z ∼ N(0,1), then

Wass(W,Z)≤ 2E|W z−W |.

Proof. Take function f satisfying | f |∞ ≤ 1, | f ′|∞ ≤
√

2
π

, and | f ′′|∞ ≤ 2. Obviously,

Wass(W,Z)≤ sup
∣∣E[ f ′(W )−W f (W )]

∣∣= sup
∣∣E[ f ′(W )− f ′(W z)]

∣∣.
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Then by Taylor expansion, we have

Wass(W,Z)≤ | f ′′|∞E|W −W z|= 2E|W z−W |.

ut

Proposition 1 Let W be a random variable with E(W ) = 0, and Var(W ) = σ2 < ∞.

1. There is a unique probability distribution for W z satisfying

E[W f (W )] = σ
2E[ f ′(W z)],

for absolutely continuous f such that E[W f (W )]< ∞.

2. The distribution of W z is absolutely continuous with respect to Lebesgue measure with den-
sity

fz(w) =
1

σ2E[W ·1(W>w)] =−
1

σ2E[W ·1(W≤w)].

Proposition 2 If W is a random variable with E(W ) = 0, and Var(W ) = σ2 < ∞, then (aW )z has
the same distribution as aW z.

3.4.2 Construction of zero-bias coupling

In general, the construction of zero-bias coupling is difficult to achieve. So we consider a simpler
and special case that in which the random variable W is the sum of independent random variables.

Theorem 4 Let X1,X2, · · · ,Xn be independent random variables with E(Xi) = 0, Var(Xi) = σ2
i ,

and ∑
n
i=1 σ2

i = 1. Define W = ∑
n
i=1 Xi, then we have the following method to construct zero-bias

W z for W.

1. For each i = 1,2, · · · ,n, let X z
i have the zero-bias distribution of Xi, independent of X j and

X z
j , j 6= i.

2. Choose a random summand XI , where the index I satisfies P(I = i) = σ2
i , and is independent

from others.

3. Define W z = ∑ j 6=I X j +X z
I =W −XI +X z

I .

Then W z has the zero-bias distribution of W.

Proof. Note that E[Xi f (Xi)] = σ2
i E[ f (X

z
i )] and W −Xi is independent of Xi. Then we have

E[W f (W )] =
n

∑
i=1

E[Xi f (W )] =
n

∑
i=1

E
(
Xi f (W −Xi +Xi)

)
=

n

∑
i=1

σ
2
i E[ f ′(W −Xi +X z

i )].
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Additionally, since E[ f ′(W −XI +X z
I )] = ∑

n
i=1 σ2

i f ′(W −Xi +X z
i ), and then we obtain that

E[W f (W )] = E[ f ′(W −XI +X z
I )] = E[ f ′(W z)] (27)

Therefore, we can conclude that W z has the zero-bias distribution of W by definition. ut

3.4.3 Application of zero-bias coupling

Zero-bias coupling are generally applied to prove Lindeberg-Feller Central Limit Theorem.
First, let’s introduce the triangular array of random variables.

X11 X12 X13 · · ·X1n1

X21 X22 X23 · · · X2n2

X31 X32 X33 · · · X3n3

· · ·
Xn1 Xn2 Xn3 · · · Xnnn

· · · ,

where Xi j’s are random variables and satisfy the following properties

1. For each i, the ni random variables Xi1, · · · ,Xini in the i-th row are mutually independent.

2. E(Xi j) = 0, for all i, j.

3. ∑ jE(X2
i j) = 1, for all i.

Let (Xi,n)1≤i≤n,n≥1 be the triangular array of random variables defined as above such that Var(Xi,n)=

σ2
i,n < ∞. Let Wn = ∑

n
i=1 Xi,n, and then Var(Wn) = 1. A sufficient condition for Wn to satisfy central

limit theorem is the following Lindeberg condition:

n

∑
i=1

E
[
X2

i,n1(|Xi,n|>ε)

]
→ 0, as n→ ∞,

for all ε > 0.

Theorem 5 Let (Xi,n)1≤i≤n,n≥1 be the triangular array of random variables defined as above and
let XIn,n be a random variable independent of Xi,n, with P(In = i) = σ2

i,n. For each i, let X z
i,n have

the zero-bias dsitribution of Xi,n independent of all else. Then Lindeberg condition

n

∑
i=1

E
[
X2

i,n1(|Xi,n|>ε)

]
→ 0, as n→ ∞,

holds for all ε > 0 if and only if
X z

In,n
p→ 0, as n→ ∞.
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Proof. Let f ′(x) = 1(|x|≥ε) and f (0)→ 0, for some fixed ε > 0. Note that

f ′(x) =
{

1 |x| ≥ ε,

0 otherwise.

then we have f (x) = |x| · 1(|x|≥ε)− ε and x f (x) =
(
x2− ε|x|

)
1(|x|≥ε). And P(|X z

In,n| ≥ ε) can be
bounded as follows

P(|X z
In,n| ≥ ε) =

n

∑
i=1

σ
2
i,nP(|X z

i,n| ≥ ε)

=
n

∑
i=1

σ
2
i,nE
[
1(|X z

i,n|≥ε)

]
=

n

∑
i=1

σ
2
i,nE[ f ′(X z

i,n)]

=
n

∑
i=1

E
[
X z

i,n f (X z
i,n)
]

=
n

∑
i=1

E
[(
(X z

i,n)
2− ε|X z

i,n|
)
1(|X z

i,n|≥ε)

]
≤

n

∑
i=1

E
[
(X z

i,n)
21(|X z

i,n|≥ε)

]
,

which indicates that 0≤ P(|X z
In,n| ≥ ε)≤∑

n
i=1E

[
(X z

i,n)
21(|X z

i,n|≥ε)

]
. Therefore, X z

In,n
p→ 0, as n→∞,

which is equivalent to Lindeberg condition. ut

Theorem 6 If X z
In,n

p→ 0, as n→ ∞, then Wn satisfies CLT.

Proof. To prove that Wn satisfies a CLT, we need to show that Wass(Wn,Z)→ 0. Based on the proof
of Theorem 3, we have already known that Wass(Wn,Z)≤ sup

∣∣E[ f ′(Wn)− f ′(W z
n )]
∣∣. Additionally,

note that E(x) =
∫

∞

0 P(X ≥ t)dt 9, then we have∣∣E[ f ′(Wn)− f ′(W z
n )]
∣∣≤ E

∣∣ f ′(Wn)− f ′(W z
n )
∣∣= ∫ ∞

0
P
(
| f ′(Wn)− f ′(W z

n )| ≥ t
)
dt

≤
∫ 2| f ′|∞

0
P
(
| f ′(Wn)− f ′(W z

n )| ≥ t
)
dt 10

≤
∫ 2| f ′|∞

0
P
(
| f ′′|∞|Wn−W z

n | ≥ t
)
dt =

∫ 2| f ′|∞

0
P
(
|Wn−W z

n | ≥
t
| f ′′|∞

)
dt,

where the last inequality is from Taylor expansion.
Next, we will show |Wn−W z

n |
p→ 0, since if |Wn−W z

n |
p→ 0, then P

(
|Wn−W z

n | ≥ t
| f ′′|∞

)
→ 0

by definition of convergence in probability.

Note that |Wn−W z
n | = |X z

In,n−XIn,n| and X z
In,n

p→ 0, hence in order to prove |Wn−W z
n |

p→ 0, it’s

9This is because X =
∫

∞

0 1(x≥t)dt, thus, E(x) =
∫

∞

0 P(X ≥ t) ·1dt.
10t ≤ | f ′(Wn)− f ′(W z

n )| ≤ 2| f ′|∞
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enough to show XIn,n
p→ 0. Let mn = max

i
{σ2

i,n}, then by Chebyshev’s inequality, we have

P
(
|XIn,n| ≥ ε

)
≤

Var(XIn,n)

ε2 =
∑

n
i=1 σ2

i,n ·Var(Xin,n)

ε2 =
∑

n
i=1 σ4

i,n

ε2

≤ mn

ε2

n

∑
i=1

σ
2
i,n =

mn

ε2 ,

where the last equality comes from the fact that Var(Wn) = 1.

In the final step, what left to show is mn→ 0. ∀δ > 0, we have

σ
2
i,n = E(X2

i,n) = E
[
X2

i,n1(|Xi,n|≤δ )

]
+E
[
X2

i,n1(|Xi,n|>δ )

]
.

And since E
[
X2

i,n1(|Xi,n|≤δ )

]
= X2

i,nP(|Xi,n| ≤ δ )≤ δ 2, we can get

σ
2
i,n ≤ δ

2 +E
[
X2

i,n1(|Xi,n|>δ )

]
.

According to Theorem 5, X z
In,n

p→ 0, as n→ ∞ is equivalent to Lindeberg condition, thus,

E[X2
i,n1(|Xi,n|>δ )]→ 0,as n→ ∞.

Then we can conclude that ∀δ > 0, 0 ≤ mn ≤ δ 2, as n→ ∞. Therefore, mn→ 0, as n→ ∞. This
finishes the proof. ut
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