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1 Introduction

Royen[1] recently gave a ‘simple’ proof of the Gaussian correlation inequality, which states
that the product of the Gaussian measure of two symmetric convex sets is no greater than
the measure of their product.

In this paper, we shall go over the proof of this theorem as explained by the overviews
by Panchenko[2] and Latała and Matlak[3], and consider its application to confidence
rectangles of random vectors of normal distributions[4].

2 Gaussian Correlation Inequality

2.1 Introduction

Definitions. A set S ⊂ Rn is symmetric if for every x ∈ S, we have −x ∈ S.
A set P ⊂ Rn is a symmetric strip if it is of the form

P = {x ∈ Rn : |〈x, v〉| ≤ t}

for some v ∈ Rn, t ≥ 0.

Theorem 1 (Gaussian Correlation Inequality). For any closed symmetric convex sets K, L in
Rd and any centered Gaussian measure µ on Rd, we have

µ(K ∩ L) ≥ µ(K)µ(L). (1)

Note that any symmetric closed convex set is a countable intersection of symmetric
strips by taking the symmetric strips along the tangent line of each differentiable rational
point on the boundary, so it is enough to prove that the theorem holds when K, L are
symmetric strips,

K = {x ∈ Rd : |〈x, vi〉| ≤ ti∀1 ≤ i ≤ n1}, L = {x ∈ Rd : |〈x, vi〉| ≤ ti∀n1 + 1 ≤ i ≤ n1 + n2}.

Take n = n1 + n2, Xi = 〈vi, G〉, then we can obtain an equivalent form of Gaussian
Correlation Inequality.
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Theorem 2 (Reworded Gaussian Correlation Inequality). For any ti > 0, we have

P(|X1| ≤ t1, . . . , |Xn| ≤ tn) ≥ P(|X1| ≤ t1, . . . , |Xn1 | ≤ tn1)P(|Xn1+1| ≤ tn1+1, . . . , |Xn| ≤ tn).
(2)

2.2 Proof of the Theorem

We shall now go through the proof of the theorem. Note that the proof refers to several
lemmas, which are stated and proven in the Auxiliary Lemmas section to come.

First we need a few definitions on the concepts used.

Definitions. A matrix A ∈ Mn×n is positively defined if for any x ∈ Rn, xTAx ≥ 0. It is
strictly positively defined if equality holds only at 0.

For A,B ∈Mn×n, we write A ≥ B if A− B is positively defined.

Note that covariance matrices are positively defined, as we have

xTCx = ExT(X− EX)(X− EX)x = E((X− EX)x)T(X− EX)x ≥ 0.

Step I: Use the idea of interpolation for Gaussian distributions to transfer our problem
to an equivalent.

Without loss of generality, we will assume that the covariance matrix C of X is strictly
positively defined, where C can be written as

C =

(
C11 C12
C21 C22

)
where Cij is the ni × nj matrix. Define

C(τ) :=

(
C11 τC12
τC21 C22

)
, 0 ≤ τ ≤ 1.

And set Zi(τ) := 1
2
Xi(τ)

2
, 1 ≤ i ≤ n, where X(τ) ∼ N(0, C(τ)).

Notice that C(τ) is also strictly positively defined, which means it’s a well-defined
covariance matrix.

zTC(τ)z =
(
aT bT

)( C11 τC12
τC21 C22

)(
a

b

)
=
(
aTC11a+ bTC22b

)
+ τ
(
bTC21a+ aTC12b

)
Consider about this formula: the first term is non-negative and only the second term could
be negative. If the second term is non-negative, then clearly, zTC(τ)z is strictly positive. If
the second term is negative, then

zTC(τ)z ≥
(
aTC11a+b

TC22b
)
+
(
bTC21a+a

TC12b
)
=
(
aT bT

)(C11 C12
C21 C22

)(
a

b

)
= zTCz > 0,

since τ belongs to [0,1].
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Then we can restate the theorem as

P(Z1(1) ≤ s1, . . . , Zn(1) ≤ sn) ≥ P(Z1(0) ≤ s1, . . . , Zn(0) ≤ sn), (3)

where si = 1
2
t2i . To prove the theorem, it is enough to show that the function

τ 7→ P(Z1(τ) ≤ s1, . . . , Zn(τ) ≤ sn) (4)

is nondecreasing on [0, 1].
Let f(x, τ) be the density of the random vector Z(τ) and and K = [0, s1]× · · · × [0, sn].

We get the derivative of f(x, τ) w.r.t. τ

∂

∂τ
P(Z1(τ) ≤ s1, . . . , Zn(τ) ≤ sn) =

∂

∂τ

∫
K

f(x, τ)dx
Lemma 6
=

∫
K

∂

∂τ
f(x, τ)dx, (5)

where the last equation follows by Lemma 6 applied to λ1 = · · · = λn = 0. Therefore, it is
equivalent to show that

∫
K
∂
∂τ
f(x, τ)dx ≥ 0.

Step II: We want to compute the explicit formula of ∂
∂τ
f(x, τ) by identifying its Laplace

transform.
Firstly, we compute the Laplace transform of ∂

∂τ
f(x, τ). By Lemma 6, applied to K =

[0,∞)n, we have for any λ1, . . . , λn ≥ 0,∫
[0,∞)n

e−
∑n
i=1 λixi

∂

∂τ
f(x, τ)dx =

∂

∂τ

∫
[0,∞)n

e−
∑n
i=1 λixif(x, τ)dx. (6)

However by Lemma 4, we have∫
[0,∞)n

e−
∑n
i=1 λixif(x, τ)dx = Eexp

(
−
1

2

n∑
k=1

λkX
2
k(τ)

)
= |I+ΛC(τ)|−

1
2 , (7)

where Λ = diag(λ1, . . . , λn). Then by formula in Lemma 5 (i), we obtain

|I+ΛC(τ)| = 1+
∑
∅6=J⊂[n]

|(ΛC(τ))J| = 1+
∑
∅6=J⊂[n]

|C(τ)J|
∏
j∈J

λj. (8)

Fix ∅ 6= J ⊂ [n] := {1, . . . , n}, then J = J1 ∪ J2, where J1 := [n1] ∩ J, J2 := J − [n1] and

C(τ)J =

(
CJ1 τCJ1J2
τCJ2J1 CJ2

)
. If one of Ji is ∅, then C(τ)J = CJ; otherwise, by Lemma 5.(ii) we

get

|C(τ)J| = |CJ1 ||CJ2 |
∣∣∣I|J1| − τ2C− 1

2

J1
CJ1J2C

−1
J2
CJ2J1C

− 1
2

J1

∣∣∣ = |CJ1 ||CJ2 |

|J1|∏
i=1

(
1− τ2µJ1,J2(i)

)
, (9)

where µJ1,J2(i) denote the eigenvalues of C− 1
2

J1
CJ1J2C

−1
J2
CJ2J1C

− 1
2

J1
. Notice that these eigen-

values belong to [0,1] by Lemma 5 (ii). Therefore, for any ∅ 6= J ⊂ [n] and τ ∈ [0, 1], we
have

aJ(τ) := −
∂

∂τ
|C(τ)J| ≥ 0.
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Therefore, we can write

∂

∂τ
|I+ΛC(τ)|−

1
2 = −

1

2
|I+ΛC(τ)|−

3
2

∑
∅6=J⊂[n]

∂

∂τ
|C(τ)J||ΛJ| =

1

2
|I+ΛC(τ)|−

3
2

∑
∅6=J⊂[n]

aJ(τ)
∏
j∈J

λj.

(10)
We have thus shown that∫

[0,∞)n
e−

∑n
i=1 λixi

∂

∂τ
f(x, τ)dx =

∑
∅6=J⊂[n]

1

2
aJ(τ)|I+ΛC(τ)|

− 3
2

∏
j∈J

λj. (11)

Let hτ := h3,C(τ) be the density function on (0,∞)n defined in Lemma 8. Then by
Lemmas 8 and 7 (iii), we identify the Laplace transform

|I+ΛC(τ)|−
3
2

∏
j∈J

λj =

∫
(0,∞)n

e−
∑n
i=1 λixi

∂|J|

∂xJ
hτ. (12)

This shows that
∂

∂τ
f(x, τ) =

∑
∅6=J⊂[n]

1

2
aJ(τ)

∂|J|

∂xJ
hτ(x). (13)

Step III: Now we can prove
∫
K
∂
∂τ
f(x, τ)dx ≥ 0 using the explicit formula for ∂

∂τ
f(x, τ)

that we get above.
Recall that aJ(τ) ≥ 0 and observe that by Lemma 7 (ii),

lim
xi→0+

∂|J|

∂xJ
hτ(x) = 0 for i /∈ J ⊂ [n].

Thus ∫
K

∂|J|

∂xJ
hτ(x)dx =

∫
∏
j∈Jc [0,tj]

hτ(tJ, xJc)dxJc ≥ 0, (14)

where Jc = [n] − J, and y = (tJ, xJc) if yi = ti for i ∈ J and yi = xi for i ∈ Jc. This finishes
the proof.

2.3 Auxiliary Lemmas

We shall now prove the lemmas needed for the main proof.

Lemma 4. X is an n dimensional centered Gaussian vector with the covariance matrix C. Then
for any λ1, . . . , λn ≥ 0 we have

Eexp

(
−

n∑
i=1

λiX
2
i

)
= |In + 2ΛC|

−1/2 (15)

where Λ := diag(λ1, . . . , λn).

4



Proof. We know X ∼ N(0, C). As C is symmetric we can take A such that AAT = C. Write
X ∼ AY where Y ∼ N(0, In).

Then

Eexp

(
−

n∑
i=1

λiX
2
i

)
=Eexp(−〈ΛX,X〉)

=Eexp(−〈ΛAY,AY〉) = Eexp(−〈ATΛAY, Y〉)

=

(
1√
2π

)n ∫
Rn

exp
(
−

〈(
1

2
In +A

TΛA

)
x, x

〉)
dx.

Since 1
2
In + ATΛA is symmetric we can write that it is equal to some UDUT where

U ∈ O(n) and D = diag(d1, . . . , dn). Then

Eexp

(
−

n∑
i=1

λiX
2
i

)
=

(
1√
2π

)n ∫
Rn

exp(−〈Dx, x〉)dx

=

(
1√
2π

)n ∫∞
−∞ . . .

∫∞
−∞ exp(−〈Dx, x〉)dnx

=

n∏
i=1

√
π

di
=

√
πn

(2π)n detD

=2−n/2 |D|
−1/2

=2−n/2
∣∣∣∣12In +ATΛA

∣∣∣∣−1/2 = ∣∣In + 2ATΛA∣∣−1/2 .
From Sylvester’s identity,∣∣In + 2ATΛA∣∣−1/2 = ∣∣In + 2ΛAAT ∣∣−1/2 = |In + 2ΛC|

−1/2
.

Lemma 5. For any matrix A ∈Mn×n,

i)
|In +A| = 1+

∑
∅6=J⊂[n]

|AJ|. (16)

ii) If n = n1 + n2, taking the block representation of A, A =

(
A11 A12
A21 A22

)
, with Aij ∈Mni×nj

and A11, A22 invertible, then

|A| = |A11||A22|
∣∣∣In1 −A−1/2

11 A12A
−1
22A21A

−1/2
11

∣∣∣ . (17)

iii) If A is symmetric and positively defined, then

0 ≤ A−1/2
11 A12A

−1
22A21A

−1/2
11 ≤ In1 (18)

Proof.
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i) Use Leibniz’s formula, we get

|I+A| =
∑
σ∈Sn

sgn(σ)
n∏
i=1

(I+A)σi,i

=
∑
σ∈Sn

sgn(σ)
∏
σ fixes i

(ai,i + 1)
∏

σ does not fix i

(aσi,i)

=1+
∑
∅6=J⊂[n]

∑
σ∈Sn

sgn(σ)
∏

σ does not fix J

(aσi,i)

=1+
∑
∅6=J⊂[n]

|AJ|.

ii) Note that A has decomposition(
A11 A12
A21 A22

)
=

(
A
1/2
11 0

0 A
1/2
22

)(
In1 A

−1/2
11 A12A

−1/2
22

A
−1/2
22 A21A

−1/2
11 In2

)(
A
1/2
11 0

0 A
1/2
22

)
,

then we have

|A| =|A11|

∣∣∣∣∣
(

In1 A
−1/2
11 A12A

−1/2
22

A
−1/2
22 A21A

−1/2
11 In2

)∣∣∣∣∣ |A22|
=|A11||A22|

∣∣∣In1 −A−1/2
22 A21A

−1
11A12A

−1/2
22

∣∣∣ .
iii) Note that

A
−1/2
11 A12A

−1
22A21A

−1/2
11 = (A

−1/2
22 A21A

−1/2
11 )T(A

−1/2
22 A21A

−1/2
11 )

is a symmetric matrix. Denote A−1/2
22 A21A

−1/2
11 by B.

We have xTBTBx = (Bx)T(Bx) = |Bx| ≥ 0, so BTB ≥ 0.

For any x, y ∈ Rn1 ,Rn2 respectively we can consider the vector
(
tx

y

)
where t ∈ R,

then we have the product(
txT yT

)
A

(
tx

y

)
= t2xTA11x+ 2ty

TA21x+ y
TA22y ≥ 0.

This as a function of t has at most one root. That is, for any x, y,

(2yTA21x)
2 − 4xTA11xy

TA22y = (yTA21x)
2 − xTA11xy

TA22y ≥ 0.

Taking x = A−1/2
11 x and y = A

−1/2
22 y, we have

|x|2|y|2 ≥ (yTBx)2,

and when y = Bx,
|x|2 ≥ xTBTBx.

Which means xT(I− BTB)x ≥ 0.
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Lemma 6. C =

(
C11 C12
C21 C22

)
is nondegenerate. Take

C(τ) :=

(
C11 τC12
τC21 C22

)
, 0 ≤ τ ≤ 1,

and X(τ) ∼ N(0, C(τ)), Zi(τ) = 1
2
Xi(τ)

2 for i = 1, . . . , n. f(x, τ) is the density of Z(τ). (As
defined in the beginning of the main proof)

Then for any Borel set K ⊂ [0,∞)n and any λ1, . . . , λn ≥ 0,∫
K

e−
∑n
i=1 λixi

∂

∂τ
f(x, τ)dx =

∂

∂τ

∫
K

e−
∑n
i=1 λixif(x, τ)dx. (19)

Proof. Since C is nondegenerate xTCx 6= 0 for any x ∈ Rn. Then xTCx > 0 as C is positively
defined.

Taking u ∈ Rn1 and 0 ∈ Rn2 , we get
(
uT 0

)
C

(
u

0

)
= uTC11u > 0. Similarly vTC22v > 0,

then
(
C11 0

0 C22

)
is strictly positively defined.

Note that
C(τ) = τC(1) + (1− τ)C(0).

Then for any x ∈ Rn,

xTC(τ)x = τxTC(1)x+ (1− τ)xTC(0)x.

C(1), C(0) are strictly positively defined (nondegenerate), so xTC(τ)x > 0 for any x,
that is, C(τ) is nondegenerate.

Then |C(τ)| > 0 for all τ ∈ [0, 1] and so 1√
|C(τ)|

is smooth.

This means X(τ) has p.d.f.

g(x, τ) =
1√

|C(τ)|(2π)n
exp(−

1

2
〈C(τ)−1x, x〉),

and so Z(τ) has p.d.f.

f(x, τ) =P(Z1 ≤ x1, . . . , Zn ≤ xn)

=

∫√2x1
−
√
2x1

. . .

∫√2xn
−
√
2xn

g(x, τ)dnx

=
1√

|C(τ)|(2π)n

n∏
k=1

1√
2xk

∑
ε∈{−1,1}n

exp(−〈C(τ)−1y, y〉)

=
1√

|C(τ)|(4π)nx1 . . . xn

∑
ε∈{−1,1}n

exp(−〈C(τ)−1y, y〉),

where yi = εi
√
xi.
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We have

∂

∂τ
exp(−〈C(τ)−1y, y〉) = −〈C(τ)−1(C(1) − C(0))C(τ)−1y, y〉exp(−〈C(τ)−1y, y〉).

Since C(τ) is continuous on [0, 1], the largest eigenvalue λ of C(τ)−1 reaches some
minimum on [0, 1]. Since xTC(τ)x ≤ λ|x|2 as C(τ) is symmetric and positive definite, there
is some a > 0 such that over [0, 1],

〈C(τ)−1y, y〉 ≥ a〈y, y〉 = a
n∑
i=1

|ε2i
√
xi
2
| = a

n∑
i=1

|xi|.

Similarly, there is some b <∞ such that

〈C(τ)−1(C(1) − C(0))C(τ)−1y, y〉 ≤ b(y, y) = b
n∑
i=1

|xi|.

Then we can bound ∂
∂τ
f(x, τ) by

sup
τ∈[0,1]

∣∣∣∣ ∂∂τf(x, τ)dx
∣∣∣∣ ≤ 1√

(4π)nx1 . . . xn

(
1+ b

n∑
i=1

|xi|

)
exp

(
−a

n∑
i=1

|xi|

)

which is integrable.
Then we have a bound on |e−

∑n
i=1 λixi ∂

∂τ
f(x, τ)|.

By dominated convergence theorem, we get the result∫
K

e−
∑n
i=1 λixi

∂

∂τ
f(x, τ)dx =

∂

∂τ

∫
K

e−
∑n
i=1 λixif(x, τ)dx. (20)

Lemma 7. Let Y = (Y1, . . . , Yn) be a random n-dimensional vector with nonnegative coordinates.
Take µ > 0 and for any α = (α1, . . . , αn) ∈ (0,∞)n, take x > 0, y ≥ 0 and set

gαi(x, y) := e
−x−y

∞∑
k=0

xk+αi−1

Γ(k+ αi)

yk

k!
.

Then define hα as

hα := E

[
n∏
i=1

1

µ
gαi

(
xi

µ
, Yi

)]
, xi > 0.

We have

i) For any α, hα ≥ 0 and
∫
(0,∞)n

hα(x)dx = 1.

ii) If αi > 1, then lim
xi→0+ hα(x) = 0 and

∂

∂xi
hα(x) =

1

µ
(hα−ei(x) − hα(x)).
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iii) If αi > 1 for all i, then for any J ⊂ [n], ∂
|J|

∂xJ
hα(x) exists and is in L1((0,∞)n). Moreover, for

λ1, . . . , λn ≥ 0,∫
(0,∞)n

e−
∑n
i=1 λixi

∂|J|

∂xJ
hα(x)dx =

∏
i∈J

λi

∫
(0,∞)n

e−
∑n
i=1 λixihα(x)dx.

Proof.

i) Since gαi ≥ 0we have hα ≥ 0. By Fubini theorem,∫
(0,∞)n

hα(x)dx =

∫
(0,∞)n

E

[
n∏
i=1

1

µ
gαi

(
xi

µ
, Yi

)]

=E
n∏
i=1

[∫∞
0

1

µ
gαi

(
xi

µ
, Yi

)
dx

]

=E
n∏
i=1

[∫∞
0

gαi(ui, Yi)dui

]
=1.

ii) Note that Γ(x) is decreasing on (0, 2) and increasing on (2,∞). Then since Γ(x) > 1
2
,

we have when k ≥ 1, α > 0, and

Γ(k+ α)

Γ(k)
≥

1
2

Γ(1)
=
1

2
.

That is, Γ(k+ α) ≥ 1
2
Γ(k) = 1

2
(k− 1)!.

This means

gαi(x, y) ≤e−x−y
∞∑
k=0

xk+αi−1

Γ(k+ αi)

∞∑
k=0

yk

k!
= e−x

∞∑
k=0

xk+αi−1

Γ(k+ αi)

≤2e−x
∞∑
k=0

xk+αi−1

(k− 1)!
= 2e−xxαi

∞∑
k=0

xk−1

(k− 1)!

=2e−xxαi(x−1 + ex) = 2xαi−1(e−x + x).

That is,

hα(x) =E

[
n∏
i=1

1

µ
gαi

(
xi

µ
, Yi

)]

≤
n∏
i=1

2

µ

((
xi

µ

)αi−1(
e−(

xi
µ ) +

(
xi

µ

)))

≤
(
2

µ

)n n∏
i=1

(
xi

µ

)αi−1(
1+

xi

µ

)
.
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Since αi > 1, we have a
(
xi
µ

)αi−1
in the product, which approaches 0 as xi → 0+.

That is, lim
xi→0+ hα(x) = 0.

Consider the derivative of gαi with respect to x,

∂

∂x
gαi =e

−x−y

∞∑
k=0

(k+ αi − 1)x
k+αi−2

Γ(k+ αi)

yk

k!
− e−x−y

∞∑
k=0

xk+αi−1

Γ(k+ αi)

yk

k!

=e−x−y
∞∑
k=0

xk+αi−2

Γ(k+ αi − 1)

yk

k!
− e−x−y

∞∑
k=0

xk+αi−1

Γ(k+ αi)

yk

k!

=gαi−1 − gαi .

We have an upper bound for gα(x, y) = |gα(x, y)|, so by dominated convergence
theorem we can differentiate under the expected value sign,

∂

∂xi
hα(x) =E

[
∂

∂xi

n∏
j=1

1

µ
gαj

(
xj

µ
, Yj

)]

=E

[
1

µ2

(
gαi−1

(
xi

µ
, Yi

)
− gαi

(
xi

µ
, Yi

)) n∏
j=1,j 6=i

1

µ
gαj

(
xj

µ
, Yj

)]

=
1

µ
(hα−ei(x) − hα(x)).

iii) From ii), ∂
|J|

∂xJ
hα(x) is the sum of 2|J| different cIhαIs, where αI = α −

∑
i∈I ei, I ranges

over all subsets of J, and c is (−1)|J|−|I| times a power (no more than |J|) of 1
µ

.

This is in L1((0,∞)n) as we have∫
(0,∞)n

∣∣∣∣ ∂|J|∂xJ
hα(x)

∣∣∣∣ ≤ ∑
I∈P(J)

|c|

∫
(0,∞)n

|hαI | =
∑
I∈P(J)

|c|

∫
(0,∞)n

hαI =
∑
I∈P(J)

|c| <∞.
Note that ∂|J|

∂xJ
hα = ∂

∂xi

∂|J|\i

∂xJ\i
hα, which is the ith derivative of a linear combination of

hαIs with αIi > 1. We have that the derivatives evaluate to∫∞
0

e−
∑n
i=1 λixi

∂

∂xj
hα(x)dx =e

−
∑n
i=1 λixihα(x)

∣∣∣∣∞
xj=0

+ λj

∫∞
0

e−
∑n
i=1 λixihα(x)dx

For any j 6∈ J we have lim
xj→0+ ∂|J|

∂xJ
hα(x) is the limit as xj approaches 0+ of a linear

combination of hαIs where αIj > 1. That is, this limit approaches 0. This means

e−
∑n
i=1 λixihα(x)

∣∣∣∣∞
xj=0

= 0, and so

∫∞
0

e−
∑n
i=1 λixi

∂

∂xj
hα(x)dx = λj

∫∞
0

e−
∑n
i=1 λixihα(x)dx

10



By induction, for any J ⊂ [n],∫∞
0

e−
∑n
i=1 λixi

∂|J|

∂xJ
hα(x)dx =

∏
j∈J

λj

∫∞
0

e−
∑n
i=1 λixihα(x)dx

Lemma 8. Take C a strictly positively defined symmetric n× n matrix. Then there is some µ > 0
with C − µIn is positively defined, meaning C = µIn + AA

T for some matrix A. Take random
variables (g(l)j )j≤n,l≤k i.i.d. N(0, 1), then set

Yi =
1

2µ

k∑
l=1

∑
j,j ′≤n

g
(l)
j g

(l)
j ′ ai,jai,j ′ =

k∑
l=1

(
n∑
j=1

1√
2µ
g
(l)
j ai,j

)2
for i = 1, . . . , n. Then we take α = (k

2
, . . . , k

2
) and hk,C := hα.

For any λ1, . . . , λn ≥ 0, taking Λ := diag(λ1, . . . , λn) we have∫
(0,∞)n

e−
∑n
i=1 λixihk,C(x) = |In +ΛC|

−k/2.

Note that
∫
(0,∞)n

e−
∑n
i=1 λixi ∂

∂τ
f(x, τ)dx is the Laplace transform of f(x, τ). In this case,∫

(0,∞)n
e−

∑n
i=1 λixihk,C(x) is the Laplace transform of the convolution f(x, τ) ? f(x, τ) ? f(x, τ).

Proof. Again through Fubini theorem,∫
(0,∞)n

e−
∑n
i=1 λixihk,C(x)dx =E

[
n∏
i=1

∫∞
0

e−λixi
1

µ
gk/2

(
xi

µ
, Yi

)
dxi

]

=E

[
n∏
i=1

e−Yi
∞∑
k=0

Yki
k!

∫∞
0

e−
1
µ
xi−λixi xk+α−1

µk+αΓ(k+ α)
dxi

]

=E

[
n∏
i=1

e−Yi
∞∑
k=0

Yki
k!(1+ µλi)k+αi

]

=E

 e
−Yi

µλi
1+µλi

(1+ µλi)α


=|In + µΛ|

−k/2E
[

exp
(
−Yi

µλi

1+ µλi

)]
Since Yi =

∑
X2ik where Xi ∼ N(0, 1

2µ
AAT), from Lemma 4 the covariance matrix of Y is

2µΛ(I+ µΛ)−1 1
2µ
AAT = Λ(I+ µΛ)−1AAT . Then

|In + µΛ|
−k/2E

[
exp

(
−Yi

µλi

1+ µλi

)]
=|In + µΛ|

−k/2|In +Λ(I+ µΛ)
−1AAT |−k/2

=|In + µΛ+Λ(I+ µΛ)(I+ µΛ)−1AAT |−k/2

=|In +ΛC|
−k/2

11



3 Confidence sets in the Multiple Linear Regression

Given a random variable X = (X1, . . . , Xn) where Xi are i.i.d., then we can consider the
parameter spaceΘ of X given data on X. The confidence set, is then a subset S ofΘ, satisfying
some confidence level α such that

α = min{P(θ ∈ S) : θ ∈ Θ}. (21)

3.1 Confidence intervals for parameters of normal distribution

Let us consider a sample of normal distribution with mean µ and variance σ2.

X1, X2, ..., Xn ∼ N(µ, σ2).

Using Maximum likelihood estimation (MLE), we obtain the following estimates of µ and σ2

µ̂ = X̄ and σ̂2 = X̄2 − (X̄)2. (22)

According to the Law of Large Numbers (LLN), we know these estimates converge to µ and
σ2 as n→∞. But we also want to know: how close are these estimates to actual values of
the unknown parameters µ and σ2?

We will use confidence interval to describe precisely how close X̄ and X̄2 − (X̄)2 are to µ
and σ2. Firstly, let’s define the Joint Distribution of (X̄ , X̄2 − (X̄)2).

Definitions. If X1, X2, ..., Xn are i.i.d. standard normal, then the distribution of

X1
2 + X2

2 + ...+ Xn
2

is called the χ2n-distribution (chi-squared distribution) with n degrees of freedom.

Remark. This distribution only depends on the degrees of freedom n.

Theorem 3. If X1, X2, ..., Xn are i.i.d. standard normal, then sample mean X̄ and sample variance
X̄2 − (X̄)2 are independent, and

√
nX̄ ∼ N(0, 1) and n(X̄2 − (X̄)2) ∼ χ2n−1. (23)

Proof. Consider random vector Y given by a specific orthogonal transformation of X

Y =

Y1...
Yn

 = VX =

v1...
vn


X1...
Xn

 ,
where each vi is a row vector. Without loss of generality, we can choose v1 =

(
1√
n
. . . 1√

n

)
and let the remaining rows be any vectors such that V is orthogonal matrix. (For exam-
ple, we can simply choose the rows v2, ..., vn to be orthogonal basis in the hyperplane
orthogonal to vector v1.)

12



Firstly, Y1, ..., Yn are i.i.d. standard normal, then we have Y ∼ N(VµX, VIV
T) = N(0, I)

since µX = 0 and V is orthogonal matrix, VVT = I. Because of the particular choice of the
first row v1, the r.v.Y1

Y1 =
1√
n
X1 + · · ·+

1√
n
Xn =

√
nX̄,

and, therefore, X̄ = 1√
n
Y1.

Next, n times sample variance can be written as

n(X̄2 − (X̄)2) = X21 + · · ·+ X2n − Y21 . (24)

Since orthogonal transformation V preserves the length of X (i.e. |Y| = |VX| = |X|), therefore,
we get

n(X̄2 − (X̄)2) = Y21 + · · ·+ Y2n − Y21 = Y22 + · · ·+ Y2n ∼ χ2n−1. (25)

Since Y1 and Y2, . . . , Yn are independent, then we get the sample mean and sample variance
are independent ;

√
nX̄ = Y1 ∼ N(0, 1) and n(X̄2 − (X̄)2) ∼ χ2n−1.

For general normal distribution X1, . . . , Xn
i.i.d.
∼ N(µ, α2), we can normalize them and

then have
Z1 =

X1 − µ

σ
, . . . , Zn =

Xn − µ

σ

i.i.d.
∼ N(0, 1)

are independent standard normal. Applying theorem to Z1, . . . , Zn gives that

√
nZ̄ =

√
n
1

n

n∑
i=1

Xi − µ

σ
=
√
n
X̄− µ

σ
∼ N(0, 1), (26)

and

n(Z̄2 − (Z̄)2) = n
( 1
n

∑
(
Xi − µ

σ
)2 − (

1

n

∑ Xi − µ

σ
)2
)
=
n(X̄2 − (X̄)2)

σ2
∼ χ2n−1. (27)

By MLE, this result can be read as µ̂ = X̄ and σ̂2 = X̄2 − (X̄)2 are independent, and
√
n(µ̂− µ)

σ
∼ N(0, 1) and

nσ̂2

σ2
∼ χ2n−1. (28)

Now lets construct the Construct Confidence Interval of Variance σ2. Consider a sample
X1, . . . , Xn with distribution Pθ0 from a parametric family {Pθ0 : θ ∈ Θ}, and θ0 is unknown.

Definitions. Given a confidence level parameter α ∈ [0, 1], if there exist two statistics

S1 = S1(X1, . . . , Xn) and S2 = S2(X1, . . . , Xn)

such that probability
Pθ0(S1 ≤ θ0 ≤ S2) = α (or ≥ α),

then we will call [S1, S2] a Confidence Interval for the unknown parameter θ0 with the
confidence level α.

13



The interpretation of this definition is that we can guarantee with confidence α that
our unknown parameter lies within the interval [S1, S2].

For X1, . . . , Xn i.i.d. N(µ, α2), let

A =

√
n(µ̂− µ)

σ
∼ N(0, 1), B =

nσ̂2

σ2
∼ χ2n−1,

and A, B are independent. Then we can rewrite A and B as

A = Y1 and B = Y22 + · · ·+ Y2n

for some Y1, . . . , Yn - i.i.d. standard normal.
Let’s consider p.d.f. of χ2n−1 distribution and choose points c1 and c2 such that the area

in each tail is (1−α)
2

( i.e. P(c1 ≤ B ≤ c2) = α). Therefore, we can guarantee with probability
α that

c1 ≤
nσ̂2

σ2
≤ c2. (29)

Solving this inequality for σ2 gives the confidence interval of σ2 with confidence level α,

[nσ̂2
c2
,
nσ̂2

c1

]
. (30)

Now let’s construct the Confidence Interval of Mean µ.

Definitions. If Y0, Y1, . . . , Yn are i.i.d. standard normal, then the distribution of the random
variable

Y0√
1
n
(Y21 + · · ·+ Y2n)

is called (Student) tn-distribution with n degrees of freedom.

Remark. This distribution only depends on the degrees of freedom n, and the distribution
is symmetric.

Using A,B defined above, we can write the formula

A√
1

(n−1)
B

=
√
n
µ̂− µ

σ

/√ 1

n− 1

nσ̂2

σ2
=

√
n− 1

σ̂
(µ̂− µ) ∼ tn−1. (31)

Then we can choose constants c and −c such that the area in each tail of t-distribution is
1−α
2

, which means the interval [−c, c] gives us probability α,

P(−c ≤
√
n− 1

σ̂
(µ̂− µ) ≤ c) = α. (32)

Solving inequality for µ, we get the confidence interval of µwith confidence level α,

µ̂− c
σ̂√
n− 1

≤ µ ≤ µ̂+ c
σ̂√
n− 1

. (33)
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3.2 Confidence Rectangle Using Gaussian Correlation Inequality

Theorem 4 (Gaussian Correlation Inequality). LetX = (X1, X2, . . . , Xk) be the vector of random
variables having the k-dimensional normal distribution with zero means, variances σ21, . . . , σ2k, and
correlation matrix R = {ρij}, then for any ci > 0,

P(|X1| ≤ c1, . . . , |Xk| ≤ ck) ≥ P(|X1| ≤ c1)P(|X2| ≤ c2, . . . , |Xk| ≤ ck). (34)

We want to find a confidence rectangle of this sample. Firstly, we need to extend this
inequality a little. It’s easy to get next inequality by induction

P(|X1| ≤ c1, . . . , |Xk| ≤ ck) ≥
∏
i

P(|Xi| ≤ ci). (35)

And, we also claim the following theorem.

Theorem 5. For a positive random variable s, which is independent of X1, X2, . . . , Xk, we have

P
( |X1|
s
≤ c1, . . . ,

|Xk|

s
≤ ck

)
≥
∏
i

P
( |Xi|
s
≤ ci

)
. (36)

Proof. If s is just a positive constant, then this inequality is definitely true since we can set
{c ′i = sci} and then apply Gaussian correlation inequality to {ci}.

Now we prove theorem for general random variable s. By Gaussian correlation inequal-
ity, we obtain for conditional probabilities

P
(
|X1| ≤ c1s, . . . , |Xk| ≤ cks

∣∣∣s) ≥∏
i

P
(
|Xi| ≤ cis

∣∣∣s). (37)

Then we can take expectation w.r.t s on both sides. Define fi(s) = P(|zi| ≤ cis|s). Then we
have ∫

fi(s)dP(s) = E(P(|zi| ≤ cis|s)) = P(|zi| ≤ cis) (38)

Based on this notation, we can rewrite (36) as∫∏
i

fi(s)dP(s) ≥
∏
i

∫
fi(s)dP(s). (39)

Also notice that fi is an increasing function in s. Therefore,∫ (
fi(s) − fi(t)

)(
fj(s) − fj(t)

)
dP(s)dP(t) ≥ 0, (40)

because fi, fj are increasing functions and then
(
fi(s)− fi(t)

)
,
(
fj(s)− fj(t)

)
have the same

sign. We can also rewrite the above inequality as∫ (
fi(s) − fi(t)

)(
fj(s) − fj(t)

)
dP(s)dP(t)
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=

∫
fi(s)fj(s)dP(s)dP(t) +

∫
fi(t)fj(t)dP(t)dP(s)

−

∫
fi(s)fj(t)dP(s)dP(t) −

∫
fi(t)fj(s)dP(s)dP(t)

=

∫
fi(s)fj(s)dP(s) +

∫
fi(t)fj(t)dP(t)

−

∫
fi(s)dP(s)

∫
fj(t)dP(t) −

∫
fi(t)dP(t)

∫
fj(s)dP(s)

=2

∫
fi(s)fj(s)dP(s) − 2

∫
fi(s)dP(s)

∫
fj(s)dP(s)

≥0,

by Fubini’s theorem and the fact that
∫
dP(s) = 1. This implies∫

fi(s)fj(s)dP(s) ≥
∫
fi(s)dP(s)

∫
fj(s)dP(s). (41)

Then by induction, we can easily get (39), which finishes the proof.

Now we can use these inequalities to find confidence rectangle of unknown parameter
of Yν = (X1ν, X2ν, . . . , Xkν), ν = 1, . . . , n.

Consider a random sample of n vector Yν = (X1ν, X2ν, . . . , Xkν), ν = 1, . . . , n, where
each Yν has same normal distribution with unknown mean values µ1, . . . , µk and unknown
variances σ21 = · · · = σ2k = σ2.
We can estimate σ2 by sample variance

s2g =
1

n− 1

n∑
ν=1

(Ygν − Ȳg)
2, (42)

where g is some fixed index chosen from 1, . . . k. Then the variables Zj =
√
n(Ȳj − µj) and

s = sg satisfy the assumption of Theorem 5. To find a confidence rectangle for µ1, . . . , µk
with confidence level α, we can determine c1, . . . , ck such that the right-hand side of (II)
equals α. Therefore, the confidence rectangle for mean value µ is

Ȳi − cisg
√
n ≤ µi ≤ Ȳi + cisg

√
n, i = 1, . . . , k. (43)

3.3 Multiple Linear Regression

3.3.1 Introduction

We can also generalize the idea of confidence intervals to the case where there are different
parameters for each random variable.
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3.3.2 Maximal likelihood estimators of parameters in multiple linear regression

Consider the model Y1...
Yn

 =

X11 . . . X1p
... . . . ...
Xn1 . . . Xnp


β1...
βp

+

ε1...
εn

 . (44)

Here, Xij are random variables, βj are constants, and εi are random noise variables i.i.d.
N(0, σ2). We shall denote the matrices Y, X, β, and ε and assume that X has rank p.

Then given X and Y, we can obtain an estimation for the parameters β and σ2,

Lemma. The MLE of β and σ2 are

β̂ = (XTX)−1XTY and σ̂2 =
1

2
|Y − Xβ̂|2. (45)

Proof. The p.d.f. of Yi is shifted from that of εi,

fi(x) =
1√
2πσ

e−
(x−Xi·β)

2

2σ2 .

Then the likelihood function of Y is

L(β, σ2) =

n∏
i=1

fi(Yi) =
1

(
√
2πσ)n

e−
∑n
i=1(Yi−Xi·β)

2

2σ2 =
1

(
√
2πσ)n

e−
|Y−Xβ|2

2σ2 .

So maximizing the likelihood function with respect to βmeans minimizing |Y − Xβ|2.
Note that

|Y − Xβ|2 =〈Y −

p∑
j=1

X·jβj, Y −

p∑
j=1

X·jβj〉

=〈Y, Y〉− 2
p∑
j=1

βj〈Y, X·j〉+
p∑

j,k=1

βjβk〈X·j, X·k〉.

This means when the derivative with respect to βj is zero, we have

−2〈Y, X·j〉+ 2
p∑
k=1

βk〈X·j, X·k〉 = 0

for each j = 1, . . . , p. That is,
XTY = XTXβ.

Then we get a maximal likelihood estimation for β,

β̂ = (XTX)−1XTY. (46)

We can now use the log-likelihood function to get a MLE for σ,

lnL(β, σ2) = −n
2

log 2π− n
2

logσ2 − |Y−Xβ|2

2σ2
(47)

σ̂ = 1
n
|Y − Xβ̂|2. (48)
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3.3.3 Distributions and independence of MLE for parameters in multiple linear re-
gression

We can then obtain a distribution for the parameters in the model.

Theorem 6.

β̂ ∼ N(β, σ2(XTX)−1) and
nσ̂2

σ2
∼ χ2n−p (49)

and the estimates are independent.

Proof. We have Y = Xβ+ ε, that is,

β̂ = (XTX)−1XTXβ+ (XTX)−1XTε = β+ (XTX)−1XTε.

We can then compute the mean and variance of β,

E(β̂) =E(β+ (XTX)−1XTε)

=E(β) + (XTX)−1XTE(ε)
=β.

As XTX is symmetric, the covariance of β̂ is

E((β̂− β)(β̂− β)T) =E(((XTX)−1XTε)((XTX)−1XTε)T)
=(XTX)−1XTE(εεT)X(XTX)−1

=(XTX)−1XTσ2X(XTX)−1

=(XTX)−1σ2.

We also have

Y − Xβ̂ = Xβ+ ε− (Xβ− X(XTX)−1XTε) = (I− X(XTX)−1XT)ε.

Use Gram-Schmidt orthogonaliztion to write X as X0Rwhere X0 ∈Mn×p(R) has orthog-
onal columns that form an orthogonal basis, while R ∈Mp×p(R) is invertible and upper
triangular.

Then we have

β̂− β = (XTX)−1XTε = ((X0R)
T(X0R))

−1(X0R)
Tε = R−1XT0ε, (50)

and

σ̂2 = 1
n
|Y − Xβ̂|2 = 1

n
|(I− X(XTX)−1XT)ε|2 (51)

= 1
n
|(I− (X0R)((X0R)

T(X0R))
−1(X0R)

T)ε|2 (52)
= 1

n
|(I− X0X

T
0)ε|

2. (53)

We can add basis elements to XT0 to form an orthogonal matrixA ∈Mn×n(R) containing
an orthonormal basis.

Take g = Aε, then g ∼ N(A0, Aσ2AT) = N(0, σ2).
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Indeed, each gi are independent with one another as A is orthogonal and εis are
independent.

Consider the first p elements of g, ĝ =

g1...
gp

. We have ĝ = XT0εwhich means

β̂− β = R−1ĝ.

On the other hand, we can write ε = X0X
T
0ε+ (I− X0X

T
0)ε, and so

|g|2 =εTε = (X0X
T
0ε+ (I− X0X

T
0)ε)

T(X0X
T
0ε+ (I− X0X

T
0)ε)

=εTX0X
T
0ε+ ε

T((I− X0X
T
0))(I− X0X

T
0)ε

=|ĝ|2 + |(I− X0X
T
0)ε|

2.

That is,
|(I− X0X

T
0ε|

2 = |g|2 − |ĝ|2 = g2p+1 + · · ·+ g2n. (54)

That is, β̂ and σ̂ are independent, and nσ̂2

σ2
= h2p+1 + · · · + h2n where hj ∼ N(0, 1). So

nσ̂2

σ2
∼ χ2n−p.

3.3.4 t-tests for linear combination of β

To get the confidence intervals of β, we shall take the linear combination of c = (c1, . . . , cp)
T

and β,
c1β1 + · · ·+ cpβp = cTβ.

Since β̂ follows a normal distribution cT β̂ does as well. Specifically,

E(cT β̂) = cTE(β̂) = cTβ

and
E(cT(β̂− β)(β̂− β)Tc) = cTE((β̂− β)(β̂− β)T)c = σ2cT(XTX)−1c.

We can take
cT(β̂− β)

σ2cT(XTX)−1c
∼ N(0, 1)

and so we can get a t-distribution by taking(
cT(β̂− β)

σ2cT(XTX)−1c

)/√
nσ̂2

σ2(n− p)
∼ tn−p. (55)

When cj = 0 for all j 6= i, we have(
β̂i − βi

(XTX)−1ii

)/√
nσ̂2

(n− p)
∼ tn−p (56)

which means the α% confidence interval of βi is

β̂i ± t1−α/2,n−p

√
nσ̂2

(n− p)
(XTX)−1ii . (57)
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3.3.5 Joint confidence set for β and F-test

Recall that
|ĝ|2 = ĝT ĝ = (β̂− β)TRTR(β̂− β) = (β̂− β)TXTX(β̂− β).

Since |ĝ|2

σ2
=

g21
σ2

+ · · ·+ g2p
σ2

∼ χ2p, we have

(β̂− β)TXTX(β̂− β)

σ2
∼ χ2p. (58)

This is independent from nσ̂2

σ2
∼ χ2n−p, so we can take

(β̂− β)TXTX(β̂− β)

σ2

/
nσ̂2

(n− p)σ2
=

(n− p)(β̂− β)TXTX(β̂− β)

npσ̂2
∼ Fp,n−p. (59)

There is some cα such that Fp,n−p(0, cα) = α, then we have a confidence set for all β,

(n− p)(β̂− β)TXTX(β̂− β)

npσ̂2
≤ cα. (60)

Given a null hypothesis H0 : β = β0 and alternative hypothesis H1 : β 6= β0, the
(1− α)% significance threshold would be cα under the F-test. The decision rule would be{

H0 :
(n−p)(β̂−β)TXTX(β̂−β)

npσ̂2
≥ cα

H1 :
(n−p)(β̂−β)TXTX(β̂−β)

npσ̂2
≤ cα

, (61)

where Fp,n−p(0, cα) = 1− α.

3.3.6 Simultaneous confidence set and F-test for subsets of β

Given J = {i1, . . . , ik} ⊂ [p], we can consider the F-test for βJ = (βi1 , . . . , βik)
T .

We can take the submatrix (XTX)−1J of XTX, which is the submatrix with rows and
column indices in J. Then

β̂J ∼ N(βJ, σ
2(XTX)−1J ). (62)

Take AJ = ((XTX)−1J )1/2, that is, (XTX)−1J = AJA
T
J . We would have

β̂J − βJ = AJgJ

for some gJ = (gi1 , . . . , gik)
T , where gij ∼ N(0, σ2).

Similar to the section above, we can get that

g2i1 + · · ·+ g
2
ik

σ2
∼ χ2k

and
(n− p)(β̂J − β)

T(XTX)−1J (β̂J − β)

nkσ̂2
∼ Fk,n−p (63)

which we can then use to construct confidence intervals and F-tests for βJ.
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