Confidence Sets and Gaussian Correlation
Inequality

Tianyu Zhou and Shuyang Shen
November 25, 2016

1 Introduction

Royen[1] recently gave a ‘simple” proof of the Gaussian correlation inequality, which states
that the product of the Gaussian measure of two symmetric convex sets is no greater than
the measure of their product.

In this paper, we shall go over the proof of this theorem as explained by the overviews
by Panchenkol[2] and Latata and Matlak[3], and consider its application to confidence
rectangles of random vectors of normal distributions[4].

2 Gaussian Correlation Inequality

2.1 Introduction

Definitions. A set S C R™ is symmetric if for every x € S, we have —x € S.
A set P C R"is a symmetric strip if it is of the form

P={xeR":|(x,v)| <t}
for somev € R", t > 0.

Theorem 1 (Gaussian Correlation Inequality). For any closed symmetric convex sets K, L in
RY and any centered Gaussian measure p on R¢, we have

w(KNL) > pu(K)pu(L). (1)

Note that any symmetric closed convex set is a countable intersection of symmetric
strips by taking the symmetric strips along the tangent line of each differentiable rational
point on the boundary, so it is enough to prove that the theorem holds when K, L are
symmetric strips,

K={x€R: [(x,v;)] <t;¥1 <i<m}L={xecR:|[(x,v)| <ti¥n; +1<i<n; +mn,h

Take n = ny + ny, Xi = (vi, G), then we can obtain an equivalent form of Gaussian
Correlation Inequality.



Theorem 2 (Reworded Gaussian Correlation Inequality). For any t; > 0, we have

IP)(|X1| S t1>°°')|Xn| S tn) 2 PUX1| S t1>°")|Xn1| S tn1)P(|Xn1+1| S tn1+1>--°)|Xn| S tn)-
(2)

2.2 Proof of the Theorem

We shall now go through the proof of the theorem. Note that the proof refers to several
lemmas, which are stated and proven in the Auxiliary Lemmas section to come.
First we need a few definitions on the concepts used.

Definitions. A matrix A € M, is positively defined if for any x € R", x'TAx > 0. It is
strictly positively defined if equality holds only at 0.
For A, B € M,,«n, we write A > B if A — B is positively defined.

Note that covariance matrices are positively defined, as we have
x'Cx = Ex" (X — EX)(X — EX)x = E((X — EX)x)"(X — EX)x > 0.

StepI: Use the idea of interpolation for Gaussian distributions to transfer our problem
to an equivalent.

Without loss of generality, we will assume that the covariance matrix C of X is strictly
positively defined, where C can be written as

Cin Cr2
C =
(Cz1 sz)

where Cj; is the n; x nj matrix. Define

_{ Chy TCyy
C(t) := (TC21 sz) , 0<t< .

And set Z;(7) := 1Xi(1)%, 1 < i < n, where X(t) ~ N(0, C(1)).
Notice that C(t) is also strictly positively defined, which means it’s a well-defined
covariance matrix.

Cn 1Cy2 a
ZTC(T)Z = (aT bT) (TC21 sz) (b) = (aTC11CL+ bTCZZb) +T(bTC21a+ aTC12b)

Consider about this formula: the first term is non-negative and only the second term could
be negative. If the second term is non-negative, then clearly, z' C(t)z is strictly positive. If
the second term is negative, then

ZTC(T)Z > (aTC11a+bTC22b)+(bTC21 (l+(lTC12b) = (O.T bT) (g” gu) (S) =2z'Cz> 0,
21 22

since T belongs to [0,1].



Then we can restate the theorem as
P(Z;(1) < s1y..5 Za(1) < s0) 2 P(Z1(0) < s1y..., Z0(0) < 80, (3)
where s; = %tf To prove the theorem, it is enough to show that the function
T P(Zi(t) < 814000y Zn(T) < 84) 4)

is nondecreasing on [0, 1].
Let f(x, T) be the density of the random vector Z(t) and and K = [0, s;] x - -- x [0, s,].
We get the derivative of f(x, T) w.rt. T

P21 <51y Zaf) € 50) = - | Fx W 0| ek, 6
ot 0T Jx ot
where the last equation follows by Lemma 6 applied to A; = --- = A, = 0. Therefore, it is

equivalent to show that | K a%f (x,T)dx > 0.

Step II: We want to compute the explicit formula of 2f(x, T) by identifying its Laplace
transform.

Firstly, we compute the Laplace transform of 2f(x, t). By Lemma 6, applied to K =
[0,00)", we have for any Ay,..., A, >0,

n 0 0 n
J e T M f(x, T)dx = — J e i W (x, T)dx. (6)

However by Lemma 4, we have

n 1 & 1
J{O | e T Aif(x, T)dx = ]Eexp( -5 Akxﬁ(r)) — 1+ AC(T)[ "2, )
0o k=1
where A = diag(Ay,...,An). Then by formula in Lemma 5 (i), we obtain
I+ AC(T) =1+ Z (AC())l =1+ > Iy ] [N (8)
0#]Cln 0#]Cn] j€]

Fix() #] c [n] :={1,...,n},then] = J; UJ,, where J; := [y]N7J, ], ;=] — [ny] and

C(t)y = Crh . If one of J; is (), then C(t); = Cj; otherwise, by Lemma 5.(ii) we
¢ TCIZIl Clz
ge

[J11

’Ch ’CIZ|H -7 ulhlz( )) ©)

i=1

|C(T))l = [Cy, [ICy, |

Iy, —TC, szC]z Cry, Gy,

where pj, 1,(1) denote the eigenvalues of Cj, ChIzC 'Cp, CI Notlce that these elgen-
values belong to [0,1] by Lemma 5 (ii). Therefore for any) # ] C nJand T € [0,1], w
have

() 1= 2 [Clx)y| > 0.
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Therefore, we can write

0 1 1 3 0
SIHAC(T)[ 2 = —|I+AC(7)] > aT| (t )I||/\J|_—|I+/\C =Y g )H}\j.
04l 0£]Cn] jeJ
(10)
We have thus shown that
J e_Z{L:1 Amaif(x,’t)dx: Z %a]( I+ AC(T H?\ (11)
[0,00)" T 0A]C ] €]

Let hy := h;z ¢ be the density function on (0,00)" defined in Lemma 8. Then by
Lemmas 8 and 7 (iii), we identify the Laplace transform

n ol
I+ A = Lishx 12
I+ AC(T H?\ J e ax]hT (12)
j€]
This shows that
) 1 oVl 13
a0 = 3 qag () (13)
DA]Cn

Step III: Now we can prove fK 2 f(x,T)dx > 0 using the explicit formula for %f (x,T)
that we get above.
Recall that aj(t) > 0 and observe that by Lemma 7 (ii),

lim a—h,c( )=0 for i¢]C n]

xi—0t aX]

Thus

Il
J a_}L[(X) dx = J h,t(t],x]c)dx]c > 0, (14)
Il

k 0%; iere o]

where J¢ = [n] — ], and y = (t},%jc) if y; = t; fori € J and y; = x; for i € J°. This finishes
the proof.

2.3 Auxiliary Lemmas

We shall now prove the lemmas needed for the main proof.

Lemma 4. X is an n dimensional centered Gaussian vector with the covariance matrix C. Then
forany Ay, ..., Ay > 0 we have

Eexp (— > 7\iX§> = |1, + 2AC| /2 (15)

i=1

where A = diag(Ay,...,Aq).



Proof. We know X ~ N(0, C). As C is symmetric we can take A such that AAT = C. Write
X ~AY where Y ~ N(0, L,,).
Then

Eexp <— i Ain) =Eexp(—(AX, X))

i=1

=Eexp(—(AAY,AY)) = Eexp(—(ATAAY,Y))

_ <¢%T)HJ exp <— < Gln v AT/\A) x,x>> dx.

Since 11, + ATAA is symmetric we can write that it is equal to some UDU" where
U € O(n) and D = diag(dy,...,dn). Then

Eexp< Z)\X2> —( ) J —(Dx,x))dx
( ) J J exp(—(Dx, x))d"™x
\/7 \/ (2~ det D Zﬂ“detD

:2 n/Z |D|f1/2
—n/2 1 T e T 1/2

=2ESL+ ATAAL = [+ 2ATAA[

From Sylvester’s identity,
L+ 2ATAA| 2 = |1, + 2AAAT[ 2 = 1, 4 2AC 2. O
Lemma 5. For any matrix A € My xn,
i)
L+Al=1+ Y Al (16)
0#]Cnl

A A

ii) If n = ny +ny, taking the block representation of A, A =
) Ifn =+, taking p fan=(hn A"

), with Aij € Mnixn]—

and A1y, Ay, invertible, then

Al = AnlAzl [T, = AP AnAL An A 17)

iii) If A is symmetric and positively defined, then

0< A ?ARnALANA 2 <1, (18)

Proof.



i) Use Leibniz’s formula, we get

n

I+ A= Z sgn(o) H(I + Ao, i

0€SH i=1

= Z sgn(o) H (ayi+1) H (ag,i)

0ESH o fixes i o does not fix 1

=1+ Z ngn(c) H (ag.i)

0#]Cn] 0€Sn o does not fix |

=1+ > Al

0#]Cn]

ii) Note that A has decomposition

(A” Au): AP0 I, AP ARAL " (A0
An Axn 0 A \ALPAnA? L, 0 AY)’

then we have

L A-V2A AZ12
|A| =|A11| —1/2 ! —1/2 1 1242 |A22|
Ay TAnAy, L,
=AnllAxnl |, — AZ_Z]/ZANAG]A]ZAZ_ZVZ‘ .

iii) Note that
AL PALAD ANAL = (AL PARA D T(AL PARAL)

is a symmetric matrix. Denote Az_z] Az Aﬂ] /2 by B.
We have x'B"Bx = (Bx)"(Bx) = [Bx| > 0,s0 B'B > 0.
For any x,y € R™,R™ respectively we can consider the vector <J;X) where t € R,

then we have the product
(tx" yH)A (tlj) =t Anx + 2ty"Anx +y'TAny > 0.

This as a function of t has at most one root. That is, for any x,y,

(ZUTANX)Z — 4XTA11X1JTA22y = (yTA21X)Z — XTAHXQTAzzy Z 0

Taking x = A]]V *xandy = Az_z] ’*y, we have

XPlyl? > (y"Bx)?,

and when y = Bx,
Ix|> > x"B"Bx.

Which means x' (I — B"B)x > 0. O



Cn Cy

L 6. C=
emma ( Cyi Co

) is nondegenerate. Take

_{ Cn TCyy
C(T)'_(TCm sz),OSTSL

and X(t) ~ N(0,C(1)), Zi(t) = $Xi(1)? for i = 1,...,n. f(x,7) is the density of Z(t). (As
defined in the beginning of the main proof)
Then for any Borel set K C [0, 00)™ and any Ay, ..., Ay >0,

n 0 0 n
L e TN f(x, T)dx = o L e S M (x, T)dx (19)

Proof. Since C is nondegenerate x' Cx # 0 for any x € R™. Then x'Cx > 0 as C is positively
defined.

Taking u € R™ and 0 € R"2, weget (u' 0) C (U’

O) =u'Cyyu > 0. Similarly v Cyv > 0,

Ci O \. .. .y .
then ( 0 sz) is strictly positively defined.

Note that
C(t) =7C(1) 4+ (1T —T1)C(0).

Then for any x € R",
x'C(t)x =x"C(1)x + (1 —1)x"C(0)x.

C(1),C(0) are strictly positively defined (nondegenerate), so x' C(t)x > 0 for any x,
that is, C(t) is nondegenerate.
Then |C(T)| > 0 for all T € [0, 1] and so ——— is smooth.

valelGal
This means X(1) has p.d.f.
N N STt
06, ) = bl (1) 1),

and so Z(t) has p.d.f.

where y; = €;/X;.



We have

2 exp(—(C(1) 'y, ) = ~(Clr) ' (C(1) — CONCT) Ty, yhexp(—(Clr) Ny, )

Since C(t) is continuous on [0, 1], the largest eigenvalue A of C(t)~" reaches some
minimum on [0, 1]. Since x"C(t)x < Alx|* as C(7) is symmetric and positive definite, there
is some a > 0 such that over [0, 1],

(C(0) 'y, y) > aly,y) =ad_lelvxil=a) Ixil.
i=l i=1
Similarly, there is some b < oo such that

(C(r)(C(1) = C(0)C(T) 'y, y) < bly,y) =b ) Ixil.

i=1

Then we can bound a%f (x,7T) by

-] n n
< T+b) |xif]exp|—a) [xi
(470)"% ... Xn ( ; ) P ( ; )
which is integrable.

Then we have a bound on |e~ Zi=1 X %f(x, T)|.
By dominated convergence theorem, we get the result

0
sup |—f(x,T)dx
T€[0,1] ot

n 0 0 n
J e i MN_—f(x, T)dx = _J e 2 NN f(x, T)dx. (20)
K 0T 0T Jx 0
Lemma 7. Let Y = (Yi,..., Yy) be a random n-dimensional vector with nonnegative coordinates.
Take > 0 and for any o« = (&4,..., ) € (0,00)", take x > 0,y > 0 and set
Xk-&-oci—] yk
= -y . < T .
gas 0o y) =€ Mk + o) k!
k=0
Then define hy, as
T X4
hy =E — 0o —1Yi Xi>0.
H n? (u’ )] ’
We have

i) Forany o, hy > 0 and f(o oo M (X)dx = 1.

ii)) If s > 1, then lir{)l+ hu(x) = 0 and



ii1) If o > 1 for all i, then for any ] C [n], g‘—:ha(x) exists and is in L;((0, 0o0)™). Moreover, for
AMyeeosAn >0,

J e Zim M X‘ o x)dx = H?\ J e i A (x)dx.
(0,00)™

i€] 0,00)

Proof.

i) Since g4, > 0 we have h, > 0. By Fubini theorem,

RS R ENCE)

—EHU (u YM

ii) Note that I'(x) is decreasing on (0, 2) and increasing on (2, co). Then since I'(x) >
we have when k > 1, ¢« > 0, and

1
27

Mk+o) 5 1
rkky —rm 2
That is, "k + o) > 17 (k) = 1k —1)!
This means
e Xk+<xi*1 i yk > ijqxii1
‘ < —X—y - _— = X -~
gocl(X)y) > Z r(k+ (Xi) Z k! € Z r(k+ oci)
k= k=0 k=0
Xk-‘rCXi—] © xk_]
< —x :2 —X, Xi
<2e Z(k—l)' e x Z(k_])l
=2e x%(x7 +e*) = 2x% (e 4 x).
That is,




(Xif]
Since o; > 1, we have a (Xﬁ) in the product, which approaches 0 as x; — 07.

That is, hm hq(x) = 0.

X{—

Consider the derivative of g,, with respect to x,

koc12 k kocl k
I R Mty
ox~ Mk + o) Fk—i—oc1
Xk+0412 yk k+oc11 yk

_XU - _X_U -
ZFkJrocl—])k Zrk-{-%)k’
=0o—1 — G+

We have an upper bound for g+(x,y) = |g«(x,y)|, so by dominated convergence
theorem we can differentiate under the expected value sign,

iii) From ii), 2~ "', (x) is the sum of 2! different cihy s, where oy = a« — ), e;, I ranges
over all subsets of ], and c is (—1)/"" times a power (no more than []|) of ..

This is in L1((0, c0)™) as we have
j <Yl =Y ] =Y <
(0,

1€P()) (0,00)™ 1e?()) (0,00)™ 1eP(])
Note that 2L h, = 2 2"} which is the ih derivative of a linear combination of
ax ax]

hy,s with «;, > 1. We have that the derivatives evaluate to

+ A J e~ Zim MR (x)dx
0

ol
|t

> n 0 n
J e i MM R (x)dx =e 21 MR, (x)
0 an =0

)
For any j ¢ ] we have lirg g'—;}‘ «(x) is the limit as x; approaches 0* of a linear
X5 +

combination of hy;s where oy, > 1. That is, this limit approaches 0. This means

e~ Zimi MXih (x) =0, and so

Xj =0

00 n a n
J e—zi:1 )\iXi_h(x(X) dX — }\] J e Zi:] )\iXih(x(X) dx
0 0




By induction, for any | C [n]

o0

"L M (x)dx = A J — i Ap d O
L e ox; (x)dx | | i, e «(x)dx

Lemma 8. Take C a strictly positively defined symmetric n x n matrix. Then there is some p > 0
with C — pl, is positively defined, meaning C = ul, + AAT for some matrix A. Take random

variables (g}l))]'gn’]'gk i.i.d. N(0,1), then set

2
LI
Z Z 9) 9) al»lam Z] (; ﬁgimaid)

1 15,'<n

fori=1,...,n. Then we take x = (5,...,%) and hy ¢ := h,.
Forany Ay, ..., Ay > 0, taking A = diag(Ay, ..., A,) we have

J e T ATy ¢ (x) = L, + ACI V2,
(0,00)

Note that [, . e i Df(x 1)dx is the Laplace transform of f(x, T). In this case,
f(o,oo)n e i Aixihkyc(x) is the Laplace transform of the convolution f(x, T) » f(x, T) » f(x, T).

Proof. Again through Fubini theorem,

. [ 1 :
J e” XMy (x)dx =E HJ e M '—gk/z (X Y) dx;
(0,00)™ |7 Jo H

- —Yi - YF —7x1 —AiXq Xk-Hx_]
=& H ¢ Z ] J o (kg o) O
=E H e kZ k(1 + li7\ k+og]

HAL

:E e Y11+u?\
(14 pAy«
) A
_ I k/Z]E [
=[I, + pA|” [exp( S "

Since Y; = >_ X2 where X; ~ N(0, 5 AAT) from Lemma 4 the covariance matrix of Y is
2uA(T+ pA)~ ‘Z‘HAAT A1+ pA)~ 1AAT. Then

I, + uA?E {exp (—Y HA:

S M-ﬂ =[Ih + pA L, + A(I+ pA)TAAT V2

=1, + pA + A1+ pA) (I + pA) TAAT| V2
=[I, + AC[T¥? O

11



3 Confidence sets in the Multiple Linear Regression

Given a random variable X = (Xj,...,X,) where X; are i.i.d., then we can consider the
parameter space © of X given data on X. The confidence set, is then a subset S of ©, satisfying
some confidence level « such that

o =min{P(0 € S): 0 € O (21)

3.1 Confidence intervals for parameters of normal distribution

Let us consider a sample of normal distribution with mean p and variance 0.

X]) XZ) ey Xn ~ N(FL) 0_2)'
Using Maximum likelihood estimation (MLE), we obtain the following estimates of p and o?
=X and ©6%=X2—(X)%. (22)

According to the Law of Large Numbers (LLN), we know these estimates converge to n and
o? as 1 — co. But we also want to know: how close are these estimates to actual values of
the unknown parameters p and o%?

We will use confidence interval to describe precisely how close X and X2 — (X)? are to p
and o?. Firstly, let’s define the Joint Distribution of (X, X2 — (X)?).

Definitions. If X;, X5, ..., X;; are i.i.d. standard normal, then the distribution of
Xi?+ X"+ + X

is called the x2-distribution (chi-squared distribution) with n degrees of freedom.

Remark. This distribution only depends on the degrees of freedom n.

Theorem 3. If X;, Xy, ..., Xy, are i.i.d. standard normal, then sample mean X and sample variance
X2 — (X)? are independent, and

VX ~N(0,1) and n(X2— (X3 ~x2 ;. (23)

n

Proof. Consider random vector Y given by a specific orthogonal transformation of X

Y; V1 Xi
v=|:]=w=|:|]:],

where each v; is a row vector. Without loss of generality, we can choose v; = <\/%L ... \%{)

and let the remaining rows be any vectors such that V is orthogonal matrix. (For exam-
ple, we can simply choose the rows v;, ..., v, to be orthogonal basis in the hyperplane
orthogonal to vector vy.)

12



Firstly, Yi, ..., Y, are i.i.d. standard normal, then we have Y ~ N(Vpy, VIVT) = N(0, I)
since ux = 0 and V is orthogonal matrix, VV; = I. Because of the particular choice of the

first row vy, the r.v.Y; 1 1
Yi = =X+ 4+ —=X, =v/nX
1 ﬁ 1 \/ﬁ n \/_ )
and, therefore, X = \/LHYL
Next, n times sample variance can be written as

n(XZ o ()‘()2) — X% 4o+ Xﬁ — le. (24)

Since orthogonal transformation V preserves the length of X (i.e. |Y| = [VX| = [X]), therefore,
we get

X=X =Y+ Y2 Y=Y+ Y2~ (25)
Since Y7 and Y3, ..., Y, are independent, then we get the sample mean and sample variance
are independent ; y/nX = Y; ~ N(0,1) and n(X? — (X)?) ~x2_;. O
For general normal distribution X;,..., X, N (1, «?), we can normalize them and
then have X X
= n— M iid
Z, = ‘G“,...,zn: B9 N0, 1)
are independent standard normal. Applying theorem to Z,...,Z, gives that
. 1« Xi— X —
ViZ=yn- Y SR mt RN, (26)
n& o
and
- _ 1 Xi—pu 1 Xi—pn n(X? — (X)?)
72 (7)) = n(— i 2_ (L i N=" T 27
nNZ -2 =n(- Y (FEro oy 2by S @)

By MLE, this result can be read as {i = X and 6? = X? — (X)? are independent, and

VIR N0y and BT 28)

Now lets construct the Construct Confidence Interval of Variance 2. Consider a sample
Xiy ..., Xy with distribution Py, from a parametric family {Py, : 0 € ©}, and 0, is unknown.

Definitions. Given a confidence level parameter « € [0, 1], if there exist two statistics
51281(X1,...,Xn) and SzZSZ(Xh...,Xn)

such that probability

Po,(S1 <6y <S) =a (or> «x),
then we will call [S;, S,] a Confidence Interval for the unknown parameter 0, with the
confidence level «.

13



The interpretation of this definition is that we can guarantee with confidence « that
our unknown parameter lies within the interval [S;, S,].
For Xi,..., Xy iid. N(p, «?), let

A:Mw\uo,n, g0t

o2 Xnen
and A, B are independent. Then we can rewrite A and B as

A=Y, and B=Y:4---+VY?

for some Yy,...,Y, -i.i.d. standard normal.

Let’s Consider p d.f. of xn , distribution and choose points ¢; and c¢; such that the area
in each tail is '5% (i.e. P(c; < B < ¢;) = ). Therefore, we can guarantee with probability
« that ,

0<™ <o (29)
o

Solving this inequality for o gives the confidence interval of o with confidence level «,

no? no?

—_— . 30
2,20 30)
Now let’s construct the Confidence Interval of Mean .
Definitions. If Yy, Y;,...,Y, are i.i.d. standard normal, then the distribution of the random
variable
Yo

ViR V)
is called (Student) t,,-distribution with n degrees of freedom.

Remark. This distribution only depends on the degrees of freedom n, and the distribution
is symmetric.

Using A,B defined above, we can write the formula

A B i—u no? _vn
B_\/T_L o / n—1 o? 6

ﬁ )~ too. (31)
[C=]

Then we can choose constants ¢ and —c such that the area in each tail of t-distribution is
%, which means the interval [—c, c] gives us probability «,

L=,
Ples Y lp-w<o=a 2)

Solving inequality for pu, we get the confidence interval of pu with confidence level «,
poe e Sus e ©3)

14



3.2 Confidence Rectangle Using Gaussian Correlation Inequality

Theorem 4 (Gaussian Correlation Inequality). Let X = (X;, Xy, ..., Xi) be the vector of random
variables having the k-dimensional normal distribution with zero means, variances 0%, ceey Gﬁ, and
correlation matrix R = {py;}, then for any c¢; > 0,

P(IXil < ciyee oy Xil < i) > P(IXq] < ) P(IXo] < cayeeey Xk < e (34)

We want to find a confidence rectangle of this sample. Firstly, we need to extend this
inequality a little. It’s easy to get next inequality by induction

P(Xi| < c1y.eny X < 0 > T [POX] < ). (35)

And, we also claim the following theorem.

Theorem 5. For a positive random variable s, which is independent of X;, Xy, ..., Xy, we have

P(@gc],. |k| >>HIP>(| X ) (36)

Proof. 1If s is just a positive constant, then this inequality is definitely true since we can set
{c{ = sci} and then apply Gaussian correlation inequality to {c;}.

Now we prove theorem for general random variable s. By Gaussian correlation inequal-
ity, we obtain for conditional probabilities

P(IXil < ers,o, X < cusfs) = TTP(IXd < cis|s). (37)

Then we can take expectation w.r.t s on both sides. Define fi(s) = P(|zi| < c¢;s|s). Then we
have

Jﬂ(s)dms) — E(P(lzd < cisls)) = B(lz| < cis) (38)

Based on this notation, we can rewrite (36) as

JHfi(s)dIP)(s) > HJﬂ(s)d]P’(s). (39)

Also notice that f; is an increasing function in s. Therefore,
[ (fits) = 00 (56~ 1)) apts)apie) = o, (40)

because fi, fj are increasing functions and then (fi(s) — fi(t)> , (fj (s) —f; (t)> have the same
sign. We can also rewrite the above inequality as

J (fi(s) - fdt)) <fj(3) - fj(t)>dIP’(s)dIP’(t)

15



:in(s)fj(s)dIP’(s)dP(t) + in(t)fj(t)dP(t)dP(s)

— in(s)fj(t)dP(s)dP(t) — in(t)fj(s)d]P’(s)d]P)(t)
— | )6 s1ap(s) + | fivn (el

- [t(s)a(s) [ 1apLe) - | Reiap(e) [ i(s)ap(s)
= in(S)fj(SJdIP’(SJ —Zin(SJle’(S)ij(SJdP(S)

>0

)

by Fubini’s theorem and the fact that [ dP(s) = 1. This implies

in(s)fj(s)dP(s) > Jﬂ(s)dIP’(s) ij(s)dIF’(s). (41)

Then by induction, we can easily get (39), which finishes the proof. O

Now we can use these inequalities to find confidence rectangle of unknown parameter
of Yy = (Xiv, Xovy oo oy Xiw), V=100 M

Consider a random sample of n vector Yy = (Xiv, Xovy ..., Xiv), v = 1,...,n, where
each Y, has same normal distribution with unknown mean values y, ..., W and unknown
variances 07 = - -- = 0% = 0°.

We can estimate 02 by sample variance
T < _
2 _ Z 2
Sg = E v (ng — Yg) s (4:2)

where g is some fixed index chosen from 1,... k. Then the variables Z; = \/n(Y; — ;) and
s = s4 satisfy the assumption of Theorem 5. To find a confidence rectangle for i, ..., py
with confidence level &, we can determine cy, ..., ¢k such that the right-hand side of (II)
equals «. Therefore, the confidence rectangle for mean value p is

Yi—cisgvn < <VYi+cisgvn, i=1,...,k (43)

3.3 Multiple Linear Regression
3.3.1 Introduction

We can also generalize the idea of confidence intervals to the case where there are different
parameters for each random variable.

16



3.3.2 Maximal likelihood estimators of parameters in multiple linear regression
Consider the model
Yi Xt oo Xip| [ B €1
Sl=1 0 P I o I (44)
'S Xnt vov Xupl| [Bp €n
Here, Xj; are random variables, 3; are constants, and €; are random noise variables i.i.d.

N(0, 02). We shall denote the matrices Y, X, 3, and € and assume that X has rank p.
Then given X and Y, we can obtain an estimation for the parameters 3 and ¢?,

Lemma. The MLE of B and o* are

A 1 A
B=X"X)"'X"Y and ¢%= sz— XBP2. (45)
Proof. The p.d.f. of VY; is shifted from that of €;,
fi(x) 1 X p)?
i\xX) = e 202
V2o
Then the likelihood function of Y is
n 1 S p)? 1 [v-xp|?
L(B,0?) = fi(Yy) = ——e 22 = ——¢ 202
(B, ") 1:[ (v, (V2o (V2o

So maximizing the likelihood function with respect to p means minimizing [Y — Xp/%.
Note that

p p
Y —XBP=(Y—=> XiB;,Y =D X;B;)
j=1 j=1

P p
=, Y) =23 BN, X5) + Y BiBi(X;, X

j=1 jk=1
This means when the derivative with respect to 3; is zero, we have

P
—2(%X5) +2)_ Bi(XyXi) =0

k=1

foreachj =1,...,p. Thatis,
XY = XTXpB.
Then we get a maximal likelihood estimation for {3,
B=(X"X)'X"Y. (46)
We can now use the log-likelihood function to get a MLE for o,

—2log2m— X log o — Y—Xp* (47)

202

Ly —xBR. O (48)

In£(B, 0?)
6

17



3.3.3 Distributions and independence of MLE for parameters in multiple linear re-
gression

We can then obtain a distribution for the parameters in the model.

Theorem 6. 52
A B n
B~NB, o (XX)) and - ~xi, (49)

and the estimates are independent.
Proof. We have Y = Xf3 + ¢, that is,
B=X"X)"X"XB+ (XX)"X"e =p + (XX)"X"e.
We can then compute the mean and variance of (3,
E(B) =E(B + (X'X)"'XTe)
=E(B) + (X"X)'X"E(e)
=p.
As X"X is symmetric, the covariance of f3 is
E((B —B)(B — )" =E((X"X)'XTe)(X"X)'X"e)")
(X'X)'XTE(ee)X(X'X)™!
(XTX) TXTa?X(XTX)!
(XTX) 1 2

We also have
Y- XB =XB +e— (Xp—XXX)"XTe) = (I—X(XX) "X e.

Use Gram-Schmidt orthogonaliztion to write X as XoR where Xy € M,,,,(R) has orthog-
onal columns that form an orthogonal basis, while R € M,,,,(R) is invertible and upper
triangular.

Then we have

B—B=(X"X)"X"e = ((XoR)"(XoR)) ' (XoR) e = R™'XJe, (50)
and
62 = LY—XBP = HI-XX"X)""X)el? (51)
= (I— (XoR)((XoR)T(XoR)) " (XoR) "€l (52)
— LI(I— XoXJ)el?. (53)

We can add basis elements to Xg to form an orthogonal matrix A € M, 4, (R) containing

an orthonormal basis.
Take g = Ag, then g ~ N(A0, Ac?AT) = N(0, 0?).

18



Indeed, each g; are independent with one another as A is orthogonal and e;s are
independent.
g1
Consider the first p elements of g, § = | : |. We have § = X[ e which means

9p
p-p=R"4.
On the other hand, we can write € = XoXje + (I — XoX{ )€, and so
gl =eTe = (XoXge + (I—XoXg)e) (XoXge + (I—XoXg)e)
—e"XoXJe + e ((I—XoX3))(I—XoX3)e
=Ig1* + (I — XoXgp ) el*.

That is,
(T—XoXgel* =1gP — 181> = g541 + - + ga (54)
That is, p and 6 are independent, and ”f = hrzJ .1+ -+ h% where hj ~ N(0,1). So
n62
n0d A . ]

3.3.4 t-tests for linear combination of 3

To get the confidence intervals of 3, we shall take the linear combination of ¢ = (cy,...,¢,)"
and 3,
ciBr+ -+ cpBp =c'B.
Since {3 follows a normal distribution "} does as well. Specifically,
E(c'B) =c'E(B) =c'B
and
E(c"(B—B)(B—B)Tc) =cE((B —B)B —B) e =oc"(XX)e.
We can take R
c'(B—B)
o2cT(XTX) ¢
and so we can get a t-distribution by taking

(O'ZCT XTX )/U T‘I. p Ntn —p- (55)

When ¢; = 0 for all j # i, we have

62
(et /o

which means the «% confidence interval of 3; is

no?
(n—p)

~N(0,1)

(X"X)y' (57)

Bi + t1foc/2,n7p
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3.3.5 Joint confidence set for [3 and F-test

Recall that N N N N
9P =38"g=(PB—B)'R'R(B—B)=(B—B)'X'X(B—B).
92

. A2 2
SIHCGE—‘ZZ%—F"'—"G—ENX%,WehaVG

o a\TYTY (R _
B-pXXB-B) sz 58)

. . . 2
This is independent from % ~ xﬁ,p, so we can take

(B—B)™X"X(B — B)/ ne? _ (m-pB-BXX(B-B) 59)
o2 (n—p)o? npo? PR

There is some c,, such that F, , (0, cs) = «, then we have a confidence set for all 3,

(n—p)(B—B)'X"X(B—B)
npo6?

< Cq (60)

Given a null hypothesis Hy : B = o and alternative hypothesis H; : 3 # o, the
(1 — o) % significance threshold would be ¢, under the F-test. The decision rule would be

) B=R)TXTX(B—
Ho: (pMBBIXNBp) 5 o
) (B=R)TXTX(B— )

Hy o neplBg XX o

(61)

where F, , ,(0,¢cq) =1 — .

3.3.6 Simultaneous confidence set and F-test for subsets of 3

Given | ={i;,..., 1} C [p], we can consider the F-test for B; = (Bi,, .-, Bi)"-
We can take the submatrix (XTX)I_1 of XX, which is the submatrix with rows and
column indices in J. Then

By~ N(By, *(X"X); ). (62)
Take Aj = ((XTX)]_] )'/2, that is, (XTX)]_] = AjA|. We would have
6] — By =Ay9
for some g = (gy,, ..., 9:,)", where g;, ~ N(0, 0?).

Similar to the section above, we can get that

2 2
gi]_l_..'_l_gik’\’xi

o2

and
(n—p)(B) =B XX) (B —B)
nko6? Tk
which we can then use to construct confidence intervals and F-tests for £3;.

(63)
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