de Rham Theorem

May 10, 2016



Stokes formula and the integration morphism:

Let M = J,c5 0 be a smooth triangulated manifold.

Fact: Stokes formula [, w = [ dw holds, e.g. for simplices.
It can be used to define linear map Int,. The map

Int,_1 : QK(M) — X} defines a homomorphism of complexes.

Note: Stokes thm. implies commutativity of the diagram:

dy— d
L —— QM) = k(M) S kL (M) —
Int_q ‘T k-1 Inty BT bk Inty iy BT Pkt
A 9F_4 ; of .
i1 2 Y




Elementary Forms:

If p1,p2,...ps are the vertices of complex K , the set {St(px)}« .
where St(pk) := U,.55,, 0 forms an open cover for M .

The partition of unity theorem guarantees the existence of a
C*-partition of unity ¢1, ..., ¢s subordinate to {St(px)}« -
Below we denote the dual basis to simpleces by the same letters.
Let 0 = [py, - - - pr.] be an oriented simplex. Corresponding to

o is the elementary differential form of order k

OK(prg, .- »Pr) = KIS K o(=1)iga,ddrg A+ - Adn, A+~ Ady, .



" Triangulation of 2-handles:

v.=18,e.=60, t.=40 = x(M)=-2.
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1. Right inverse to integration via elementary forms

Proof: induction on k . Below w - o is the pairing by integration.
k=0 = Int°(®%(q:)) - gj := ($°(q1))(q;) = Pi(q;) = Jj -
Inductive step k >0 :if 0 # 7 then 7 C M\ St(o) (Lemma 1).
Then Intk(¢K[o]) -7 =0 .

Let 9o =: a+ [other (k-1)-faces of] o .

Then 9%(a) = Y 5,57 - So, [, ®K(0) = [ ®k0*(a) =

J, dok1(a) = [, ®*1(0) = [, #(a) = 1.

(Using Stokes, Lemma 2, and the inductive hypothesis)



Two lemmas needed for Step 1.

Remark: Supp ®(0) C (,cv(y) St(a) := St(o).

Lemma l. 7 #0;7,0 € Xy = 7€ M\ St(0).

Proof. Let b € V(7)\ V(o). Either (b,0) € 411 =
supp ®(o) () St(b) =0 or (b,0) ¢ Li41. In the latter case, if
BEXki1, beV(B) = o¢ F(B) = St(b)(No=0. In
either case, [ ®(7) = [ ®(0) =0, or, [0] -7 =[r] -0 = 0.
Lemma 2. %9* = d ®*~1. Observe that " ¢; = 1, so

S dpi =0. Also d®*(qyy ... qx,) = (k+1)ldXg A=+ A dAg.



Let 0 = @), --- gy, then

(k+1)'¢k+18*[0] (ki1)! Z[q,a]ezk+1 ¢k+1[qr<7] =

Y larolesen [Ba ddrg A+ Addy, + 3o (—1)F Ly, dg, A dprgA
S Adox AL ddy] =

2larolesis PardPro N dON A D olex,inag V(o) 0ol

Sk o(— 1) gnddrg A Addy A ddy ]+ g daA

Sk o(—1)pxdbrg A Adoy - Adoy, =

d(ﬁ)\o N - dqb)\k = k+1)|d¢k[0']



de Rham Complex

.. — ker Inty_1(M) — ker Int"(M) — ker Intk*Y{(M) — ...

| | |

dy_ d
o QM) — s QK(M) — 2 QR (M) ———
Inty_q JT Pk-1 Inty, l 1 @k Intyqq JT Pk+1
* aZ*l * BZ *
..—)Zk_l zk Zk-‘rl—)”'

Let k*" de Rham cohomology group HX(M) := ker di/imdi_1 .
Let k*" cohomology group of ¥ H*(X) := ker 0;/imo;_q .
Note: Int : QK(M) — X} induces an isomorphism

Inty : H*(M) — H*(X) of differential complexes.



Acyclicity of the kernel of Int. map.

Basic fact: Poincare Lemma: If U is a contractible open set in
R"” and « a k-smooth closed form on U, then « is exact,

i.e there exists a form 3 such that o = df.

Observe that St(o) is contractible so Poincare lemma applies.

Next fact that we will need is the extension of forms theorem.



Extension of forms theorem.

(ax) Let U(Oc)) be ngbhd of of do, o a s—simplex,

w € QK(U(d0)) closed, k > 0,5 > 1.

If [,,w=0ands=k+1, then 3& € Q*(U(0)) cls.t.

&|y(pe) = w, perhaps by shrinking U(d0).

(bi) If s > 1, k > 1,0 an s—simplex, w € QX(U(c)) closed and
a € QHU(90)), U(do) C U(0), s.t. da = w|ye)-

When s = k assume [ w = [, «a. Then exists & € Q*"1(U(0))

s.t. &@|y@o) = @ and d&@ = w, maybe shrinking U(c) > U(90).



Proof of acyclicity, by induction on s < n.

Consider an s-dim. subcomplex Ls :=|J; 07 and w € ker(Inty) a
closed form.

Outline: Construct inductively nbhds U(Ls) of Ls and forms

as € QY (U(Ls)) st asly(ry) A utes) = @s—1, das = w|y (L)
and Int*“1(ayx_1) = 0. Then a, € ker(Int,_1) and da, = w,

proving that ker(Int.) is acyclic.



Proof of acyclicity, by induction.

Basis step:

Choose disjoint, contractible nbds U(c?). By Poincare Lemma
exists afy € QO(U(0?)) with dafy = wly(o0y- Set ap := ay for
k> 1and ap := af — ap(o?) for k = 1 so Intg(ag) = 0 as
required for s = 0.

Inductive Step:

Given as_1, for each o7 we now construct nbds U(o7) s.t. overlaps

of each two are subsets of U(Ls_1) and also forms



Proof of acyclicity, by induction.

as,i € Q1(U(0F)) that coincide with as_1 on overlaps. Inductive
assumption includes das—1 = wly(,_,) and

as—1 € ker(Inty_1(U(Ls—1))) for s = k.

Then (by) gives ds; € Q“71(U(07)) st dés; = wly(es) and
ds’;|U(aa/§) = as—1. Glue G5 into és on

U(Ls) :==U;U(0o7). We set as := és for s # k — 1 and

as = &s — K L(Int,_1(ds)) for s = k — 1.



Proof of acyclicity, by induction (concluded).

Note that ®* and Int. are homomorphisms of complexes and the
former is the right inverse of the latter by [1] imply

dakx_1 = w — ¢*(Inty(w)) = w on U(Ls) and also that
Inti_1(ok—1) = Int_1(Gk—1) — Inte—1(Gk—1) =0

concluding the proof.



Euler characteristic x(T(M)) does not depend on
the triangulation T(M) of M

Reason: Corollary to the Theorem implies ker(d;) = im(d,_;)

where d’ is the restriction of the exterior derivative in the kernel.

which in turn implies irl;e(’a(?f)) ~ irirT((jfk)l)'
k—1 —

Note: #{o € T(M) : dimo = k} = dimp¥ = dimg T*.

Theorem: Euler characteristic

X(M) = Y (— 1)k dim ;58 = (T(M)).

Corollary: x(T(M)) does not depend on triang. T(M) of M.



Proof of the corollary

dimpZk = dimg (Im(95)) + di R”l;e(rzg*k)) + dimgIm(9;_,).

Therefore x(M) = >_7_o(—1)%di R,,l:%? 3 xX(T(M)).

VeleH-2rh+1=18 ?’ E ]
=43 +1L-Y=60 L E\:—

o.M S22
bz lo-4 =40 vet, e=6, t=4 T:g=1,v=5, e=27, .

Y = 18-60+10- -2 XiSj2-22g t-18,XT-2-22 _ G2 handlesig=2)
P v=18, e=60, t=40
X(G)=-2=2-2g




Extension of Forms Theorem

Proof: by induction on k. Outline: Show (ap) holds, then

(ak—1) = (bk), and finally, (bx) = (ax).

(ag) : Say w € Q°(U(d0)) closed. Then w is locally constant.

If s > 1, then w = const in U(do) so we can let let & = w in U(o).
If s =1 then 0 = pgp1 as an 1—simplex; also it is given that
Joyw =0. But [; w=w(p1) —w(po) =0 so we can let & = w.
(ak—1) = (bk): Say w,« are as in (bx). Poincare lemma gives

o € QTHU(0)), do/ = w|y(r). Let a— o’ =: B € Q1(U(00)).



Then J is closed in U(9(0)). If s=k then [, 8= [ja— [, o
= [ w— [ da’ =0. Applying (ax—1) to 3 we get a closed form
B € Qk=1(U(0)) such that B|y(ae) = 5.

Then & := (5 + ') € Q" 1(U(0)) is as required in (by).

(bx) = (ak): Say 0 = (po...ps) and w are as in (ax), k > 0.
Also, let ¢’ := (p1...ps) € P, where P is he union of proper faces
of o with pg as a vertex. Then w is defined and closed in a ngbhd

U(P); clearly U(P) C St(po) and it is star-shaped.



Poincare lemma gives o/ € QX"1(U(P)) s.t. da’ = w|y(py; this
holds in particular in some nbhd U(do”") C U(P). For s =k +1
define A := (0o — 0’) € k. Then QA = —do’, and hence
[ow— [ = [ w+ [,da = [, w=0. Applying now (by)
to simplex o’ we get o/ € Q¥~1(U(0")) such that d’|U(ag/)) =
and do/ = w|y(er). Shrink U(P) so that U(P) (N U(a") C U(d0"),
let U(90) := U(P)|J U(0") and set & € Qk~1(U(do)) by & = o

on U(P) and & = o/ on U(o’). Extending & using partition



of unity to Qk~1(U(c)) gives the closed form (required by (ax))

& := da& since & = d@|g, = w by construction of o’ and «’.



