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Stokes formula and the integration morphism:

Let M =
⋃
σ∈Σ σ be a smooth triangulated manifold.

Fact: Stokes formula
∫
∂σ ω =

∫
σ dω holds, e.g. for simplices.

It can be used to define linear map Intk . The map

Intk−1 : Ωk(M)→ Σ∗k defines a homomorphism of complexes.

Note: Stokes thm. implies commutativity of the diagram:

. . . Ωk−1(M) Ωk(M) Ωk+1(M) . . .

. . . Σ∗k−1 Σ∗k Σ∗k+1 . . .

dk−1 dk

Intk−1 ↑ Φk−1 Intk ↑ Φk Intk+1 ↑ Φk+1

∂∗k−1 ∂∗k



Elementary Forms:

If p1, p2, . . . ps are the vertices of complex K , the set {St(pk)}k ,

where St(pk) :=
⋃
σ:σ3pk σ , forms an open cover for M .

The partition of unity theorem guarantees the existence of a

C∞-partition of unity φ1, . . . , φs subordinate to {St(pk)}k .

Below we denote the dual basis to simpleces by the same letters.

Let σ = [pλ0 . . . pλk ] be an oriented simplex. Corresponding to

σ is the elementary differential form of order k

Φk(pλ0 , . . . , pλk ) = k!
∑k

i=0(−1)iφλidφλ0 ∧· · ·∧ d̂φλi ∧· · ·∧dφλk .







1. Right inverse to integration via elementary forms

Proof: induction on k . Below ω · σ is the pairing by integration.

k = 0 =⇒ Int0(Φ0(qi )) · qj := (Φ0(qi ))(qj) = Φi (qj) = δij .

Inductive step k > 0 : if σ 6= τ then τ ⊂ M \ St(σ) (Lemma 1).

Then Intk(φk [σ]) · τ = 0 .

Let ∂σ =: α + [other (k-1)-faces of] σ .

Then ∂∗(α) =
∑

∂τ⊃α τ . So,
∫
σ Φk(σ) =

∫
σ Φk∂∗(α) =∫

σ dΦk−1(α) =
∫
∂σ Φk−1(α) =

∫
α Φk−1(α) = 1 .

(Using Stokes, Lemma 2, and the inductive hypothesis)



Two lemmas needed for Step 1.

Remark: Supp Φ(σ) ⊂
⋂

a∈V (σ) St(a) := St(σ).

Lemma 1. τ 6= σ; τ, σ ∈ Σk =⇒ τ ∈ M \ St(σ).

Proof. Let b ∈ V (τ) \ V (σ). Either (b, σ) ∈ Σk+1 =⇒

supp Φ(σ)
⋂
St(b) = ∅ or (b, σ) /∈ Σk+1. In the latter case, if

β ∈ Σk+1, b ∈ V (β) =⇒ σ /∈ F(β) =⇒ St(b)
⋂
σ = ∅. In

either case,
∫
σ Φ(τ) =

∫
τ Φ(σ) = 0, or, [σ] · τ = [τ ] · σ = 0.

Lemma 2. Φk∂∗ = d Φk−1. Observe that
∑
φi = 1, so∑

dφi = 0. Also dΦk(qλ0 . . . qλk ) = (k + 1)!dλ0 ∧ · · · ∧ dλk .



Let σ = qλ0 . . . qλk , then

1
(k+1)! Φk+1∂∗[σ] = 1

(k+1)!

∑
[qrσ]∈Σk+1

Φk+1[qrσ] =

∑
[qrσ]∈Σk+1

[φqrdφλ0 ∧ · · · ∧ dφλk +
∑k

i=0(−1)i+1φλidφqr ∧ dφλ0∧

· · · ∧ d̂φλi ∧ . . . dφλk ] =∑
[qrσ]∈Σk+1

φqrdφλ0 ∧ . . . dφλk +
∑

[qrσ]/∈Σk+1,qr /∈V (σ) dφqr∧∑k
i=0(−1)iφλidφλ0 ∧ · · · ∧ d̂φλi ∧ . . . dφλk ] +

∑k
j=0 dφλj∧∑k

i=0(−1)iφλidφλ0 ∧ · · · ∧ d̂φλi · · · ∧ dφλk =

dφλ0 ∧ · · · ∧ . . . dφλk = 1
(k+1)!dΦk [σ].



de Rham Complex

. . . ker Intk−1(M) ker Intk(M) ker Intk+1(M) . . .

. . . Ωk−1(M) Ωk(M) Ωk+1(M) . . .

. . . Σ∗k−1 Σ∗k Σ∗k+1 . . .

i i i
dk−1 dk

Intk−1 ↑ Φk−1 Intk ↑ Φk Intk+1 ↑ Φk+1

∂∗k−1 ∂∗k

Let kth de Rham cohomology group Hk(M) := ker dk/im dk−1 .

Let kth cohomology group of Σ Hk(Σ) := ker ∂∗k/im ∂∗k−1 .

Note: Intk : Ωk(M)→ Σ∗k induces an isomorphism

Intk : Hk(M)→ Hk(Σ) of differential complexes.



Acyclicity of the kernel of Int• map.

Basic fact: Poincare Lemma: If U is a contractible open set in

Rn and α a k-smooth closed form on U, then α is exact,

i.e there exists a form β such that α = dβ.

Observe that St(σ) is contractible so Poincare lemma applies.

Next fact that we will need is the extension of forms theorem.



Extension of forms theorem.

(ak) Let U(∂σ)) be ngbhd of of ∂σ, σ a s−simplex,

ω ∈ Ωk(U(∂σ)) closed, k ≥ 0, s ≥ 1.

If
∫
∂σ ω = 0 and s = k + 1, then ∃ ω̃ ∈ Ωk(U(σ)) cl.s.t.

ω̃|U(∂σ) = ω, perhaps by shrinking U(∂σ).

(bk) If s ≥ 1, k ≥ 1, σ an s−simplex, ω ∈ Ωk(U(σ)) closed and

α ∈ Ωk−1(U(∂σ)), U(∂σ) ⊂ U(σ), s.t. dα = ω|U(∂σ).

When s = k assume
∫
σ ω =

∫
∂σ α. Then exists α̃ ∈ Ωk−1(U(σ))

s.t. α̃|U(∂σ) = α and dα̃ = ω, maybe shrinking U(σ) ⊃ U(∂σ).



Proof of acyclicity, by induction on s ≤ n.

Consider an s-dim. subcomplex Ls :=
⋃

i σ
s
i and ω ∈ ker(Intk) a

closed form.

Outline: Construct inductively nbhds U(Ls) of Ls and forms

αs ∈ Ωk−1(U(Ls)) s.t. αs |U(Ls)
⋂

U(Ls−1) = αs−1, dαs = ω|U(Ls)

and Intk−1(αk−1) = 0. Then αn ∈ ker(Intk−1) and dαn = ω,

proving that ker(Int•) is acyclic.



Proof of acyclicity, by induction.

Basis step:

Choose disjoint, contractible nbds U(σ0
i ). By Poincare Lemma

exists α′0 ∈ Ω0(U(σ0
i )) with dα′0 = ω|U(σ0

i ). Set α0 := α′0 for

k > 1 and α0 := α′0 − α′0(σ0
i ) for k = 1 so Int0(α0) = 0 as

required for s = 0.

Inductive Step:

Given αs−1, for each σsi we now construct nbds U(σsi ) s.t. overlaps

of each two are subsets of U(Ls−1) and also forms



Proof of acyclicity, by induction.

αs,i ∈ Ωk−1(U(σsi )) that coincide with αs−1 on overlaps. Inductive

assumption includes dαs−1 = ω|U(Ls−1) and

αs−1 ∈ ker(Intk−1(U(Ls−1))) for s = k.

Then (bk) gives α̃s,i ∈ Ωk−1(U(σsi )) s.t. dα̃s,i = ω|U(σs
i ) and

α̃s,i |U(∂σs
i ) = αs−1. Glue α̃s,i into α̃s on

U(Ls) := ∪iU(σsi ). We set αs := α̃s for s 6= k − 1 and

αs := α̃s − Φk−1(Intk−1(α̃s)) for s = k − 1.



Proof of acyclicity, by induction (concluded).

Note that Φ• and Int• are homomorphisms of complexes and the

former is the right inverse of the latter by [1] imply

dαk−1 = ω − φk(Intk(ω)) = ω on U(Ls) and also that

Intk−1(αk−1) = Intk−1(α̃k−1)− Intk−1(α̃k−1) = 0

concluding the proof.



Euler characteristic χ(T (M)) does not depend on
the triangulation T (M) of M

Reason: Corollary to the Theorem implies ker(d ′k) = im(d ′k−1)

where d ′ is the restriction of the exterior derivative in the kernel.

which in turn implies
ker(∂∗k )
im(∂∗k−1)

∼= im(dk )
im(dk−1) .

Note: #{σ ∈ T (M) : dimσ = k} = dimRΣk = dimR Σk .

Theorem: Euler characteristic

χ(M) :=
∑n

k=1(−1)kdimR
ker(dk )
im(dk−1) = χ(T (M)).

Corollary: χ(T (M)) does not depend on triang. T (M) of M.



Proof of the corollary

dimRΣk = dimR(Im(∂∗k)) + dimR
ker(∂∗k )
im(∂∗k−1) + dimRIm(∂∗k−1).

Therefore χ(M) =
∑n

k=0(−1)kdimR
ker(∂∗k )
im(∂∗k−1) = χ(T (M)).



Extension of Forms Theorem

Proof: by induction on k . Outline: Show (a0) holds, then

(ak−1) =⇒ (bk), and finally, (bk) =⇒ (ak).

(a0) : Say ω ∈ Ω0(U(∂σ)) closed. Then ω is locally constant.

If s > 1, then ω ≡ const in U(∂σ) so we can let let ω̃ = ω in U(σ).

If s = 1 then σ = p0p1 as an 1−simplex; also it is given that∫
∂σ ω = 0. But

∫
∂σ ω = ω(p1)− ω(p0) = 0 so we can let ω̃ = ω.

(ak−1) =⇒ (bk): Say ω, α are as in (bk). Poincare lemma gives

α′ ∈ Ωk−1(U(σ)), dα′ = ω|U(σ). Let α− α′ =: β ∈ Ωk−1(U(∂σ)).



Then β is closed in U(∂(σ)). If s = k then
∫
∂σ β =

∫
∂ α−

∫
∂σ α

′

=
∫
σ ω −

∫
σ dα

′ = 0. Applying (ak−1) to β we get a closed form

β̃ ∈ Ωk−1(U(σ)) such that β̃|U(∂σ) = β.

Then α̃ := (β̃ + α′) ∈ Ωk−1(U(σ)) is as required in (bk).

(bk) =⇒ (ak): Say σ = (p0 . . . ps) and ω are as in (ak), k > 0.

Also, let σ′ := (p1 . . . ps) ∈ P, where P is he union of proper faces

of σ with p0 as a vertex. Then ω is defined and closed in a ngbhd

U(P); clearly U(P) ⊂ St(p0) and it is star-shaped.



Poincare lemma gives α′ ∈ Ωk−1(U(P)) s.t. dα′ = ω|U(P); this

holds in particular in some nbhd U(∂σ′) ⊂ U(P). For s = k + 1

define A := (∂σ − σ′) ∈ Σk . Then ∂A = −∂σ′, and hence∫
σ′ ω −

∫
∂σ′ α

′ =
∫
σ′ ω +

∫
A dα′ =

∫
∂σ ω = 0. Applying now (bk)

to simplex σ′ we get α̃′ ∈ Ωk−1(U(σ′)) such that α̃′|U(∂σ′)) = α′

and dα̃′ = ω|U(σ′). Shrink U(P) so that U(P)
⋂
U(σ′) ⊂ U(∂σ′),

let U(∂σ) := U(P)
⋃
U(σ′) and set α̃ ∈ Ωk−1(U(∂σ)) by α̃ = α′

on U(P) and α̃ = α̃′ on U(σ′). Extending α̃ using partition



of unity to Ωk−1(U(σ)) gives the closed form (required by (ak))

ω̃ := dα̃ since ω̃ = dα̃|∂σ = ω by construction of α′ and α̃′.


