Bezout's Theorem

Jooho Jeremie Kim

March 30, 2010

Say,
$$P:=(P_1,\cdots,P_n)\colon \mathbb{C}^n \to \mathbb{C}^n$$
, assume $\#P^{-1}(0)<\infty$

Then (introductory lectures, October 2009) ⇒

$$\infty > \dim_{\mathbb{C}} \frac{\mathbb{C}[x]}{(P) \cdot \mathbb{C}[x]} = \sum_{a \in P^{-1}(0)} \dim_{\mathbb{C}} \frac{\mathbb{C}[x]_a}{(P) \cdot \mathbb{C}[x]_a}$$

Let
$$\mathcal{L}P_j(x) := HP_j(0,x)$$
, where $HP_j(x_0,x) := x_0^{\deg P_j} \cdot P_j(\frac{x}{x_0})$.

Assume also
$$\{ \mathcal{L}P_1(x) = \dots = \mathcal{L}P_n(x) = 0 \} = \{ 0 \}$$
 (*)

(so called "no solutions at ∞ ") for $\mathbb{C}^n \hookrightarrow \mathbb{P}^n \Rightarrow$

Bezout's Theorem

a.
$$P: \mathbb{C}^n \to \mathbb{C}^n$$
 is proper finite to one

$$b. \ \sum_{a \in P^{-1}(0)} \deg_a^{\mathbb{C}} P = \deg P = \prod_{1 \leq j \leq n} \deg P_j$$

Proof of $(*) \Rightarrow a$.

Say,
$$\xi_k \in \mathbb{C}^n$$
, assume $\xi_k \nearrow \infty$ and all $|P_j(\xi_k)| \le C < \infty$

$$a_k := rac{\xi_k}{\|\mathcal{E}_k\|} \in \mathcal{S}^1 \Rightarrow \exists ext{ subsequence } a_k
ightarrow a
eq 0$$

$$\rho_k := \frac{1}{\|\xi_k\|} \to 0, \ 0 < d_j = \deg P_j$$

Then it follows
$$\forall j, P_j(\xi_k) = [P_j(\frac{a_k}{\rho_k}) \cdot \rho_k^{d_j}] \cdot \frac{1}{\rho_k^{d_j}} = HP_j(\rho_k, a_k) \cdot \frac{1}{\rho_k^{d_j}}$$

Therefore, $|HP_j(\rho_k, a_k)| \leq C \cdot \rho_k^{d_j} \Rightarrow \mathcal{L}P_j(a) = 0 \Rightarrow ?! \sqrt{}$

Now prove b. in three steps.

Step 1 is
$$\deg_0^{\mathbb{C}} \mathcal{L}P = \deg_0^{\mathbb{C}} \mathit{HP}$$
, where

$$\mathcal{L}P := (\mathcal{L}P_1, \cdots, \mathcal{L}P_n) \colon \mathbb{C}^n \to \mathbb{C}^n$$

$$HP: \mathbb{C}^{n+1} \to \mathbb{C}^{n+1}$$

$$HP(x_0, x) := (x_0, HP_1(x_0, x), \cdots, HP_n(x_0, x))$$

y is a regular value for $\mathcal{L}P \Rightarrow (0,y)$ is regular value for HP \Rightarrow (obviously) $\#HP^{-1}(0,y) = \#\mathcal{L}P^{-1}(y)$, which suffices.

Indeed

$$\frac{\partial HP}{\partial (x_0, x)}|_{x_0=0} = \begin{pmatrix} \frac{1}{0}| & * & * & *\\ 0| & & \\ 0| & & \frac{\partial HP}{\partial x} \end{pmatrix}|_{x_0=0}$$
and
$$\frac{\partial HP}{\partial x}(0, x)|_{x_0=0} = \frac{\partial \mathcal{L}P}{\partial x}(x)$$

Step 1. completed. $\sqrt{}$

Step 2 is $\deg P = \deg_0^{\mathbb{C}} HP$

suffices to find a regular value $a\in\mathbb{C}^n$ for map P and a regular value $(b_0,b)\in\mathbb{C}^{n+1}$ for map HP

such that each $a_j = b_j/b_0^{d_j}$, where $d_j := degP_j$.

Step 2 follows since regular values are open dense sets and map $(y_0, y_1, \cdots, y_n) \to (y_0, y_0^{d_1} \cdot y_1, \cdots, y_0^{d_n} \cdot y_n)$ is a diffeomorphism of $\mathbb{C}^* \times \mathbb{C}^n$.

Step 2. completed. $\sqrt{}$

Step 3 is
$$\deg_0^{\mathbb{C}} \mathcal{L}P = \prod_j \deg P_j$$
. Let $\phi := \mathcal{L}P \Rightarrow \phi^{-1}(0) = \{0\}$

Proof is split into

Thm.
$$0 \neq \mathcal{J}_{\phi} = \deg_0^{\mathbb{C}} \phi \cdot \delta(x, 0) \mod (\phi) \cdot \mathbb{C}\{x\}$$

(with
$$\delta(x,y)$$
 from 2 below). Claim. $\mathcal{J}_{\phi} = \prod_{1 \leq j \leq n} d_j \cdot \delta(x,0)$.

Proof of Thm

1. Using Mumford's Lemma, \exists open $U \ni 0$, $V \ni 0$ s.th.

$$\phi := \phi|_U \colon U \to V$$
 proper. (and $U \cap \phi^{-1}(0) = \{0\}$)

Using Key Lemma from Mitsuru's talk

$$\Rightarrow$$
 $Z := \operatorname{Cr.Val}(\phi) := \phi(\{\mathcal{J}_{\phi} = 0\}) \subset V$ closed analytic.

2.
$$A(x,y) := \int_0^1 \frac{\partial \phi}{\partial x} (tx + (1-t)y) dt \Rightarrow A(x,y) \cdot (x-y) =$$

$$\phi(x) - \phi(y)$$
 and $\mathcal{J}_{\phi}(x) = \delta(x, x)$, where $\delta(x, y) := \det A(x, y)$

- 3. Let $h(x,z) := \sum_{\{y:\phi(y)=z\}} \delta(x,y) \Rightarrow h$ is \mathbb{C} -analytic on $V \setminus Z$ and bounded $\Rightarrow h$ analytic on V (Riemann Extension Thm)
- 4. $h(x,0) = \deg_0^{\mathbb{C}} \phi \cdot \delta(x,0)$ due to $\phi|_U^{-1}(0) = \{0\}$.

5.
$$\mathcal{J}_{\phi}(x) - h(x, z) = 0$$
 if $z = \phi(x) \notin Z$

$$\Rightarrow \mathcal{J}_{\phi}(x) - h(x,z) \in (z - \phi(x)) \cdot \mathbb{C}\{x,z\}$$

6. Set $z = 0 \Rightarrow \mathcal{J}_{\phi}(x) - (\deg_0^{\mathbb{C}} \phi) \cdot \delta(x, 0) \in (\phi) \cdot \mathbb{C}\{x\}$, as required.

Recall.

$$\deg \mathcal{L}P_j = \deg P_j = d_j, \ \phi_j := \mathcal{L}P_j \Rightarrow \frac{\partial \phi_j}{\partial x_i}(tx) = t^{d_j-1}\frac{\partial \phi_j}{\partial x_i}(x)$$

$$\underline{\mathsf{Claim}}\ \mathcal{J}_{\phi} = d_1 \cdots d_n \cdot \delta(x,0)$$

Cor. Since
$$\mathcal{J}_{\phi} \notin (\phi) \cdot \mathbb{C}\{x\}$$
 (Slides 9-11) $\Rightarrow \deg_0^{\mathbb{C}} \phi = d_1 \cdots d_n$

Proof. Explicit calculation

$$A(x,0) := \int_0^1 \left\{ \frac{\partial \phi_j}{\partial x_i}(tx) \right\} dt = \int_0^1 \begin{bmatrix} t^{d_1 - 1} & 0 \\ 0 & \cdot \cdot \cdot \\ 0 & t^{d_n - 1} \end{bmatrix} \left(\frac{\partial \phi}{\partial x}(x) \right) dt$$
$$= \begin{bmatrix} \frac{1}{d_1} & 0 \\ \vdots & \ddots & \vdots \\ 0 & \frac{1}{d_n} \end{bmatrix} \left(\frac{\partial \phi}{\partial x}(x) \right) \qquad \checkmark$$

Thm.
$$\phi: (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0), \phi^{-1}(0) = \{0\} \Rightarrow \mathcal{J}_{\phi}(x) \notin (\phi) \cdot \mathbb{C}\{x\}$$

Thm
$$\Leftarrow$$
 Claim. $h \in \mathbb{C}\{x\} \Rightarrow H_h(z) := \sum_{x \in \phi^{-1}(z)} \frac{h(x)}{\mathcal{J}_{\phi}(x)} \in \mathbb{C}\{z\}$

Indeed,
$$H_{\mathcal{J}_{\phi}} \equiv \deg_0^{\mathbb{C}} \phi \neq 0$$
, while $g = \sum_j \phi_j \cdot h_j \in (\phi) \cdot \mathbb{C}\{x\} \Rightarrow$

$$H_g(z) = \sum_j z_j \cdot H_{h_j}(z) \in (z) \cdot \mathbb{C}\{z\}$$
, as required.

Proof of Claim
$$X := \phi|_{U}(\{\mathcal{J}_{\phi|U} = 0\}).$$

(Note
$$X = \{\prod_{x \in \phi|_{\mathcal{U}}^{-1}(z)} \mathcal{J}_{\phi}(x) = 0\} \subset V$$
)

$$\phi|_{\mathcal{J}_\phi=0}:\{\mathcal{J}_\phi=0\}\to X \text{ proper fin. to one } \Rightarrow \dim_{\mathbb{C}} Z<\dim_{\mathbb{C}} X$$

where
$$Z = \phi|_U(Sing\{\mathcal{J}_\phi = 0\}) \cup SingX \cup Cr.Val(\phi|_{\mathcal{J}_\phi = 0})$$
 analytic.

Step 1. $\forall a \in \{\mathcal{J}_{\phi|_{\mathcal{U}}} = 0\} \setminus \phi|_{\mathcal{U}}^{-1}(Z)$, \exists local coord. changes s.th.

$$a=0, \phi(a)=0, \{\mathcal{J}_\phi=0\}=\{x_1=0\}, X=\{z_1=0\}$$

$$\Rightarrow \phi(0, x_2, \cdots, x_n) = (0, x_2, \cdots, x_n)$$
. Also $\mathcal{J}_{\phi} \approx x_1^k$

Say
$$\phi_1(x_1, x_2, \dots, x_n) := x_1^d \cdot g(x), g(x) \notin (x_1) \cdot \mathbb{C}\{x\} \quad (d \ge 1)$$

and
$$\theta(x) := \det[\frac{\partial(\phi_2,\cdots,\phi_n)}{\partial(x_2,\cdots,x_n)}]_{|x_1=0} = 1 \Rightarrow k = d-1, g(0) \neq 0$$
.

Say,
$$h(x)^d = g(x) \Rightarrow (\text{coord. change } x \mapsto (x_1 h(x), \phi_2, \dots, \phi_n))$$

Near a, we may assume $\phi(x)=(x_1^d,x_2,\cdots,x_n)$

Step 2.
$$h \in Hol(U) \Rightarrow H_h \in Hol(V - X)$$
.

But moreover, $\sum_{x_1:x_1^d=z_1} x_1^{k-d+1} = 0 \ \forall k+1 \notin d \cdot \mathbb{Z}_+$

with
$$h(x)=\sum_{k=0}^{\infty}h_k(x_2,\cdots,x_n)x_1^k$$
 near a $(\mathcal{J}_{\phi}(x)=x_1^{d-1}\cdot d)\Rightarrow$

Near
$$a$$
, $\sum_{x \in \phi^{-1}(z)} \frac{h(x)}{\mathcal{J}_{\phi}(x)} = \sum_{k=0}^{\infty} h_k(z_2, \cdots, z_n) \sum_{x_1^d = z_1} \frac{x_1^{k-d+1}}{d} =$

$$=\sum_{(k-d+1)|d} h_k(z_2,\cdots,z_n) \cdot z_1^{\frac{k-d+1}{d}}$$

$$\Rightarrow H_h(z)$$
 extends as holom. to $V \setminus Z$, dim _{\mathbb{C}} $Z \leq n-2$

(Hartog's Thm)
$$H_h \in Hol(V)$$
, done. $\sqrt{}$