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C analytic set A in Q C C" is locally the set V' (f)

of zeros of holomorphic functions f = (fi,..., fx)

Reg A:={a € A:(A,a) issmooth} , SingA:= A—Reg A.
Thm. A analytic = SingA analytic and dim (SingA) < dim A.

Cor. A analytic = A *analytic, i.e., A= |J A’ where
0<1<d

each A' smooth analytic in Q — |J A7 of dim A' =1
0<55<l

and |J A’ is a closed set for every 0 <[ < d.
0=j=i
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Main Thm. A is *analytic = Ad is analytic

Cor 1. Jloc finite A = 4, cippeq Ak (A frred = A # A1 U A)
Set A — SingA =: Uj X with X; smooth conn. analytic of dim A
= X; — X; C SingA = by thm, X; is irreducible o

Cor 2 (Chow’s Thm). Every analytic A C P" is algebraic.
Proof. Let 7 : C"*1 — {0} 3 (20,...,20) — [20: ... : 23] €P?

=Cone Z := 7! (A) U {0} is *analytic => Z analytic = V(f).
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[e.°]

f= 2 ¢craz¥2z=0 = f(Az) = DN Y craz*=0V|A =1

laf21 r=1|a|=r

— A=V ( - ZM:U craz®, .. ) —> p(Hilbert Basis Thm)

Key Lemma. 7: C"t7 35 (§,n) — ¢ € C" and 7 |4 is proper

—> 7 (A) is analytic and 7 |4 is finite to one.

Proof. Reduction to ¢ =1 case is simple: Factor 7 as

Cnta My cnta-1 M2, cn
(21, s 2n4q) = (Z1,- Znag-1) —  (21,...,20) =2
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U= m(Q) = V:i= m(m@Q).
g=1case: weV = ANz !(w) compact analytic in
Qna(w)cC= AntYw) ={ai,...,an} discrete. Say U,
disjoint nbhs of a; and V small enough s.th. AN=x~1(V) C U; Uj
Restrict to nbh U; of a;, say a; =0 and t = (t1,...,t,—1) € Cck-1

Lemma. m(AN7~1(V)NU;)is anal in V, AN 71 (w) = {0}
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Proof. Note 3 coord. s.th. d := ordg fx(0, zp+1) < 00

=—> by Weirstrauss Prep. and Division Thms ,

Je= Zn+1 + ZalZnJrl  fi=2<abig® n+1 , with a;, b; € C{z} .
C{z}[t] 2Res(fi, fr +t1fr + -+ tp—1fi1) = 20 0 =g 1 Ra

Say V 3 0 small enough s.th. all coeff. and R, holom in V' and
for z € V, all roots of fi(2, z,41) are in U. Put U' := UNa~Y(V)

Claim. 71(ANU N7~ 1(V)) are common roots of R, in V .
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If (2,2n41) € ANU’ = ¥t € Ck~13 a common for {f;(2, zn41)}
100t Znt1 = Cny1 = D t"Ra(21,...,2,) =0Vt € CF!

= Ru(z) =0V a. Conversely, if z € V and Ry(2) =0V «
= V¢ € C*!13 common root (; € C ,

05j<d,of fi(e) =Y tfilz¢)=0.

Say W := {t € C*1: S0 e fi(z1, ... 20, ¢j) = O}

= WiU---UW;=Ck! = Jj/'s.th.W; =C+!
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:>fl(Z7CJ’)ZOVl:1,,k i[l

The setting: A; analytic in 2, Ap analytic in  — A

Main claim. d :=dim Ay > dim A; , Ag — Ay C A; = Ap anal.

Say, 0 € A, pe Q — AgU Ay, | = C a line from 0 to p

= Aj; Nl analyticin QNI CC

= 3 bounded nbh U of 0 s.th. Ay,NINU = {0}

— analytic in QN1 — A1 N1l set Ag N1 is discrete off A1 N1
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— AgUA;NINU is compact.

Step 2. Let 7 : C* — C"~! be projection s.th. [ = 7—1(0).
Mumford’s lemma (Mustazee) compactness of 7T|;1;u A, (0)

= Inbhs U' C U, V C C* ! of 0 s.th. 7 |ayua,nv” i proper.
Key L= m(A1NU') =By anal in V , (49 NU' — 771By) = By
anal in V' — By, and 7 |4,npr and 7 | gyqp7—n—1p, are finite to one

and each fibre 7 |;l;UA1ﬂU (y) for y € By U B is countable.
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Keep projecting until image of Ay U A; is a nbh of 0 € C*

= p = d since fibers 7 ‘Z;uAmU (y), y € (C*,0), are countable

Ag —n1 (31) C AgU A D Ay
! m !
V - B C Vv D) 7T(j41) =B
opendensein V nbh, of 0in C4 nontrivial anal in V

Say, V is a ball = V — Bj is connected,

Very important: 7 |4, _.-1(p,) is proper and finite to one !!!
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Let J(z) be the Jacobian of 7 | 4)_r-1(p,), then

J(2) #0 <= T |4y—r—1(p,) is an isomorphism near z .
B:={z€ Ay —nYBy):J(z) =0}

— B = 7(B) analytic in V — By (Key Lemma)

¢ B < 71 | Ag—m—1(py) is unfamified over z .

Sard Thm=-reg values of 7 [4,_r-1(p,) are open dense in V' — By

— B is a proper analytic subset of V — B (Key Lemma).
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V and A smooth=- V—T—Bl =V and Ag — 7T’1(BE UBjp) = Ao

pi=T s, p1(Bupy then Ag—7 ' (BiUB) <> V-B -B
N N
cn N (:d

Here, p finite unramified covering. Next: construction of
holomorphic functions on 7~!(V') vanishing exactly on Ay C Q .

Say 0 := # of sheets in p and X is linear on C"~% := 7=1(0) .
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W+ Y omadti= I (x—n)VIi<Sand w €V \ By UB,
15150 15550

ar(w) := ay(A(b1), ..., A(bs)) with p~t(w) = {b1,...,bs}.

Note: a;(w) are bdd locally on V' and holomorphic on V — B; — B
(as sums of locally holomorphic globally defined functions)
Riemann Ext Thm =— q; holomorphically continue to V.
Let (u,w) := z with w := 7(2) and u € C"~% and

Fx(z) = Aw)’ + Y ag(w)A(u)’
1<
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= F\=0on Ag— 7 Y(BiUB)= F\=0on 4.
= AgC{zen 1 (V): F\=0V A} . Conclusion:
Lemma. Finitely many F suffices to identify Aqg C 7= (V) .
Proof. Say z = (u,w) € 7~ 1(V) — Ap and w = lim w,
p—oo
with w, € V — B — By = p~Y(w,) = (65", ..., 0"}

By properness and choosing a subsequence=- b](gj ) S py J

Since b)) € A4y = u#b0V j=1,...,6.
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Choose a collection {*} of (n —d—1)0 + 1 of X’s in (C”_d)dual

with any n — d of them being linearly independent —-

3N € {*} s.th. A(u) # A(bY)) (on slide 16) , but

AOW), A} ={eeC:¢?+ Y a(w)e =0}

18156

Since ¥ p {ABY ) h<js = €€ Cr el + 3 ay(w,)e"! =0}
1<1<5

= Ag={zen !(V): F\(z) =0V X € {x}}0
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Appendix I-exercise

Say collection of {x} is picked in as on slide 15. Then, for any
size § collection {b(j)}1§j§5 C €% and one more point b € C*~¢
be {bW} = Ab) € {ABD)}<j<5V A € {x}

Appendix II

Riemann Ext Thm. B C 2 C C" analytic, h holom on ? — B

and bdd at each b € B = h holomorphic on 2
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Proof. Say ¢ nonzero holomorphic near b =: 0 and ¢ |p= 0.
W.P.Thm=-may assume ¢ € C{Z}[z,] Z = (21,...,2n—1) and
©(0, 2,) = 2¢ has no multiple factors=> A # 0 , where

A € C{z} is discr of ¢ in z, . Say B' :={o =0} = h-¢? € C°

and h - ¢? is C 1 time diff = h - »? is holomorphic

d .
W.Div.Thm= f:=h-©*=Q ¢+ ch(,%)zgfj with
j=1

f—Q ¢ |p=0=c¢; =0 using A # 0. Can repeat=- h is holom .
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W.P. Thm. C{t,z} > h(t,2) , h(t,0) = t¢ = h(t,z) ~ P(t,\(2))
P(z,)\) :==t%+ 2?21 A\jt477 and &~ means up to a unit factor .
Special Div. Thm and General Div Thm: replace C*° by
holomorphic in Omar’s talk . Proofs of Spec. Div. Thm —
Weir. Prep. Thm = General Div. Thm are similar .

But the proof of Spec Div Thm (V d € N) is easier :

VOh :=h , VIh(t,s) = ht)=h(s) ot . Then,

t—s
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d—1

(%) h(t) — ;ijh(sl,...,sjﬂ) S(t=s1) e (t—sj41)

= Vh(s1,...,sq,t)- [[ (t—s;)is immediate (induction on d) .

15j=d
d—1 Cd-1
er(sl,...,sd) St = Zvﬂh(sl,...,st) . H (t— Sj) =
Jj=0 Jj=0 155<d

= Vh(s,t) = Qa(A(s),1) and r; = R;(A(s)) =

(%) h(t) — %:(tRj()\(s)) = Qa(A\(s),t) - P(t,\(s5)) =0
J:
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Lemma. For any ¢ : (K",0) 3 s — A(s) € (K", 0) s.th.
mgx(rankg—f(s)) =n =

a) FeKI[N], FopeK{s} = FecK{\};

b) Fop=0= F =0 (easy to show) .

Corollary. Obviously, lemma and (**)= Spec Div Thm ,

d—1

h(t) = Qa(\ - P(t,\) + gle(A) g

i.e.
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