Chow's theorem. Proof and Applications.

Mitsuru Wilson University of Toronto

March 26, 2010

 \mathbb{C} analytic set A in $\Omega \subset \mathbb{C}^n$ is locally the set $V(\bar{f})$

of zeros of holomorphic functions $\bar{f} = (f_1, \dots, f_k)$

 $\operatorname{Reg}\,A:=\{a\in A: (A,a) \text{ is smooth}\}\ , \ \operatorname{Sing}A:=A-\operatorname{Reg}\,A.$

Thm. A analytic \implies Sing A analytic and dim (Sing A) < dim A.

Cor. A analytic $\Longrightarrow A$ *analytic, i.e., $A = \bigcup_{0 \le l \le d} A^l$ where

each A^l smooth analytic in $\Omega - \bigcup_{0 \le j < l} A^j$ of dim $A^l = l$

and $\bigcup_{0 \le j \le l} A^j$ is a closed set for every $0 \le l \le d$.

Main Thm. A is *analytic $\Longrightarrow \overline{A^d}$ is analytic

Cor 1. \exists loc finite $A = \bigcup_{A_k \in \text{irred}} A_k$, $(A \text{ irred} \iff A \neq A_1 \cup A_2)$

Set $A - \operatorname{Sing} A =: \bigcup_j X_j$ with X_j smooth conn. analytic of dim A

$$\implies \bar{X}_j - X_j \subset \operatorname{Sing} A \implies \text{by thm, } \bar{X}_j \text{ is irreducible } \square$$

Cor 2 (Chow's Thm). Every analytic $A \subset \mathbb{P}^n$ is algebraic.

Proof. Let
$$\pi : \mathbb{C}^{n+1} - \{0\} \ni (z_0, \dots, z_n) \mapsto [z_0 : \dots : z_n] \in \mathbb{P}^n$$

$$\Rightarrow$$
Cone $Z := \pi^{-1}(A) \cup \{0\}$ is *analytic $\Longrightarrow Z$ analytic $= V(\bar{f})$.

$$f = \sum_{|\alpha| \ge 1} c_{f,\alpha} z^{\alpha} \mid_{Z} \equiv 0 \implies f(\lambda z) = \sum_{r=1}^{\infty} \lambda^r \sum_{|\alpha| = r} c_{f,\alpha} z^{\alpha} \equiv 0 \ \forall |\lambda| \le 1$$

$$\implies A = V\left(\dots, \sum_{|\alpha| = \sigma} c_{f,\alpha} z^{\alpha}, \dots\right) \implies \Box(\text{Hilbert Basis Thm})$$

Key Lemma. $\pi: \mathbb{C}^{n+q} \ni (\xi, \eta) \mapsto \xi \in \mathbb{C}^n$ and $\pi \mid_A$ is proper $\implies \pi(A)$ is analytic and $\pi \mid_A$ is finite to one.

Proof. Reduction to q=1 case is simple: Factor π as

$$\mathbb{C}^{n+q} \xrightarrow{\pi_1} \mathbb{C}^{n+q-1} \xrightarrow{\pi_2} \mathbb{C}^n
(z_1, \dots, z_{n+q}) \mapsto (z_1, \dots, z_{n+q-1}) \mapsto (z_1, \dots, z_n) = z$$

$$A \subset \Omega$$

$$\downarrow^{\pi_1|_A} \qquad \qquad \downarrow^{\pi|_A}$$

$$U := \pi_1(\Omega) \qquad \xrightarrow{\pi_2} \qquad V := \pi_2(\pi_1(\Omega)) .$$

$$q=1$$
 case: $w \in V \implies A \cap \pi^{-1}(w)$ compact analytic in

$$\Omega \cap \pi^{-1}(w) \subset \mathbb{C} \Rightarrow A \cap \pi^{-1}(w) = \{a_1, \dots, a_m\}$$
 discrete. Say U_j disjoint nbhs of a_j and V small enough s.th. $A \cap \pi^{-1}(V) \subset \bigcup_i U_i$

Restrict to nbh U_i of a_i , say $a_i = 0$ and $t = (t_1, \dots, t_{k-1}) \in \mathbb{C}^{k-1}$

Lemma.
$$\pi(A \cap \pi^{-1}(V) \cap U_j)$$
 is anal in $V, A \cap \pi^{-1}(w) = \{0\}$

Proof. Note \exists coord. s.th. $d := \operatorname{ord}_0 f_k(0, z_{n+1}) < \infty$

 \implies by Weirstrauss Prep. and Division Thms ,

$$f_k = z_{n+1}^d + \sum a_l z_{n+1}^{d-l}, \ f_j = \sum_{l < d} b_{l,j} z_{n+1}^{d-j}, \text{ with } a_l, b_{l,j} \in \mathbb{C}\{z\}$$
.

$$\mathbb{C}\lbrace z\rbrace [t] \ni \operatorname{Res}(f_k, f_k + t_1 f_1 + \dots + t_{k-1} f_{k-1}) = \sum_{|\alpha|=d} t^{\alpha} R_{\alpha} ,$$

Say $V \ni 0$ small enough s.th. all coeff. and R_{α} holom in V and

for
$$z \in V$$
, all roots of $f_k(z, z_{n+1})$ are in U . Put $U' := U \cap \pi^{-1}(V)$

Claim. $\pi(A \cap U \cap \pi^{-1}(V))$ are common roots of R_{α} in V.

If $(z, z_{n+1}) \in A \cap U' \Rightarrow \forall t \in \mathbb{C}^{k-1} \exists$ a common for $\{f_j(z, z_{n+1})\}$

root
$$z_{n+1} = \zeta_{n+1} \implies \sum t^{\alpha} R_{\alpha}(z_1, \dots, z_n) = 0 \,\forall \, t \in \mathbb{C}^{k-1}$$

$$\implies R_{\alpha}(z) = 0 \,\forall \, \alpha.$$
 Conversely, if $z \in V$ and $R_{\alpha}(z) = 0 \,\forall \, \alpha$

$$\implies \forall \ t \in \mathbb{C}^{k-1} \exists \text{ common root } \zeta_j \in \mathbb{C} ,$$

$$0 \le j \le d$$
, of $f_k(z, \zeta_j) = \sum_{l=1}^{k-1} t_l f_l(z, \zeta_j) = 0$.

Say
$$W_i := \{t \in \mathbb{C}^{k-1} : \sum_{l=1}^{k-1} t_l f_l(z_1, \dots, z_n, \zeta_i) = 0\}$$

$$\implies W_1 \cup \cdots \cup W_d = \mathbb{C}^{k-1} \implies \exists j' \text{ s.th. } W_{j'} = \mathbb{C}^{k-1}$$

$$\implies f_l(z,\zeta_{j'}) = 0 \ \forall \ l = 1,\ldots,k \implies \Box$$

The setting: A_1 analytic in Ω , A_0 analytic in $\Omega - A_1$

Main claim. $d:=\dim A_0>\dim A_1$, $\overline{A_0}-A_0\subset A_1\Rightarrow A_0$ anal.

Say, $0 \in A_1$, $p \in \Omega - A_0 \cup A_1$, $l \cong \mathbb{C}$ a line from 0 to p

$$\implies A_1 \cap l$$
 analytic in $\Omega \cap l \subset \mathbb{C}$

$$\implies$$
 \exists bounded nbh U of 0 s.th. $A_1 \cap l \cap U = \{0\}$

 \implies analytic in $\Omega \cap l - A_1 \cap l$ set $A_0 \cap l$ is discrete off $A_1 \cap l$

 $\implies A_0 \cup A_1 \cap l \cap U$ is compact.

Step 2. Let $\pi: \mathbb{C}^n \longrightarrow \mathbb{C}^{n-1}$ be projection s.th. $l = \pi^{-1}(0)$.

Mumford's lemma (Mustazee) compactness of $\pi|_{A_0 \cup A_1 \cap U}^{-1}(0)$

 \implies \exists nbhs $U' \subset U, V \subset \mathbb{C}^{n-1}$ of 0 s.th. $\pi \mid_{A_0 \cup A_1 \cap U'}$ is proper.

Key L
$$\Rightarrow \pi(A_1 \cap U') = B_1$$
 anal in V , $\pi(A_0 \cap U' - \pi^{-1}B_1) = B_0$

anal in $V-B_1,$ and $\pi\mid_{A_1\cap U'}$ and $\pi\mid_{A_0\cap U'-\pi^{-1}B_1}$ are finite to one

and each fibre $\pi \mid_{A_0 \cup A_1 \cap U}^{-1} (y)$ for $y \in B_0 \cup B_1$ is countable.

Keep projecting until image of $A_0 \cup A_1$ is a nbh of $\mathbf{0} \in \mathbb{C}^{\mu}$

$$\Rightarrow \mu = d$$
 since fibers $\pi \mid_{A_0 \cup A_1 \cap U}^{-1} (y), y \in (\mathbb{C}^{\mu}, 0)$, are countable

$$\begin{array}{cccccc} A_0 - \pi^{-1} \left(B_1 \right) & \subset & A_0 \cup A_1 & \supset & A_1 \\ \downarrow & & \downarrow \pi & & \downarrow \\ V - B_1 & \subset & V & \supset & \pi \left(A_1 \right) = B_1 \\ \text{open dense in V} & \text{nbh, of 0 in } \mathbb{C}^d & \text{nontrivial anal in V} \end{array}$$

Say, V is a ball $\implies V - B_1$ is connected,

Very important: $\pi \mid_{A_0-\pi^{-1}(B_1)}$ is proper and finite to one !!!

Let J(z) be the Jacobian of $\pi \mid_{A_0-\pi^{-1}(B_1)}$, then

$$J(z) \neq 0 \iff \pi \mid_{A_0 - \pi^{-1}(B_1)}$$
 is an isomorphism near z .

$$B := \{ z \in A_0 - \pi^{-1}(B_1) : J(z) = 0 \}$$

$$\implies \tilde{B} = \pi(B)$$
 analytic in $V - B_1$ (Key Lemma)

$$z \notin \tilde{B} \iff \pi \mid_{A_0 - \pi^{-1}(B_1)}$$
 is unfamified over z.

Sard Thm \Rightarrow reg values of $\pi \mid_{A_0-\pi^{-1}(B_1)}$ are open dense in $V-B_1$

 $\implies \tilde{B}$ is a proper analytic subset of $V - B_1$ (Key Lemma).

 $V \text{ and } A \text{ smooth} \Rightarrow \overline{V - \tilde{B} - B_1} = V \text{ and } \overline{A_0 - \pi^{-1}(\tilde{B} \cup B_1)} = A_0$

$$\rho := \pi \mid_{\mathbf{A}_0 - \pi^{-1}(\tilde{\mathbf{B}} \cup \mathbf{B}_1)} \text{ then } A_0 - \pi^{-1}(B_1 \cup B) \xrightarrow{\rho} V - B_1 - B$$

$$\cap \qquad \qquad \cap$$

$$\mathbb{C}^n \qquad \stackrel{\pi}{\longrightarrow} \qquad \mathbb{C}^d$$

Here, ρ finite unramified covering. Next: construction of

holomorphic functions on $\pi^{-1}(V)$ vanishing exactly on $\overline{A_0} \subset \Omega$.

Say $\delta := \#$ of sheets in ρ and λ is linear on $\mathbb{C}^{n-d} := \pi^{-1}(0)$.

 $x^{\delta} + \sum_{1 \leq l \leq \delta} \sigma_l(\eta) x^{\delta - l} := \prod_{1 \leq j \leq \delta} (x - \eta_j) \ \forall l \leq \delta \text{ and } w \in V \setminus B_1 \cup \tilde{B},$

$$a_l(w) := \sigma_l(\lambda(b_1), \dots, \lambda(b_\delta))$$
 with $\rho^{-1}(w) = \{b_1, \dots, b_\delta\}.$

Note: $a_l(w)$ are bdd locally on V and holomorphic on $V - B_1 - \tilde{B}$

(as sums of locally holomorphic globally defined functions)

Riemann Ext Thm \implies a_l holomorphically continue to V.

Let
$$(u, w) := z$$
 with $w := \pi(z)$ and $u \in \mathbb{C}^{n-d}$ and

$$F_{\lambda}(z) := \lambda(u)^{\delta} + \sum_{1 \le l \le \delta} a_l(w) \lambda(u)^{\delta - l}$$

$$\implies F_{\lambda} \equiv 0 \text{ on } A_0 - \pi^{-1}(B_1 \cup B) \Rightarrow F_{\lambda} \equiv 0 \text{ on } \overline{A_0} \ .$$

$$\implies \overline{A_0} \subset \{z \in \pi^{-1}(V) : F_\lambda \equiv 0 \,\forall \,\lambda\}$$
. Conclusion:

Lemma. Finitely many F_{λ} suffices to identify $\overline{A_0} \subset \pi^{-1}(V)$.

Proof. Say
$$z = (u, w) \in \pi^{-1}(V) - \overline{A_0}$$
 and $w = \lim_{p \to \infty} w_p$

with
$$w_p \in V - \tilde{B} - B_1 \Rightarrow \rho^{-1}(w_p) = \{b_p^{(1)}, \dots, b_p^{(\delta)}\}\$$

By properness and choosing a subsequence $\Rightarrow b_p^{(j)} \to b^{(j)} \forall j$

Since
$$b^{(j)} \in \overline{A_0} \implies u \neq b^{(j)} \,\forall j = 1, \dots, \delta$$
.

Choose a collection $\{*\}$ of $(n-d-1)\delta+1$ of λ 's in $(\mathbb{C}^{n-d})^{dual}$

with any n-d of them being linearly independent \Longrightarrow

$$\exists \lambda \in \{*\} \text{ s.th. } \lambda(u) \neq \lambda(b^{(j)}) \text{ (on slide 16) , but }$$

$$\{\lambda(b^{(1)}), \dots, \lambda(b^{(\delta)})\} = \{\xi \in \mathbb{C} : \xi^d + \sum_{1 \le l \le \delta} a_l(w)\xi^{\delta - l} = 0\}$$

Since
$$\forall p \ \{\lambda(b_p^{(j)})\}_{1 \le j \le \delta} = \{\xi \in \mathbb{C} : \xi^d + \sum_{1 \le l \le \delta} a_l(w_p)\xi^{\delta - l} = 0\}$$

$$\implies \overline{A_0} = \{z \in \pi^{-1}(V) : F_{\lambda}(z) = 0 \,\forall \, \lambda \in \{*\}\}_{\square}$$

Appendix I-exercise

Say collection of $\{*\}$ is picked in as on slide 15. Then, for any

size δ collection $\{b^{(j)}\}_{1\leq j\leq \delta}\subset \mathbb{C}^{n-d}$ and one more point $b\in \mathbb{C}^{n-d}$

$$b \in \{b^{(j)}\} \iff \lambda(b) \in \{\lambda(b^{(j)})\}_{1 \leqq j \leqq \delta} \, \forall \,\, \lambda \in \{*\}$$

Appendix II

Riemann Ext Thm. $B \subset \Omega \subset \mathbb{C}^n$ analytic, h holom on $\Omega - B$

and bdd at each $b \in B \implies h$ holomorphic on Ω

Proof. Say φ nonzero holomorphic near b =: 0 and $\varphi \mid_{B} \equiv 0$.

W.P.Thm
$$\Rightarrow$$
may assume $\varphi \in \mathbb{C}\{\tilde{z}\}[z_n]$ $\tilde{z} = (z_1, \dots, z_{n-1})$ and

$$\varphi(0,z_n)=z_n^d$$
 has no multiple factors
 $\Rightarrow \Delta\not\equiv 0$, where

$$\Delta \in \mathbb{C}\{\tilde{z}\}\$$
is discr of φ in z_n . Say $B' := \{\varphi = 0\} \Rightarrow h \cdot \varphi^2 \in C^0$

and $h \cdot \varphi^2$ is $\mathbb{C} \ 1$ time diff $\Rightarrow h \cdot \varphi^2$ is holomorphic

W.Div.Thm
$$\Rightarrow f := h \cdot \varphi^2 = Q \cdot \varphi + \sum_{j=1}^d c_j(\tilde{z}) z_n^{d-j}$$
 with

$$f - Q \cdot \varphi \mid_{B'} = 0 \Rightarrow c_j \equiv 0 \text{ using } \Delta \not\equiv 0. \text{ Can repeat} \Rightarrow h \text{ is holom }.$$

W.P. Thm. $\mathbb{C}\{t,z\} \ni h(t,z)$, $h(t,0) \approx t^d \Rightarrow h(t,z) \approx P(t,\lambda(z))$

 $P(z,\lambda) := t^d + \sum_{i=1}^d \lambda_j t^{d-j}$ and \approx means up to a unit factor .

Special Div. Thm and General Div Thm: replace C^{∞} by

holomorphic in Omar's talk . Proofs of Spec. Div. Thm \implies

Weir. Prep. Thm \implies General Div. Thm are similar.

But the proof of Spec Div Thm $(\forall d \in \mathbb{N})$ is easier :

$$\nabla^0 h := h$$
, $\nabla^1 h(t,s) := \frac{h(t) - h(s)}{t - s}$ etc. Then,

(*)
$$h(t) - \sum_{j=0}^{d-1} \nabla^{j} h(s_1, \dots, s_{j+1}) \cdot (t - s_1) \cdot \dots \cdot (t - s_{j+1})$$

$$\equiv \nabla^d h(s_1, \dots, s_d, t) \cdot \prod_{1 \leq j \leq d} (t - s_j)$$
 is immediate (induction on d).

$$\sum_{j=0}^{d-1} r_j(s_1, \dots, s_d) \cdot t^j := \sum_{j=0}^{d-1} \nabla^j h(s_1, \dots, s_{j+1}) \cdot \prod_{1 \le j \le d} (t - s_j) \Rightarrow$$

all $r_i \in \mathbb{K}\{s\}$, $\nabla^d h \in \mathbb{K}\{s,t\}$ and are symmetric \Rightarrow (simple)

$$\exists R_j(\lambda) \in \mathbb{K}[[\lambda]] \text{ and } Q_d \in \mathbb{K}[[\lambda, t]] \text{ s.th. } P(t, \lambda(s)) := \prod_{1 \leq j \leq d} (t - s_j)$$

$$\Rightarrow \nabla^d h(s,t) \equiv Q_d(\lambda(s),t) \text{ and } r_j = R_j(\lambda(s)) \Rightarrow$$

(**)
$$h(t) - \sum_{j=0}^{d-1} R_j(\lambda(s)) \cdot t^j - Q_d(\lambda(s), t) \cdot P(t, \lambda(s)) \equiv 0$$

Lemma. For any $\varphi : (\mathbb{K}^n, 0) \ni s \mapsto \lambda(s) \in (\mathbb{K}^n, 0)$ s.th.

$$\max_{s}(\operatorname{rank}\frac{\partial \varphi}{\partial s}(s)) = n \implies$$

a)
$$F \in \mathbb{K}[[\lambda]]$$
 , $F \circ \varphi \in \mathbb{K}\{s\} \Rightarrow F \in \mathbb{K}\{\lambda\}$;

b)
$$F \circ \varphi \equiv 0 \Rightarrow F \equiv 0$$
 (easy to show).

Corollary. Obviously, lemma and (**) \Rightarrow Spec Div Thm , i.e.

$$h(t) = Q_d(\lambda \cdot P(t, \lambda) + \sum_{j=1}^{d-1} R_j(\lambda) \cdot t^j$$