Differential forms and the de Rham cohomology - Part I

Paul Harrison

University of Toronto

October 30, 2009

I. Review—Triangulation of Manifolds

M= smooth, compact, oriented n-manifold. Can $triangulate\ M$, i.e. \exists simplicial n-complex K, homeomorphism $\pi:K\to M$ s.t. $\forall \sigma\in K\ \exists$ coordinate neighbourhood (U,f) near $\overline{\sigma}$ s.t. $f^{-1}\circ\pi$ is affine in σ . Write σ instead of $\pi(\sigma)$. $\sigma^k\in K$ orientable by ordering vertices: $\overline{\sigma^k}=q_0\cdots q_k$.

Given $\{q_{\lambda_0},\ldots,q_{\lambda_r}\}\subseteq \{q_0,\ldots,q_k\}$, $\tau=q_{\lambda_0}\cdots q_{\lambda_r}$ called *r-face* of σ . Inductively, orientation of $\tau_i=q_0\cdots q_{i-1}q_{i+1}\cdots q_k$ agrees with orientation of σ iff i is even. Write $F(\sigma)=$ set of faces of σ , boundary $\partial\sigma=\overline{\sigma}\setminus\sigma$ with appropriate orientation.

k-chain $A = \sum a_i \sigma_i^k \in \Sigma_k$ is a formal sum of *k*-simplices. $\partial A = \sum a_i \partial \sigma_i^k$. For every simplex $\sigma \in \Sigma_k$, there is a "cosimplex" $\sigma \in \Sigma^k$ defined by $\sigma \cdot \sigma = 1$, $\sigma \cdot \tau = 0$ for $\tau \neq \sigma$. Define coboundary: $(\partial^* A) \cdot B = A \cdot (\partial B)$.

Review—Differential forms

 $\Lambda^k(T_pM)^*=$ set of k-linear alternating functions on $(T_pM)^k$. Differential k-form $\omega\in\Omega^k(M):p\in M\mapsto\omega(p)\in\Lambda^k(T_pM)^*$. Let $f:M\to N$ be a smooth map, Df= tangent map of f. For $\omega\in\Omega^k(N)$ define $f^*\omega\in\Omega^k(M)$:

$$(f^*\omega)(p)(v_1,\ldots,v_k)=\omega(f(p))(Df(p)(v_1),\ldots,Df(p)(v_k))$$

Cover compact *n*-manifold M with coordinate charts $U_i \subseteq \mathbb{R}^n \xrightarrow{f_i} M$, i = 1..k. Then \exists partition of unity $\{\phi_i : M \to \mathbb{R}\}_{i=1..k}$ s.t.:

- 1. All ϕ_i are smooth
- 2. Supp $(\phi_i) \subset U_i \forall i$, where Supp $(\phi_i) = \text{clos}\{p \in M : \phi_i(p) \neq 0\}$
- 3. $\sum_{i=1}^{k} \phi_i = 1$

For *n*-form $\omega = \alpha dx_1 \wedge \ldots \wedge dx_n$ in coords $x = (x_1, \ldots, x_n)$, define $\int_V \omega = \int_U \alpha dx_1 \ldots dx_n$. In general, define $\int_M \omega = \sum_{i=1}^k \int_{U_i} \phi_i \omega$

II. Stokes' Theorem

Let M be a compact oriented n-manifold with boundary, ω an (n-1)-form on M. Then $\int_{\partial M} \omega = \int_M d\omega$.

Proof. Let $K = \operatorname{Supp}(\omega)$. Only need to prove for $K \subset V = f(U)$, for coordinate chart (U, f), then use partition of unity. Write

$$\omega = \sum_{j=1}^{n} a_j dx_1 \wedge \ldots \wedge dx_{j-1} \wedge dx_{j+1} \wedge \ldots \wedge dx_n,$$

$$d\omega = \left(\sum_{j=1}^{n} (-1)^{j-1} \frac{\partial a_j}{\partial x_j}\right) dx_1 \wedge \ldots \wedge dx_n.$$

Two cases to consider: $f(U) \cap \partial M = \emptyset$ and otherwise.

Stokes' Theorem— $f(U) \cap \partial M = \emptyset$

(1) $f(U) \cap \partial M = \emptyset$. Then $\int_{\partial M} \omega = 0$, so we must show

$$\int_{M} d\omega = \int_{U} \left(\sum (-1)^{j-1} \frac{\partial a_{j}}{\partial x_{j}} \right) dx_{1} \dots dx_{n} = 0.$$

WLOG, $f^{-1}(K) \subset \text{int}(Q)$, where $Q = \{x \in H^n : x_j^1 \le x_j \le x_j^0\}$ $(H^n = \{x \in \mathbb{R}^n : x_0 \le 0\})$, for x_j^1 , x_j^0 such that $f^{-1}(K) \subset \text{int}(Q)$. Then,

$$\int_{U} \left(\sum (-1)^{j-1} \frac{\partial a_j}{\partial x_j} \right) dx_1 \dots dx_n = \sum (-1)^{j-1} \int_{Q} \frac{\partial a_j}{\partial x_j} dx_1 \dots dx_n$$

$$= \sum (-1)^{j-1} \int_{Q} [a_j(x_1, \dots, x_j^0, \dots, x_n)$$

$$- a_j(x_1, \dots, x_j^1, \dots, x_n)] dx_1 \dots dx_{j-1} dx_{j+1} \dots dx_n = 0$$

Stokes' Theorem— $f(U) \cap \partial M \neq \emptyset$

(2) $f(U) \cap \partial M \neq \emptyset$. Then

$$\omega|_{\partial M}=a_1(0,x_2,\ldots,x_n)dx_2\wedge\ldots\wedge dx_n$$

Set Q as above, with $x_1^0 = 0$. Then,

$$\int_{M} d\omega = \sum (-1)^{j-1} \int_{Q} \frac{\partial a_{j}}{\partial x_{j}} dx_{1} \cdots dx_{n}$$

$$= \int_{Q} \left[a_{1}(0, \dots, x_{n}) - a_{1}(x_{1}^{1}, \dots, x_{n}) \right] dx_{2} \dots dx_{n}$$

$$= \int_{Q} a_{1}(0, x_{2}, \dots, x_{n}) dx_{2} \cdots dx_{n} = \int_{\partial M} \omega$$

QED

III. Poincaré's Lemma

M is contractible to $p_0 \in M$ if \exists smooth map $C : M \times \mathbb{R} \to M$ s.t. for all $p \in M$, C(p,1) = p and $C(p,0) = p_0$

Poincaré's Lemma. If M is contractible, $\omega \in \Omega^k(M)$ is closed $(d\omega = 0)$ iff it is exact $(\omega = d\eta \text{ for some } \eta)$.

Proof. Let $\pi: M \times \mathbb{R} \to M$ be the projection map, $\overline{\omega} = C^*\omega$.

Note that $\overline{\omega}$ can be written uniquely as $\overline{\omega} = \omega_1 + dt \wedge \eta$, such that $\omega_1(v_1, \dots, v_k) = 0$ if some $v_i \in \ker(D\pi)$, and similarly for η .

Poincaré's Lemma

Let
$$i_t: M \to M \times \mathbb{R}$$
, $i_t(p) = (p, t)$. Define $I: \Omega^k(M \times \mathbb{R}) \to \Omega^{k-1}(M)$ as follows. For $p \in M$, $v_1, \ldots, v_{k-1} \in T_pM$,

$$(I\overline{\omega})(v_1,\ldots,v_{k-1})=\int_0^1\left[\eta(p,t)\left(Di_t(v_1),\ldots,Di_t(v_{k-1})\right)\right]dt$$

Claim:
$$d(I\overline{\omega}) = \omega$$

Sublemma.
$$i_1^*\overline{\omega} - i_0^*\overline{\omega} = d(I\overline{\omega}) + I(d\overline{\omega}).$$

Note that
$$I(\omega_1 + \omega_2) = I(\omega_1) + I(\omega_2)$$
, so enough to prove for

$$\overline{\omega} = f dx_{i_1} \wedge \ldots \wedge dx_{i_k} \text{ or } \overline{\omega} = f dt \wedge dx_{i_1} \wedge \ldots \wedge dx_{i_k}.$$

Poincaré's Lemma—sublemma

Case 1: $\overline{\omega} = f dx_{i_1} \wedge \ldots \wedge dx_{i_k}$, we have $d\overline{\omega} = \frac{\partial f}{\partial t} dt \wedge dx_{i_1} \wedge \ldots \wedge dx_{i_k} + \text{terms not containing } dt$.

$$I(d\overline{\omega})(p) = \left(\int_0^1 \frac{\partial f}{\partial t} dt\right) dx_{i_1} \wedge \ldots \wedge dx_{i_k}$$

= $(f(p, 1) - f(p, 0)) dx_{i_1} \wedge \ldots \wedge dx_{i_k}$
= $i_1^* \overline{\omega}(p) - i_0^* \overline{\omega}(p)$

Case 2: $\overline{\omega} = fdt \wedge dx_{i_1} \wedge \ldots \wedge dx_{i_k}$. Since i_t takes M to a subspace of constant t, we have $i_1^*\overline{\omega} = i_0^*\overline{\omega} = 0$, so we need $d(I\overline{\omega}) = -I(d\overline{\omega})$.

Poincaré's Lemma—sublemma

$$d\overline{\omega} = \sum_{\alpha=1}^{n} \frac{\partial f}{\partial x_{\alpha}} dx_{\alpha} \wedge dt \wedge dx_{i_{1}} \wedge \ldots \wedge dx_{i_{k-1}},$$

$$(Id\overline{\omega})(p) = -\sum_{\alpha} \left(\int_{0}^{1} \frac{\partial f}{\partial x_{\alpha}} dt \right) dx_{\alpha} \wedge dx_{i_{1}} \wedge \ldots \wedge dx_{i_{k-1}}.$$

On the other hand,

$$d(I\overline{\omega})(p) = d\left\{ \left(\int_0^1 f dt \right) dx_{i_1} \wedge \ldots \wedge dx_{i_{k-1}} \right\}$$
$$= \sum_{\alpha} \left(\int_0^1 \frac{\partial f}{\partial x_{\alpha}} dt \right) dx_{\alpha} \wedge dx_{i_1} \wedge \ldots \wedge dx_{i_{k-1}}$$

Poincaré's Lemma

$$\omega = (C \circ i_1)^* \omega = i_1^* (C^* \omega) = i_1^* \overline{\omega},$$

$$0 = (C \circ i_0)^* \omega = i_0^* (C^* \omega) = i_0^* \overline{\omega}$$
Since $d\omega = 0$, we get $d\overline{\omega} = C^* d\omega = 0$. Setting $\alpha = I\overline{\omega},$

$$\omega = i_1^* \omega = d(I\overline{\omega}) = d\alpha.$$

QED

IV. The de Rham Chain Complex

Define $(Int^k(\omega))(A) = \int_A \omega$.

$$\cdots \longrightarrow \Omega^{k-1}(M) \xrightarrow{d_{k-1}} \Omega^k(M) \xrightarrow{d_k} \Omega^{k+1}(M) \longrightarrow \cdots$$

$$\downarrow Int^{k-1} \qquad \downarrow Int^k \qquad \downarrow Int^{k+1}$$

$$\cdots \longrightarrow \Sigma^{k-1} \xrightarrow{\partial_{k-1}^*} \Sigma^k \xrightarrow{\partial_k^*} \Sigma^{k+1} \longrightarrow \cdots$$

Diagram commutes by Stokes' Thm.

Star $St(\sigma) = \bigcup_{\sigma \in F(\tau)} \tau$ open in M, $\{St(p_i)\}$ cover M. Define subordinate partition of unity $\{\phi_i\}$, and define

$$\Phi^k(q_{\lambda_0}\cdots q_{\lambda_k})=k!\sum_{i=0}^k (-1)^i\phi_{\lambda_i}\,d\phi_{\lambda_0}\wedge\cdots \hat{i}\cdots\wedge d\phi_{\lambda_k}$$

V. Elementary forms

Theorem.

$$\mathsf{Supp}\,(\Phi^k\sigma)\subset\mathsf{St}(\sigma)\tag{1a}$$

$$\Phi^k \partial^* A = d\Phi^{k-1} A \tag{1b}$$

$$\Phi^0(\sum q_i) = \mathbf{1} \tag{1c}$$

Furthermore, Φ^k is a right inverse of Int^k .

Proof. (1a) follows immediately since Supp $\phi_i \subset St(q_i)$.

For (1c),
$$\Phi^0(q_i) = \phi_i$$
, hence $\Phi^0(\sum_i q_i) = \mathbf{1}$.

Now (1b). Let $\sigma = q_{\lambda_0} \cdots q_{\lambda_k}$, then

$$d\Phi^k(q_{\lambda_0}\cdots q_{\lambda_k})=(k+1)!d\phi_{\lambda_0}\wedge\ldots\wedge d\phi_{\lambda_k}.$$

Sidenote: two important identities

Recall $(\partial^*\sigma) \cdot \tau = \sigma \cdot (\partial \tau) = 1$ if $\sigma \in \partial \tau$ and 0 otherwise. Hence $\partial q_{\lambda_0} \cdots q_{\lambda_k} = \sum_s^* q_s q_{\lambda_0} \cdots q_{\lambda_k}$, where \sum^* is over s s.t. $q_s q_{\lambda_0} \cdots q_{\lambda_k}$ is simplex. In particular, $\frac{1}{(k+1)!} \Phi \partial^* (q_{\lambda_0} \cdots q_{\lambda_k}) = \frac{1}{(k+1)!} \sum_s^* \Phi (q_s q_{\lambda_0} \cdots q_{\lambda_k})$.

Also note that $d(\sum \phi_i) = 0$. Since $\sum \phi_i = \sum_{i=0}^k \phi_{\lambda_i} + \sum_{s \neq \lambda_i} \phi_s$, we have

$$\sum_{i=0}^k d\phi_{\lambda_i} + \sum_{s \neq \text{any } \lambda_i} d\phi_s = 0$$

We use both these identities in the following.

Elementary forms—Proof of (1b)

$$\begin{split} &\frac{1}{(k+1)!} \sum_{s}^{*} \Phi(q_{s}q_{\lambda_{0}} \cdots q_{\lambda_{k}}) \\ &= \sum_{s}^{*} \left\{ \phi_{s} d\phi_{\lambda_{0}} \wedge \ldots \wedge d\phi_{\lambda_{k}} - \sum_{i=0}^{k} (-1)^{i} \phi_{\lambda_{i}} d\phi_{s} \wedge d\phi_{\lambda_{0}} \wedge \cdots \hat{i} \cdots \wedge d\phi_{\lambda_{k}} \right\} \\ &= \sum_{s \neq \mathsf{any}} \phi_{s} d\phi_{\lambda_{0}} \wedge \ldots \wedge d\phi_{\lambda_{k}} + \\ &\sum_{i=0}^{k} (-1)^{i} \phi_{\lambda_{i}} \sum_{j=0}^{k} d\phi_{\lambda_{j}} \wedge d\phi_{\lambda_{0}} \wedge \ldots \hat{i} \ldots \wedge d\phi_{\lambda_{k}} \end{split}$$

$$=d\phi_{\lambda_0}\wedge\ldots\wedge d\phi_{\lambda_k}=rac{1}{(k+1)!}d\Phi(q_{\lambda_0}\cdots q_{\lambda_k})$$

 $= \sum_{s \neq \mathsf{any} \; \lambda_i} \phi_k d\phi_{\lambda_0} \wedge \ldots \wedge d\phi_{\lambda_k} + \sum_{i=0}^k \phi_{\lambda_i} d\phi_{\lambda_0} \wedge \ldots \wedge d\phi_{\lambda_k}$

Elementary forms— $Int \circ \Phi^k = Id$

Now prove Φ^k is right-sided inverse of Int^k by induction. $k=0 \Rightarrow$ consider vertex q_j and covertex q_i , so $q_i \cdot q_j = \delta_{ij}$. Note by definition $\Phi^0(q_i) = \phi_i$ and $\phi_i(q_j) = \delta_{ij}$. Also note for function f, $Int^0(f) \cdot q_j = f(q_j)$. Hence $Int^0(\Phi^0(q_i)) \cdot q_j = \delta_{ij}$, i.e. $Int^0 \circ \Phi^0 = Id$.

 $k > 0 \Rightarrow$ will follow from

$$(Int^k \Phi^k \sigma) \cdot \tau = \int_{\tau} \Phi^k \sigma = \begin{cases} 0 & \text{if } \tau \neq \sigma \\ 1 & \text{if } \tau = \sigma \end{cases}$$

Suppose $\tau \neq \sigma$, then $\exists q_i \in F(\sigma)$ with $q_i \notin F(\tau)$, so $\phi_i \equiv 0$ in τ , proving for $\tau \neq \sigma$.

Elementary forms— $Int \circ \Phi^k = Id$

If $\sigma = \tau$, write $\partial \sigma = \psi + \dots$ Then,

$$\int_{\sigma} \Phi^k \sigma \stackrel{!}{=} \int_{\sigma} \Phi^k \partial^* \psi = \int_{\sigma} d\Phi^{k-1} \psi = \int_{\partial \sigma} \Phi^{k-1} \psi \stackrel{!}{=} \int_{\psi} \Phi^{k-1} \psi = 1,$$

where ! uses the case $\sigma \neq \tau$ and the last equality uses inductive hypothesis.

QED

For $\sigma \in K$, $\Phi \sigma$ called an *elementary form*.

VI. Stay tuned!

Define $\mathbf{H}_{\Sigma}^{k}=\ker(\partial_{k}^{*})/\operatorname{im}(\partial_{k-1}^{*})$, $\mathbf{H}_{\Omega}^{k}=\ker(d_{k})/\operatorname{im}(d_{k-1})$, the differential and simplicial cohomology groups respectively. Define $\mathbf{H}_{\Sigma}^{*}=\bigoplus \mathbf{H}_{\Sigma}^{k}$, $\mathbf{H}_{\Omega}^{*}=\bigoplus \mathbf{H}_{\Omega}^{k}$. For $\mathbf{h}\in \mathbf{H}^{k}$, $\mathbf{h}'\in \mathbf{H}^{r}$, can define cup product $\mathbf{h}_{\Sigma}\mathbf{h}'\in \mathbf{H}^{k+r}$ under which \mathbf{H}_{Σ}^{*} and \mathbf{H}_{Ω}^{*} become rings.

We will show the subcomplex (ker Int^{ullet}) is acyclic (i.e. ker $d_k = \operatorname{im} d_{k-1}$ when restricted to ker Int^{ullet}) and use this to prove de Rham's theorem: Int^{ullet} is a ring isomorphism between \mathbf{H}^*_{Ω} and \mathbf{H}^*_{Σ} .