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|. Review—Triangulation of Manifolds

M = smooth, compact, oriented n-manifold. Can triangulate M,
i.e. d simplicial n-complex K, homeomorphism 7 : K — M s.t.

Vo € K 3 coordinate neighbourhood (U, f) near & s.t. flomis
affine in 0. Write o instead of m(c). 0% € K orientable by ordering
vertices: ok = qgo- - - gk-

Given {qxys---, 90} €{qo0,---,qk}, T=qx, - - - q», called r-face
of o. Inductively, orientation of 7j = qo--- gi—1qQi+1 - - - gk agrees

with orientation of o iff i is even. Write F(o) = set of faces of o,
boundary do = @\o with appropriate orientation.

k-chain A=) a,-af € X is a formal sum of k-simplices.
0A=>" a,-aaf‘. For every simplex o € X, there is a " cosimplex”
o € YK defined by 0 -0 =1, 0 -7 =0 for 7 # o. Define
coboundary: (0*A)-B = A-(9B).



Review—Differential forms

N<(T,M)* = set of k-linear alternating functions on (T,M)*.
Differential k-form w € QK(M) : p € M — w(p) € AK(T,M)*. Let
f: M — N be a smooth map, Df = tangent map of f. For

w € QK(N) define f*w € QK(M):

(Frw)(p)(vi, - .., vi) = w (f(p)) (DF(p)(va), .- -, DF(p)(vk))

Cover compact n-manifold M with coordinate charts

U CR" A, M, i = 1..k. Then 3 partition of unity
{Qbi M — R}i:l..k s.t.:

1. All ¢; are smooth
2. Supp (¢i) C U;Vi, where Supp (¢;) = clos{p € M : ¢;(p) # 0}
3.2 di=1
For n-form w = adxy A ... A dx, in coords x = (xi,...,X,), define
Jyw = [y adxi ... dx,. In general, define [, w = fozl fU,- o



[1. Stokes’ Theorem

Let M be a compact oriented n-manifold with boundary, w an
(n—1)-form on M. Then [y, w = [, dw.

Proof. Let K = Supp (w). Only need to prove for K C V = f(U),
for coordinate chart (U, f), then use partition of unity. Write

n
w:Zajdxl/\.../\d)g_l/\d><j+1/\.../\dx,,,
j=1

n . . 0aj
dw = 1Y 1= L dg AL A dx,.

Two cases to consider: f(U) N OM = @& and otherwise.



Stokes’ Theorem—f(U) NOM = &

(1) f(U)NOM = @. Then [,,,w =0, so we must show

/de:/U<Z(—1)f—1§—Z> dxi ... dx, =0.

WLOG, f~Y(K) C int(Q), where Q@ = {x € H" : x} < xj < XJQ}
EI_I;]I” = {x € R": xp <0}), for le, xjQ such that F~1(K) C int(Q).
en,

/U<Z( 1y~ 1aaj>dx1 dx,,— (—1)~ /8ajXm Xn
—3 -1y /Q[aj(xl,...,&o,...,xn)

1
—aj(xl,...,xj,...,X,,)]dxl...d><j_1d><j+1...dx,, =0



Stokes’ Theorem—f(U) N OM # &

(2) f(U)NOM # @. Then
wlom = a1(0, x2, ..., xp)dx2 A ... A dxp

Set @ as above, with x¥ = 0. Then,

/dw_z 1y /aafdxl

:/ [21(0, ..., x0) — 21054, - .-, Xn)] dx2 . . . dxy
Q

:/al(O,x2,...,x,,)dx2---dx,,:/ w
Q oM
QED



[11. Poincaré's Lemma

M is contractible to pyp € M if 3 smooth map C: M xR — M s.t.
for all pe M, C(p,1) = p and C(p,0) = po

Poincaré’s Lemma. If M is contractible, w € Q*(M) is closed
(dw = 0) iff it is exact (w = dn for some n).
Proof. Let m: M x R — M be the projection map, W = C*w.

Note that w can be written uniquely as W = w1 + dt A 1, such that
wi(vi,...,vk) =0 if some v; € ker(Dm), and similarly for 7.



Poincaré's Lemma

Let iy : M — M x R, ir(p) = (p, t). Define
I QK(M x R) — QK=1(M) as follows. For p € M,
Vi,...,Vk_1 € TPM,

(D) (e, . ver) = /0 [1(p, 1) (Die(w1), .., Die(ve_1))] dt

Claim: d(I@) =w

Sublemma. i{@ — i{w = d(IT) + I(dw).
Note that /(w1 + wp) = /(w1) + /(w2), so enough to prove for
w = de,'1 /\.../\dX,'k or w = fdt/\dX;1 /\.../\dX,'k.



Poincaré's Lemma—sublemma

Case 1: w = fdx; A\ ... A dx;, we have
dw = %dt Adxiy A ... A dx; + terms not containing dt.

1

I(dw)(p) = (/0 %dt) dxiy A .. A dx;,
=(f(p,1) — f(p,0)) dxj A ... Adx;,
=ii@(p) - i5(p)

Case 2: w = fdt Ndx; A ... ANdx. Since i; takes M to a subspace

of constant t, we have i{W = ijo = 0, so we need
d(lw) = —1(dw).



Poincaré's Lemma—sublemma

dw = Z of ——dxo AdtAdx; A Adx;

Oxa
(ldw)(p) == ( Wdt) dxo A dxiy A A dxi, .

On the other hand,

d(Iw)(p) =d { ( fdt> dxiy A... A dx,-“}

za: </0 %dt> dxo N dxiy AN dx,



Poincaré's Lemma

w= (Con)w= i(C'w)= iiw,
0= (Coip)'w= iJ(C'w)= ifw

Since dw = 0, we get dw = C*dw = 0. Setting o = I,
w=ihw=d(lo) = da.

QED



IV. The de Rham Chain Complex

Define (Int*(w)) (A) = [,w.

S () = (Y) QM) — -

l Intk—1 l Intk l Intk+1
k-1 o
RN Zk_l k=2 Zk _k Zk+1 ..

dk
—

Diagram commutes by Stokes’ Thm.

Star St(0) = U,ep(r) T open in M, {St(p;)} cover M. Define
subordinate partition of unity {¢;}, and define

OK(qry - qn,) = K! Z 1) s, dprg A---7+-- A doy,



V. Elementary forms

Theorem.
Supp (®*5)  St(0) (1a)
OkG*A =ddk1A (1b)
q)o(z qi) =1 (1)

Furthermore, @ is a right inverse of Intk.

Proof. (1a) follows immediately since Supp ¢; C St(q;).
For (1c), #°(q;) = ¢, hence (3", qi) = 1.

Now (1b). Let o = gy, - - - q»,, then

dOK(qry - an,) = (k+ 1)y, A ... Adoy,.



Sidenote: two important identities

Recall (0*c)-7=0-(07) =1if 0 € 97 and 0 otherwise. Hence

Iy Ar, = Doe GsGrg - * - Gr,» Where " is over s s.t.
qsq,\0 - gy, is simplex. In particular,

(k+1)' (Da (q)\o T q)\k) = ﬁ E: q)(qsq)\o e q)\k)'
Also note that d (3] ¢;) = 0. Since Y ¢; = Z/I'(:o D D s in; Ps:

we have
ngfu + ) dgs=0

S#any Ai

We use both these identities in the following.



Elementary forms—Proof of (1b)

1 *
T > (a5 - a,)
(k1)1 & r

k

=3 {#sdorg A A dén, = D (<100, dbs Ading AT A doy, |

i=0

= > ¢sddrg A... Adoy +
S#any)ﬁ
k

k
D (1) x> doa Adoag AT N doy,

i=0 j=0
k

= D Gudpag Ao Adda + Y dnddag AL Addy,
S#any )\,‘ i=0

1
:dgf))\o /\.../\dgf))\k = (k+1)|d¢(q)\0 q,\k)



Elementary forms—Int o ®* = |d

Now prove ®X is right-sided inverse of Int¥ by induction. k =0 =
consider vertex g; and covertex g;, so g; - qj = 0;;. Note by
definition ®°(q;) = ¢; and ¢;(q;) = ;. Also note for function f,
Int°(f) - g; = f(q;). Hence Int® (#%(q;)) - qj = dj;, i.e.

Int® 0 ®0 = Id.

k > 0 = will follow from

(/ntkCDkJ)-T:/CDkJ:{ 0 ifr#o

1 fr=o0

Suppose T # o, then dq; € F(o) with q; ¢ F(7), so ¢; =0 in T,
proving for 7 # o.



Elementary forms—Int o ®* = |d

If o =7, write 9o = +.... Then,

/cbkaé/cbkaw:/dcbk—wz cbk—lzpé/cbk—lzp: 1,
o o o do P

where ! uses the case o # 7 and the last equality uses inductive
hypothesis.

QED

For o € K, ®o called an elementary form.



VI. Stay tuned!

Define HE = ker(8;)/im(9;_,), HE = ker(dk)/im(dk_1), the
differential and simplicial cohomology groups respectively. Define
H: = @ HE, HE = @HE. For h € HX, W' € H, can define cup
product h_h’ € H**" under which HS and HG, become rings.

We will show the subcomplex (ker Int®) is acyclic (i.e.

ker d = im di_1 when restricted to ker Int®) and use this to prove
de Rham'’s theorem: [nt® is a ring isomorphism between HF, and
H5.



