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CLASSIFICATION (WHITNEY) OF F' € T,pen dense C C(R? R?)
VYa € R? F, := F : (R?,a) — (R2, a) ~as; G : (R2,0) 29 (R2 0)
(I): (Regular) Gy := (x,2) <= %‘j(a) #0

(I1): (Fold) Gy := (z, 2%) <:> ( ) # 0, az( a) =0, otherwise

(I11): (Cusp) G5 := (z, 23 — 12) <= angz(a) # 0, %(a) #0
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Nbds. {U(E, k)}k€Z+,€€CO(R",R+) of 0 € Coo(Rn,Rp) are

Fe{U(e,k)} <= |D*Fj(z)| <e(x),j=1,...,pV |o| < k,z € R".

Step 1: Maps G € C®(R? R?) with DG(z) # 0 Vz € R? are dense.

Proof Fix nbh. of U of F € C*°(R?,R?).

Sard = measure(Im{DF : R? — R}) =0

= Vnbd. V of 0 € Ling(R?,R?) =R* , I € V s.th. u ¢ Im(DF) .

For G(z) := F(z) — p-x = DG(z) # 0 V. Set ¢_1 := 0 and
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By :={z €R?*: |[z|| <n},n>1, then

3 ¢n € C®(R2%,R) s.th. ¢, B = 1 and ¢nlr2\p,,,,,, =0
For every n choose G, to be near F' on B n+1) \ Bont1) -
Construct G™ := (¢, — dn—2)Gn + (1 — (¢, — Pn_2))G"
Note, G™ and G™~! differ only on Bo.nt+1) \ Bon—2) -

For small x (for G,), G® GUand( )7] 127 0on B 1) -

For G := lim G" = G € U C C*(R?,R?) . O

n—oo

Corollary. Imp. F. Thm. = 3 Tppen dense C C°(R?,R?)

such that G locally looks like (z, z) — (z, ¢(z,2)) VG € T .
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STEP 2: CLASSIFYING POSSIBLE ¢(z, z)

Let V C R? be open, K C V compact, ¢ € C°(V,R),

3 g € C®°(V,R) arbitrarily close to ¢ on K s.th. Va eV

(1) §(a) # 0, or (I1) 4(a) # 0, or (1) g2 # 0 and $4(a) #0

Proof g(x,2) := ¢(z, 2) + A1z + Xoz? + A\3wz + M\g2° with a ‘small’
A= (M, A2 Az, ) € R = 92 = 28 4 A1 + 2X02 + Aga + 3Ay2°

then & 2. =0 (1,22,2,32%)], - A= —

6z|a’

%9 = 99 42X+ 64z then 29|, =0 & (0,2,0,62)], - A= —24|,

5/21




82 2 . 82 ¢
8152 axﬁz +_A3 then 8x8z| =0 (0’0’170)"A _'__Bmﬁz|a’

% — 90 1 6As then 29|, =0 & (0,0,0,6) - A = 24|,
1 2z x 322 1 2z = 322
A=10 2 0 62],A:=]0 2 0 6z | areofrank3
0 0 1 0 0 0 0 6
2(0)
= Lemma Measure of A € R*s.th. A(a)-A = B(a) := — g?(a)
5lgl(a)

(for some a € V) is 0 .
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Proof. Map A: V x R* 3 (a,A) — (a, A(a)A) € V x R? is

submersion due to rankDA =5 ! 3 = codim of the following;:

{(a,B(a)):a €V} VxR, A ({(a,B(a))lac V} CV x R?)

= measure(n(A 1 ({(a, B(a))la € V})) =0, n(a,A):=A . O

Similarily, measure(n(A~({(a, B(a))la € V})) =0, where

A: VxR 3 (a,A) — (a, A(a)A) € V x R3 . We completed

Step 2 by modifying ¢(z, z) by means of A € R* to g(z, 2) .
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Corollary Assume G € C*®(V, R?) and G(z,z2) + (x,g(z, 2))
where g(z, z) satisfies conditions of conclusion of step 2.

If G =: (G1,Go) close to G over compact K in V (suffices up to
3rd order derivatives) then by means of diffeomorphism

(y1,92) ™ (G1,12), G ~aigr (y1,32) = (y1,3(y1,92)) where

g satisifies conditions of conclusion of step 2 similar to those of g
for a in a nbd. of K. This is true because § = Go o H! and
therefore is close to g over K (up to 3rd order derivatives).

This shows that the conclusion of step II is a stable condition .
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Step 3: 3 Topen,dense C C>(R?,R?) such that VG € T , G locally is

of form (z, z) — (x, ¢(z, 2)) and ¢ satisfies conditions in Step 2.

Proof Let I € C>(R?,R?) and W a nbh. of F |, Step 1 claims
3 F € W s.th. 3 locally finite |J U, = R? with g%yun #0

n>1
Vn for some fixed i,j = F|,, ~aiff (z1,22) = (21, on(z1,22)) -

UK, = R? | s.th K,, compact C U,, . Using corollary
n

of step 2, every G near F satisfies conclusion of Step 3.
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So, pertub F on K, to obtain

Gnlyn ~aiff (x1,22) = (1, gn(x1,22)) (i, fixed g, as g of step 2) .
Note, G near F < g, close to ¢,, on U,.

Construct G" :=V,, - G+ (1 =¥, _1)G" 1 ' n>1,¥g=1,

Unlg, ==1and ¥pl,. :=0=G" and G~ differ only on U, \ U,,—1
Similar to step 1, G := nh_}n(r)lO G" is the desired map . DONE.
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Step 4: VF € T, F is diffeo. locally to Regular, Fold or Cusp.

Proof Say 5(22) S5 F:(x,2)— (x, f(z,2)) is a C* germ at 0 s.th.

(I) %(0) # 0 or (II) %(0) =0 and %(O) # 0 or

(1) 4£(0) = 55(0) = 0, 22L(0) # 0 and Z:£(0) # 0 .
(I) (Regular): (Inv. M. Thm ) = F ~gf¢ (2, 2) — (2, 2)
(I1) (Fold): £(0,2) = £(0,0) + 2£(0)z + 24 (0)22 mod ) C €

= £(0,2) = 2z2q(z) with ¢(0) # 0 and using
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f(z,2) = f(0,2) +x-r(x,2) = &2 D (z,f) = (z,2%) .

With £y 29— g € 5(2) being Taylor homomorphism let

g(z,z) =: g(0) + g1o + goz + gswz + g42° mod (1fy),2?) C )

= §(z,2) = g(0) + g2z mod (x, 2?) = c‘:’(g)/ﬁ*m(g) =<1,z>p

=< 1,2 >peg, = &(2) » l.e. 1 and z generate £(9) as an F*E(p)-module
= 22 = ®(x, f(x,2)) - 1+ 2¥(a, f(2,2)) -2, P, ¥ € Eoy

= &(0) = ¥(0) = 0, §2(0) # 0 and
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M(O) = 29(0) . 9L(0) = 0 . Therefore h and k with
h(w,2) = (z,2 = U(z, f(2,2))), k(z,y) = (2, (z,y) + V*(z,y))
are diffeomorphisms of (R?,0) to (R?,0) . Note that

22+ (F*U)2 —2F*W . 2 = F*® + 2F*V - 2 + (F*VU)? — 2F*V . 2

= [*® + (F*¥)? = F is a Fold: by the commutatively of
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(z,z) LN (z,u) = (z,2 — V(x, f(z,2)))
Lr l

(@, f(@,2) = (2,u2) = (2, 0(z, f(2,2)) + V¥(x, (2, 2)))

(IIT) (Cusp): As in II (see slide 19) = 3 germs ®, ¥, © s.th.

B =0, f(2,2)) 14+ U(x, f(z,2) 2+ 30(x, f(z,2) - 22,
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Modulo 7y C €(g) it follows:

(1) f(x,2) = frz + foz? + fowz (i) d(z,2) = 2 + a1 + coa? + cz2
= (i) ¢ (2,2) = 2 — 1@ — (ca — c1e3)22 — ez and

(iv) fr(z,2) = f(z,¢(z,2) = fi -z + (fo — fsc1) - 2% + faaz
ok -

= 2 fr(0,2) = 0Vk < 2

and also ‘(%T(O, Z) vanishes exactly to 1%¢ order.

= We may assume © = 0 (see slide 20) ,
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ie 23 =F*® .1+ F*VU.zand ®(0,0) = ¥(0,0) = 0.

Lemma.

21\ b (Y1, f21,22)) N EANA <\I/(y1,y2)>

T2 T2 Y2 (Y1, y2)
are coordinate changes in the source and target.
Proof f(z1,22) = fiz1 + f2a? + fsziaa + faxd  mod (m?z)v z?)
with f3, f4 # 0 by assumption in (III) . Modulo mé) let

D(21,y) =: bt +bay , U(z1,y) = c121 + c2y
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Recall mg’ = @(wl, f(xl,xg)) + ¥ (xy, f(xl, x2)) - T2 = mg’ = b2f4a:§+

(b1 +bafi)z1 + bafox? + (bafs + c1 + cafi)T122 + c2 faxiTe + 2 f3r173

= by # 0 since bafy is coeff. at 23 . Since (bafs +c1 + caf1) =

= c1 + caf1 #0 (so his a diffeo. ) . Now (by + baf1) = 0 and

det|(bs, ¢j)| = bicg — bacy = —ba(fico + ¢1) # 0 = k is a diffeo. O
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Recall 3 — F*U - 29 = F*® | where x5 := §j = commutativity of

(,2)  +— (Y(z, f(2,2)),2) = (2, 9)

Lr l
(:c,f(:c,z)) — (ql(x7f(x7z))7¢)(xaf(xvz))):(i7§3_fy)

3

= F ~gir¢ (x,2) = (x,2° — xz), which completes proof of the result

modulo several calculations presented in the pages following.

18 /21



Appendix (I) Malg. Prep. Thm case of Cusp

£(0,2) = £(0) + 9£(0)z + 24 (0)22 + 224(0)23 mod iy € &
and in the ‘Cusp’ case = f(0,2) = g(z) - 23 , g(0) # 0 .
Therefore f(z,2) = f(0,2) +x - 7(z,2) = Eg) D (z, f) = (z,2°) .
By the Taylor homomorphism set Vg € &)

= g(x,2) = g(0) + goz + g32® mod (z,2%) C &), g2 and g3 €R
:>5(2 /F* =<1,2,22 >p = < 1, 2,22 >F*5<2)=5(2)

i.e. 1, z, 22 generate E(2) as an F*Em)-module . O
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Appendix (IT) Justifying assumption O =0
B =(2—F0)3 =2%—32%. F*O + 3z - F*©?% — F*©3

= F*® + F*U . 2 + 3F*023 — 322F*0 + 32F*0? — 03

(F*U + 3F*0?%)(z — F*O) 4 (F*® + 2F*©° + F*VU . F*O)

= F*\ill -z 4+ F*(il -1, which shows that we may assume to

begin with that © = 0 without loss of generality, as required .
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