Hilbert Nullstellensatz for ideals $I \hookrightarrow \mathcal{P} := K[x]$ or $\mathbb{Z}[x]$, $x := (x_1, \dots, x_n)$ and K a field, called geometric or arithmetic case.

Viktoriya Baydina

MAT 477

March 11, 2014

Below $F := \mathcal{P}/m$ is a field, sets Spec(A), Specm(A) are

prime, resp. maximal ideals of
$$A:=\mathcal{P}/I$$
 and $\mathcal{M}_A(I):=\bigcap_{I\subseteq m\in Specm(A)}m$

Main Thm: (1)
$$\sqrt{I} := \{ f \in \mathcal{P} \mid f^N \in I \} = \mathcal{M}(I) := \mathcal{M}_{\mathcal{P}}(I) ;$$

(2)
$$F = \mathcal{P}/m \ \Rightarrow \ \text{geom case} \ [F:K] := \dim_K F < \infty \ , \ \text{arith} \ \#(F) < \infty;$$

(3)
$$\exists F \text{ as in (2) s.th. } \mathcal{V}_F(I) := \{ \xi \in F^n : f(\xi) = 0, \ \forall \ f \in I \} \neq \emptyset ;$$

Classical:
$$\mathcal{P} = K[x]$$
 and algebraic closure $\overline{K} = K$. Let $\mathcal{V}(I) := \mathcal{V}_{\overline{K}}(I)$.

(4)
$$\mathcal{I}(\mathcal{V}(I)) = \sqrt{I} \text{ for } \mathcal{I}(\mathcal{V}) := \{ f \in \mathcal{P} : f_{|\mathcal{V}} = 0 \} \Rightarrow \mathcal{V}(\mathcal{I}(\mathcal{V}(I))) = \mathcal{V}(I)$$

Easy Thm:
$$\mathcal{P}_R(I) := \bigcap_{I \subseteq P \in Spec(R)} P = \sqrt{I}$$
 for ideals I in arbitrary rings R

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・ 恵 ・ 夕 Q ○

Indeed, $f \in \mathcal{P}_R(I)/I \subset B := R/I \Rightarrow f \in \sqrt{0} \hookrightarrow B : \text{ using } f \in \mathcal{M}_{B[x_0]}(0)$

$$\Rightarrow \exists (1+f x_0)^{-1} = \sum_{0 \le j \le d} c_j x_0^j \in B[x_0] \Rightarrow c_j = (-f)^j$$
, i.e. $f^{d+1} = 0$

 $\textbf{Def:} \ \, \text{domains are rings without zero divisors and} \ \, A \hookleftarrow K \ \, \text{is} \ \, K\text{-algebraic}$

when every $a \in A \setminus \{0\}$ is, i.e. $\exists \ f \in K[z] \setminus \{0\}$ with f(a) = 0.

Lemma 1: K-algebraic domains $A \leftarrow K$ are fields. \Rightarrow With F as in (2)

Corollary 1: for $\xi \in F^n$ ideals $m_{\xi} := \{ f \in \mathcal{P} : f(\xi) = 0 \}$ are maximal.

Proof of L1: K[z] is a PID $\Rightarrow \forall a \in A \setminus \{0\} \exists$ irreducible f s.th. $m_a :=$

$$\{g\in K[z]: g(a)=0\}=(f) \ \Rightarrow \ m_a$$
 maximal, $K[a]$ field. For $\phi:\mathcal{P} o A$,

$$a_i := \phi(x_i) \text{ ring } A = K[a_1,...a_n] \Rightarrow \text{ all } K[a_1,...a_k] \text{ fields, by induction.} \blacksquare$$

Key to HN. Lemma 2: Fields F = K[x]/I are K-algebraic.

Remarks: $[A:K] < \infty$ for fields A from Lemma 1. Hence Lemma 2 proves geometric case of Main Thm $(2) \Rightarrow \text{ all } m \in Specm(\mathcal{P})$ are as in Cor. 1 with $\xi := (\phi(x_1),...,\phi(x_n))$ and $\phi : \mathcal{P} \to F := \mathcal{P}/m$. So (3) follows with $F = \mathcal{P}/m$, $\xi \in \mathcal{V}_F(I)$ and $m_\xi = m$ being maximal among ideals $J \neq \mathcal{P}$ s.th. $J \supset I$ (via Zorn's lemma). Of course then also $(1) \Rightarrow (4)$.

Plan: We'll show how $(2) \Rightarrow (1)$, then Lemma 2, then arithm case of (2).

Detour: $\overline{K} = K \Rightarrow \mathcal{V}(I) \rightarrow \{m \in Specm(K[x]) : I \subset m\}$ is bijective: let

$$\xi := (\phi(x_1),...,\phi(x_n)) \in \mathcal{V}(I) \text{ then } m = m_{\xi} = (x_1 - \xi_1,...,x_n - \xi_n)$$
 . \blacksquare

Lemma4 '(2)
$$\Rightarrow$$
 (1)': $M \in Specm(\mathcal{P}[x_0]) \Rightarrow m := M \cap \mathcal{P} \in Specm(\mathcal{P})$

Proof: With k := K in geometric and $k := \phi(\mathbb{Z}) = \mathbb{Z}/p\mathbb{Z}$ in arithmetic

case field
$$F:=\mathcal{P}[x_0]/M=k[a_0,\ a_1,...,\ a_n] \hookleftarrow R:=\mathcal{P}/m=k[a_1,...,\ a_n]$$
 ,

where a_i 's are the classes of x_i 's in F. So, as in Lemma 1, R is a field.

Prf(2)
$$\Rightarrow$$
 (1): Suffices to show $f \in \mathcal{M}(I)/I \subset \mathcal{P}/I =: A \Rightarrow f \in \sqrt{0} \hookrightarrow A$

But f , due to Lemma4, is in every maximal ideal of $A[x_0]$ implying exists

$$(1+f x_0)^{-1} = \sum_{0 \le j \le d} c_j x_0^j \in A[x_0] \Rightarrow c_j = (-f)^j$$
, i.e. $f^{d+1} = 0$.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Proof of Lemma 2: Fields F = K[x]/I are K-algebraic.

Proof: Let $\vec{a}_j := (a_1, \dots, a_j)$, $j \le n$, where a_i 's are the images of x_i 's in $F = K[\vec{a}_n]$. If F is not K-algebraic then not all of a_i 's are. Then reorder a_i 's and choose maximal $r \leq n$ so that a_i is not $K[\vec{a}_{i-1}]$ -algebraic for $j \leq r$. Then $K[x_1,...,x_r] \rightarrow R := K[\vec{a}_r]$ is an isomorphism, i.e. R is UFD with ∞ many irreducible elements and a_i 's for $r < j \le n$ are R-algebraic (and (R)-integral) $\Rightarrow m = [F : L] := dim_L F < \infty \ (L := K(\vec{\mathbf{a}}_r) = (R)$ $\hookrightarrow F = K[\vec{a}_n]$). Pick an L-basis of F and $\phi : F \ni b \mapsto$ the matrix of the

L-linear endomorphism of multiplication by b in F. Let $g \in R$ be common denominator of all matrix entries of all $\phi(a_i) \in L^{m \times m}$, $i \leq n$ (for $i \leq r$ matrix $\phi(a_i)$ is diagonal with a_i on diagonal). So $\phi(a_i) \in R[g^{-1}]^{m \times m} \Rightarrow$ for each $b \in F \exists s \in \mathbb{Z}^+$ s.th. $\phi(b) \in g^{-s}R^{m \times m}$. R is UFD, so let p_i , j $\leq k$, be the irreducible factors of g in R and $p \in R \hookrightarrow L$ any irreducible element. Then $\phi(p^{-1})$ is diagonal with all entries p^{-1} and exists $d \in \mathbb{Z}^+$, $f \in R$ s.th. $p^{-1} = g^{-d}f$ or $g^d = pf \Rightarrow$ irreducible p is one of the p_i 's, but there are ∞ many choices for irreducible $p \in R := K[\vec{a}_r]$, ?!

Proof of (2) in the arithmetic case:

then F := A = B[x]/J with $B := \phi(\mathbb{Z})$, where $\phi : \mathcal{P} \to A := \mathcal{P}/I$, \Rightarrow either $p := \operatorname{char} F < \infty$, $[F : \mathbb{Z}/p\mathbb{Z}] < \infty$ (then $\#(F) < \infty$ and done) or $B = \mathbb{Z}$, $A = \mathbb{Q}[x]/J\mathbb{Q}[x] \Rightarrow \text{ each } a_i := \phi(x_i) \text{ is algebraic over } \mathbb{Q}$ and is integral over $R:=\mathbb{Z}[\frac{1}{N}]$ for an $N\in\mathbb{Z}$. Then (using **Claim** that integral elements form a ring) $A := \mathbb{Z}[a_1, ..., a_n]$ is integral over R and $\forall r \in \mathbb{Z} \setminus \{0\}$ exist $b_i \in \mathbb{Z}\left[\frac{1}{N}\right]$ s.th. $\left(\frac{1}{r}\right)^d = b_1\left(\frac{1}{r}\right)^{d-1} + \ldots + b_d \Rightarrow$ $\frac{1}{r} \in \mathbb{Z}[\frac{1}{N}] \Rightarrow \exists s \text{ s.th. } \frac{N^s}{r} \in \mathbb{Z} \text{ , but } \exists \infty \text{ many primes } r \in \mathbb{Z} \text{ , } ?! \blacksquare$

Claim: Integral closure \overline{R} of a noetherian $R \hookrightarrow S$

in domain S is a subring. Lemma below implies Claim since both

$$R[f+g]$$
 and $R[f\cdot g]$ are R -submodules of $Span_R(R[f]\cdot R[g])$.

Lemma: $f \in S$ is integ. over $R \hookrightarrow S$ iff $R[f] \subset S$ is a fin. gen. R-module.

Proof of Lemma: "only if" is straightforward. To show " \Rightarrow " let

$$R[f] = \sum_{1 \leq j \leq m} R \cdot e_j$$
, $e_j \in R[f]$. Then $f \cdot e_i = \sum_{1 \leq j \leq m} a_{ij} \cdot e_j$ with

entries
$$a_{ij}$$
 of matrix \mathcal{A} in $R \Rightarrow \forall i$ holds $\det(f \cdot I - \mathcal{A}) \cdot e_i = 0 \Rightarrow$

$$\det(f\cdot I-\mathcal{A})=0$$
 , i.e. $R[z]
i P(z):=\det(z\cdot I-\mathcal{A})=z^m+$ lower order

terms and
$$P(f) = 0$$
, as required. \blacksquare We use $T^{adj} \cdot T = \det T \cdot I$!

Claim Rab:
$$\sqrt{I} = \sqrt{I}^{Rab} := \bigcap$$

 \bigcap P, where

 $P \in Spec_{Rab}(R) : I \subseteq P$

I ideal in R and $Spec_{Rab}(R) := \{R \cap m \mid m \in Specm(R[z])\} \subseteq Spec(R)$.

Proof:
$$\sqrt{I} \subseteq \mathcal{P}(I) := \bigcap_{S\mathcal{P}(I)} P$$
 if $S\mathcal{P}(I) := \{P \in Spec(R) : I \subseteq P\} \neq \emptyset$

So, suffices to show " \supseteq ". Say $a \in \sqrt{I}^{Rab}$ and ideal J in R[z] is generated

by
$$(I \cup \{az-1\})$$
 . If $J \neq R[z] \Rightarrow J \subset m \in Specm(R[z]) \Rightarrow$

$$I \subseteq R \cap J \subseteq R \cap m \in Spec_{Rab}(R) \Rightarrow a \in m \text{ and, since}$$

$$(az-1)\in J\subset m$$
 , \Rightarrow $1\in m\neq R[z]$?! Therefore $J=R[z]$. Then

$$(\bigstar) \ 1 = \sum_{j=1}^N g_j b_j + g_0(az-1)$$
 for some $g_j \in R[z]$ and $b_j \in I$.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Applying map $\phi: R[z] \ni f \mapsto f(z^{-1}) \in R[z, z^{-1}]$ to both sides of $\bigstar \Rightarrow$

(
$$\Diamond$$
) $1 = \sum_{j=1}^{N} \phi(g_j) b_j + \phi(g_0) (a_z^1 - 1)$.

Say $k \geq \mathsf{max}\{\mathsf{deg}(g_1),\; \ldots,\; \mathsf{deg}(g_n),\; \mathsf{deg}(g_0)+1\}$. Then multiplying (\lozenge)

by
$$z^k$$
 yields $z^k = \sum_{j=1}^N h_j(z)b_j + z^{k-1}\phi(g_0)(a-z)$ with $h_j(z) := z^k\phi(g_j)$,

and
$$z^{k-1}\phi(g_0)$$
 in $R[z] \Rightarrow a^k = \sum_{j=1}^N h_j(a)b_j \in I \Rightarrow a \in \sqrt{I}$.

$$\Rightarrow$$
 Easy Thm: $\sqrt{I} \subseteq \mathcal{P}(I) \subseteq \sqrt{I}^{Rab} \subseteq \sqrt{I}$.

Proposition 1: If $\phi: K \hookrightarrow B \to A = K[x]/I$ is a ring homomorphism

linear over K and $m \in Specm(A)$ then $n := \phi^{-1}(m) \in Specm(B)$.

4□ > 4□ > 4□ > 4 ≥ > 4 ≥ > 2 9 9 0

Proof of Prop. 1 : Kernel of map $\psi: B/n \to A/m$ induced by ϕ is $\{0\}$

 \Rightarrow B/n is isomorphic to K-subalgebra $R:=\psi(B/n)$ of A/m . Then field

A/m is K-algebraic (Lemma 2) and R being K-algebraic domain \Rightarrow

(Lemma 1) R and with it B/n are fields. So $n \in Specm(B)$.

Hilbert Nullstellensatz revisited: $\sqrt{I} = \mathcal{M}(I) := \bigcap_{m \in Specm(A) : I \subseteq m} m$ Proof: Suffices to show "\cap " Say $P \in Spec_{P-1}(A)$ i.e. $P = A \cap m$ w

Proof: Suffices to show " \supseteq ". Say $P \in Spec_{Rab}(A)$, i.e. $P = A \cap m$ with

 $m \in Specm(A[z])$. Applying Proposition $1 \Rightarrow P \in Specm(A)$ and

 $Spec_{Rab}(A) \subseteq Specm(A)$. Hence $\sqrt{I} \supseteq = \sqrt{I}^{Rab} \supseteq \mathcal{M}(I)$. \blacksquare

4□ > 4□ > 4 = > 4 = > = 90