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Warm up example

4y? —4x*> 44y +8x—5=0 (1) x2 8y? —8x>+8y+16x—10=0
x> =8y’ —8y+3=0 (2) x> -8y —8y+3=0
x> —8x2+16x —7=0

// =4 /\

Solve it!

e

.

=2

y \\\ -
4.// \\ | plug in solns of x into (2)
\ each x = two solns for y
N

total 6 solutions
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Bézout's Theorem

Theorem (Newton, 1660's (?), Bézout (1779))

Number of solutions of two polynomial curves is at most the
product of their degrees.

4y? —4x* + 4y +8x—5=0 = deg =2
| X3-—~»-8y2--~8y+320 = deg = 3

= Bézout bound for number of solutions is 2 x 3 = 6

= Bézout bound is exact!




Example 2: A variation on the warm up problem
f:=0.006x> +4y° —4x° +4y +8x — 5 =0 (1)

g :=x>—8y? — 8y +3 =0 (2)
0.01x> +8y” —8x° +8y +16x—10 =0 (1)x?2
x> —8y? — 8y +3 — |
1.01x° — 8x% + 16x — 7 =0

| | / # solutions = 6

J— N

| = Bézout bound is
| R ;_,7«:::‘:3%\ 3 X 3 p— 9

/ \\ = Not exact!
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Weighted Bézout Theorem

Theorem (known at least since 1970’s)

Number of solutions of f = 0 and g = 0 is less than or equal to

wt(f) wt(g)
wt(x) wt(y)

f=0.005x° +4y? — 4x20.005x% + 4y2 — 4x20.005x> + 4y® — 4x20.(
g = x3~8y2x3—8y2x3 —8y2X3 _ 8)(2 — 8y + 3 "'

Assign different ‘weights’ to x and y

wt(f) wt(g) wt. Bézout bound
x—=1lyr—1 3 3 X3 -9 > 6

1x1
X—=1,y—2 4 4 %:8>6
X—=2,y—3 6 6 0x6 — 6 =
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Painting geometry

Euclidean Geometry: geometry
of the ‘Euclidean plane’ R?.

Projective Geometry: add to R?
a 'line at infinity’ which consists
of vanishing points for all
families of parallel lines.

The new space is the ‘projective
plane’ RP?.

Multi-point perspective: every
family of parallel line has a
distinct vanishing point

Doing the same with the complex plane C? gives rise to the
complex projective plane CP?.
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and g = 0 ‘approaches’ different points at infinity on CP?.
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Back to counting solutions

Back to counting solutions
Bézout’s Theorem:

1. #{f = g = 0} < deg(f)deg(g).

2. The bound is exact (for complex solutions) if the curves f =0

g = x>—8y?—8y+3g = x>—8y?—8y+3
g = 0 meets the point at infinity on CP?

cor. to (lines parallel to) .
= 4y? — 4x* + 4y + 8x — 5f
4y? — 4x® + 4y +8x — 5

f

f = 0 meets two points at infinity on

C]P)z cor. to i
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Example 2 revisited

Recall Example 2:

f = 0.005x° + 4y?> —4x%> +4y +8x — 5

g =x>—8y’>—8y+3

#{f =g =0} =6 <9 =deg(f) deg(g).

g = 0 meets the point at infinity on CP? cor. to
f = 0 meets the same point at infinity on CP?.

Back to counting solutions
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Weighted Projective Planes

Projective plane +—— R? + one pomt for each family of
parallel lines v — 7+ ¢

Weighted projective +— R? + one point for each family of
planes | parallel curves

10r

n L L . L
-6 -4 2 0 2

(We will deal with complex wt. projective
spaces - just to make life a bit easier!)
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Example 2 again

Wesghted Bézout Theorem: Consider weights x 5 p, y q.
1 #{f o O} < Wt(f)wt(g)

2. The bound is exact if the curves f = 0 and g = 0 'approaches’
different points at infinity on the cor. weighted projective plane.

Example 2: #{f =g =0} =6 = Wt(f;gt(g), p=2qg=3.

f = 0.005x3 +4y 4x2+4y+8xm50.005x3+4y2~——4x2+4y+;
g= x>—8y?—8y+3x3 —8y? -8y +3 *
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What if weighted Bézout Theorem does not work?

f=x>—xy+y—3
g:_x2m2xy-—y~m4

Has one common solution at
infinity on CIP?.

(Can be seen from leading
homogeneous forms.)

Same is true for all weighted
homogeneous planes.

For a better bound, consider the
Newton polygon of f

Theorem (Kushnirenko,
1970s)

If f and g have the same

Newton polygon P, then
#{f =g =0} <2Area(P).

Area(NP(f))= 15

> X
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Bernstein's Theorem
What if f and g have different Newton polygons?
E.g. fmxz————xquy——?), g =xy —2x — 3y — 4.
Theorem (Bernstein, 1975)
#{f = g = 0} < the mixed area of Newton polygons of f and g.
Yy Yy Yy

Area(NP(f))= 1.5 Area(NP(g))=1 Area(NP(Ff) + NP(g))=5.5

@

Mixed Area(NP(f), NP(g)) = Area(NP(f) + NP(g)) - Area(NP(f)) - Area(NP(g)) = 3

Idea: Adjoin the plane by poi‘nts at infinity cor. to families of
weighted curves coming from every edge of NP(f) and NP(g).
‘The new spaces are called toric varieties.
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Topics related to this talk

e Bezout theorem and weighted Bezout theorem
e Toric varieties, in particular weighted projective spaces
e BKK (Bernstein-Kushnirenko-Khovanskii) theorem

e Roots of polynomials in two variables - Puiseux series




