Counting solutions of polynomial systems

Painters' perspective Back to counting solutions Outdoing the painters

Bezout-type theorems

Pinaki Mondal

26-9-13

Counting solutions of polynomial systems Painters' perspective Back to counting solutions

Outdoing the painters

Outline

Counting solutions of polynomial systems

Painters' perspective

Back to counting solutions

Outdoing the painters

Counting solutions of polynomial systems Painters' perspective Back to counting solutions

Outdoing the painters

Warm up example

$$4y^{2} - 4x^{2} + 4y + 8x - 5 = 0 \quad (1) \quad \times 2$$
$$x^{3} - 8y^{2} - 8y + 3 = 0 \quad (2)$$

$$8y^{2} - 8x^{2} + 8y + 16x - 10 = 0$$
$$\frac{x^{3} - 8y^{2} - 8y + 3 = 0}{x^{3} - 8x^{2} + 16x - 7 = 0}$$

plug in solns of x into (2) each $x \Rightarrow$ two solns for y total 6 solutions Painters' perspective Back to counting solutions

Outdoing the painters

Bézout's Theorem

Theorem (Newton, 1660's (?), Bézout (1779)) Number of solutions of two polynomial curves is at most the product of their degrees.

$$4y^{2} - 4x^{2} + 4y + 8x - 5 = 0 \qquad \Rightarrow \deg = 2$$
$$x^{3} - 8y^{2} - 8y + 3 = 0 \qquad \Rightarrow \deg = 3$$

⇒ Bézout bound for number of solutions is 2 × 3 = 6
 ⇒ Bézout bound is exact!

Example 2: A variation on the warm up problem

$$f := 0.005x^{3} + 4y^{2} - 4x^{2} + 4y + 8x - 5 = 0 \quad (1)$$

$$g := x^{3} - 8y^{2} - 8y + 3 = 0 \quad (2)$$

$$0.01x^{3} + 8y^{2} - 8x^{2} + 8y + 16x - 10 = 0 \quad (1) \times 2$$

$$\frac{x^{3} - 8y^{2} - 8y + 3}{1.01x^{3} - 8x^{2} + 16x - 7} = 0$$

solutions = 6 deg(f) = 3, deg(g) = 3 \Rightarrow Bézout bound is $3 \times 3 = 9$ \Rightarrow Not exact!

Weighted Bézout Theorem

Theorem (known at least since 1970's) Number of solutions of f = 0 and g = 0 is less than or equal to

> wt(f)wt(g) $\overline{\mathrm{wt}(x)\,\mathrm{wt}(y)}$.

 $f = 0.005x^3 + 4y^2 - 4x^2 \mathbf{0.005x^3} + 4y^2 - 4x^2 \mathbf{0.005x^3} + \mathbf{4y^2} - 4x^2 \mathbf{0.005x^3} + \mathbf{0.005x$ $g = x^3 - 8v^2x^3 - 8v^2x^3 - 8v^2x^3 - 8v^2x^3 - 8v^2 - 8v + 3$

Assign different 'weights' to x and y

wt(f) wt(g) wt. Bézout bound $x \mapsto 1, y \mapsto 1$ 3 3 $\frac{3 \times 3}{1 \times 1} = 9 > 6$ $\frac{4 \times 4}{1 \times 2} = 8 > 6$ $\frac{6 \times 6}{2 \times 3} = 6 = 6$

Wt. Bézout bound is exact for weights (3,2)!

Different Perspectives

Perspective: parallel lines meet in a 'vanishing point'

Two point perspective: two vanishing points Counting solutions of polynomial systems

Painters' perspective Back to counting solutions Outdoing the painters

Painting geometry

Euclidean Geometry: geometry of the 'Euclidean plane' \mathbb{R}^2 .

Projective Geometry: add to \mathbb{R}^2 a 'line at infinity' which consists of vanishing points for all families of parallel lines.

The new space is the 'projective plane' \mathbb{RP}^2 .

Multi-point perspective: every family of parallel line has a distinct vanishing point

Doing the same with the complex plane \mathbb{C}^2 gives rise to the complex projective plane \mathbb{CP}^2 .

Back to counting solutions

Bézout's Theorem:

1.
$$\#\{f = g = 0\} \le \deg(f) \deg(g)$$
.
2. The bound is exact (for complex solutions) if the curves $f = 0$ and $g = 0$ 'approaches' different points at infinity on \mathbb{CP}^2 .

$$g = x^{3} - 8y^{2} - 8y + 3g = x^{3} - 8y^{2} - 8y + 3$$

$$g = 0 \text{ meets the point at infinity on } \mathbb{CP}^{2}$$

cor. to (lines parallel to)

$$f = 4y^{2} - 4x^{2} + 4y + 8x - 5f =$$

$$4y^{2} - 4x^{2} + 4y + 8x - 5$$

$$f = 0 \text{ meets } two \text{ points at infinity on } \mathbb{CP}^{2}: \text{ cor. to } y = x \text{ and } y = -x.$$

Example 2 revisited

Recall Example 2:
 10000

$$f = 0.005x^3 + 4y^2 - 4x^2 + 4y + 8x - 5$$
 5000

 $g = x^3 - 8y^2 - 8y + 3$
 0

 $\#\{f = g = 0\} = 6 < 9 = \deg(f) \deg(g).$
 0

 $g = 0$ meets the point at infinity on \mathbb{CP}^2 cor. to
 -5000

 $f = 0$ meets the same point at infinity on \mathbb{CP}^2 .
 -10000

Weighted Projective Planes

Projective plane $\longleftrightarrow \mathbb{R}^2$ + one point for each family of parallel lines y = mx + c

Weighted projective $\leftrightarrow \mathbb{R}^2$ + one point for each family of planes parallel curves $y^p = mx^q + c \ (p, q \text{ fixed})$

p = 3, q = 2

(We will deal with *complex* wt. projective spaces - just to make life a bit easier!)

Example 2 again

Weighted Bézout Theorem: Consider weights $x \mapsto p$, $y \mapsto q$. 1. $\#\{f = g = 0\} \le \frac{\operatorname{wt}(f) \operatorname{wt}(g)}{pq}$. 2. The bound is exact if the curves f = 0 and g = 0 'approaches' different points at infinity on the cor. weighted projective plane. Example 2: $\#\{f = g = 0\} = 6 = \frac{\operatorname{wt}(f) \operatorname{wt}(g)}{pq}$, p = 2, q = 3. $f = 0.005x^3 + 4y^2 - 4x^2 + 4y + 8x - 50.005x^3 + 4y^2 - 4x^2 + 4y + 8x^3 - 8y^2 - 8y + 3x^3 - 8y^2 - 8y + 3y^3 - 8y^2 - 8y^2 - 8y + 3y^3 - 8y^2 - 8y^$

What if weighted Bézout Theorem does not work?

$$f = x2 - xy + y - 3$$

$$g = x2 - 2xy - y - 4$$

Has one common solution at infinity on \mathbb{CP}^2 . (Can be seen from *leading homogeneous forms*.) Same is true for all weighted homogeneous planes.

For a better bound, consider the Newton polygon of f

Theorem (Kushnirenko, 1970s)

If f and g have the same Newton polygon \mathcal{P} , then $\#\{f = g = 0\} \le 2Area(\mathcal{P}).$

Bernstein's Theorem What if f and g have different Newton polygons? E.g. $f = x^2 - xy + y - 3$, g = xy - 2x - 3y - 4. Theorem (Bernstein, 1975) #{f = g = 0} \leq the mixed area of Newton polygons of f and g. y y y f

NP(g)

Area(NP(g)) = 1

NP(f)

Area(NP(f)) = 1.5

Mixed Area(NP(f), NP(g)) = Area(NP(f) + NP(g)) - Area(NP(f)) - Area(NP(g)) = 3 **Idea:** Adjoin the plane by points at infinity cor. to families of weighted curves coming from every *edge* of NP(f) and NP(g). The new spaces are called *toric varieties*.

NP(f) + NP(g)

Area(NP(f) + NP(g)) = 5.5

Topics related to this talk

- Bezout theorem and weighted Bezout theorem
- Toric varieties, in particular weighted projective spaces
- BKK (Bernstein-Kushnirenko-Khovanskii) theorem
- Roots of polynomials in two variables Puiseux series