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Definitions

X ⊂ U, open in Cn, is analytic if it is closed and locally the set

of zeros of analytic functions f1,. . . ,fk .

Reg(X )={x ∈ X : X is a manifold around x}, and

Sing(X ) = X \ Reg(X ).

X ⊂ U, is *-analytic if : X = X (r) ∪ X (r−1) ∪ · · · ∪ X (0)

with X (i) a complex submanifold of U of dimension i and

X (i) ⊂ X (i) ∪ · · · ∪ X (0).
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Preliminary Facts:

Thm 1. X analytic⇒ Sing(X ) analytic and

dim(Sing(X )) < dim(X ).

Cor. X analytic⇒ X is *-analytic.

Main Results

Thm 2. X is *-analytic⇒ X is analytic.

Cor. X ⊂ Pn is *-analytic⇒ X is algebraic.
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Proof. Let π : Cn+1 \ {0} → Pn the canonical map. Then

Z = π−1(X ) ∪ {0} is *-analytic⇒ Z is analytic. Write near 0

Z = V (f1, . . . , fk ). So fi =
∑

r≥1
∑
|α|=r c(i)

α xα =
∑

r fi,r = 0

⇒ fi(λx) =
∑

r λ
r fi,r (x) = 0, ∀|λ| < 1⇒ X = V (. . . , fi,r , . . . ). �

Note: From now on all U ’s and V ’s are open in . . . .

Proof of Thm 2 via repeated
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Inductive Step: Let X = X (r) ∪ X ′ ⊂ U ⊂ Cn s.th. X (r) is an

r-manifold (r-dimensional manifold); X (r) ⊂ X ; X ′ analytic,

*-analytic and dim(X ′) < r ⇒ X (r) is analytic.

Proposition A. p : Cn+k → Cn linear projection. X ⊂ U ⊂ Cn+k

analytic, V ⊂ Cn with p|X : X → V proper⇒ p(X ) is analytic in

V and p|X is finite-to-one.

Proof. Reduce to k=1. Factor p :

Cn+k p1−→ Cn+k−1 p2−→ Cn
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Then p|X proper⇒ p1|X : X → U1 := p1(U) is proper

⇒ X1 = p1(X ) is analytic in U1 . . .

For k=1 : Let y ∈ V then X ∩ p−1(y) compact and analytic in

U ∩ p−1(y)⇒ X ∩ p−1(y) = {x1, . . . , xl} ⇒ ∃U1, . . . ,Uk open,

disjoint, with xj ∈ Uj and W ⊂ V open s.th.

X ∩ p−1(W ) ⊂ U1 ∪ · · · ∪ Uk .

It suffices to show that p(X ∩ p−1(W ) ∩ Ui) is analytic. We may

assume WLOG that y = 0 and p−1(0) = {0}.
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Let X = V (f1, . . . , fk ) near 0. By Weierstrass Prep. Thm we

may assume : f1 = zd
n+1 + a1zd−1

n+1 + · · ·+ ad ,

fi = b1,izd−1
n+1 + · · ·+ bd ,i , for i ≥ 2.

With aj ,bj,i ∈ C{z1, . . . , zn} , aj(0) = 0 .

Res(f1, t2f2 + · · ·+ tk fk ) =:
∑
|α|=d tαRα with Rα ∈ C{z1, . . . , zn}.

Claim. p(X ) = V ({Rα}).

(z1, . . . , zn) ∈ p(X )⇒
∑
|α|=d tαRα(z1, . . . , zn) = 0 ,∀t ∈ Ck−1

⇒ Rα(z1, . . . , zn) = 0 , ∀α .
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(z1, . . . , zn) ∈ V ({Rα})⇒W1 ∪ · · · ∪Wd = Ck−1, where

Wj := {t ∈ Ck−1,
∑

ti fi(z1, . . . , zn,Aj) = 0}, provided {Aj} is a

root of f1(z1, . . . , zn, z)⇒ ∃j0, Wj0 = Ck−1

⇒ (z1, . . . , zn,Aj0) ∈ X . �

Our case: X0 ∪ X1 ⊂ U ⊂ Cn, X1 analytic in U and X0 analytic

in U \ X1. We may assume X0 ∪ X1 6= U and 0 ∈ X1.

Lemma We may shrink U so that ∃L ⊂ Cn a line with 0 ∈ L s.th.
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(i) X1 ∩ L = {0} .

(ii) X0 ∩ L is a set of discrete points with only possible limit

point 0 .

Cor 1. (X0 ∪ X1) ∩ L is compact

Cor 2. We may shrink U so that the projection p|X0∪X1 along L

is proper (Mumford’s Lemma).
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Proof.

(i) X1 ∩ L is analytic in U ∩ L, so 0 is isolated in U ∩ L.

Remains to shrink U.

(ii) X0 ∩ L is analytic in (U \ X1) ∩ L, so similarly it suffices to

shrink U.

Proposition A + Induction⇒ we can find a projection

p : Cn −→ Cm s.th. V := p(X0 ∪ X1) is an open nbhd of 0,

p|X0∪X1 is proper and p|X0\p−1(p(X1))
is finite-to-one.
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Then m = dim(X0) using Sard’s Lemma.

In notation of inductive step (page 4):

X = X (r) ∪ X ′ (m = r ), and Y := p(X ′) ⊂ V := p(X ) .

X (r) \ p−1(Y ) ⊂ X ⊃ X ′

q ↓ ↓ p ↓
V \ Y ⊂ V ⊃ p(X ′) = Y

Note that V \ Y is open and dense in V and that if V is a ball

then it is connected (since dimC(Y ) < dimC(V ) ).

Similarly X (r) \ p−1(Y ) is open and dense in X (r).
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q := p|X (r)\p−1(Y ) is proper and finite-to-one, between two

r-manifold.

Let J be the jacobian of q. Then A = J−1(0) is a closed analytic

subset of X (r) \ p−1(Y )

⇒ B := q(A) is an analyitic subset of V \ Y , by proposition A.

By Sard’s thm, Ṽ := V \ (B ∪ Y ) is open, dense in V . Also Ṽ is

connected (dimC(B ∪ Y ) < dimC(V ) ).

Similarly ˜X (r) = X (r) \ p−1(B ∪ Y ) is open and dense in X (r).
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So s := q| ˜X (r) is a proper, finite-to-one local diffeomorphism

onto a connected Ṽ ⊂ Cn.
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Definition of the functions:

(i) d the number of sheets of the covering s ;

(ii) L a linear function on Cn ;

Let σi be the i-th symmetric function, so that for

λ1, . . . , λd ∈ C ;

∏
i(z − λi) = zd +

∑
i σi(λ1, . . . , λd )zd−i .

(iii) for y ∈ Ṽ , let s−1(y) = {x1, . . . , xd} and define

ai(y) := σi(L(x1), . . . ,L(xd )) ;
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(iv) for y ∈ V ∃ a nbhd W s.th. ai is bounded on Ṽ ∩W

⇒ we may extend ai as C-anlytic functions on V ,by

Riemann Extension Thm.

(v) FL(x) := L(x)d + a1(p(x))L(x)d−1 + · · ·+ ad (p(x)) on

p−1(V ).

End of Proof of Thm 2.

Step 1. FL ≡ 0 on ˜X (r) ⇒ FL ≡ 0 on X (r) ⇒ X (r) ⊂ ∩LV (FL).
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Step 2. For x ∈ p−1(V ) \ X (r) ⊂ Cn, let y = p(x), and yk ∈ Ṽ

s.th. lim yk = y (Ṽ dense in V ).

Let s−1(yk ) = {x1
k , . . . , x

d
k }. Since p : X (r) → V is proper we

may assume, by choosing a subsequence, that x j
k → x j ∈ X (r).

Since x /∈ X (r), ∃L ∈ (Cn)∗ s.th. ∀j we haveL(x) 6= L(x j)

⇒ FL(x) 6= 0⇒ X (r) = ∩LV (FL) . �

Main Thm is proved.
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Appendix

Resultant Let R be a ring. For k ∈ N let

Rk [X ] = {P ∈ R[X ],deg(P) ≤ k}.

Then for P,Q ∈ R[X ] with degrees p and q consider the map :

ΦP,Q : Rq−1[X ]× Rp−1[X ] −→ Rp+q−1[X ]
(S,T ) 7→ PS + QT

Then Res(P,Q) := det(φP,Q).

Claim. If Res(P,Q) = 0 then P and Q have a common root.
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Hilbert Basis Theorem. If R is a noetherian ring then for

n ≥ 1, R[X1, . . . ,Xn] is also noetherian.

Weierstrass Preparation Theorem. f ∈ C{X1, . . . ,Xn} with

f (0, . . . ,0,Xn) = αX d
n + higher terms, α 6= 0.

⇒ ∃! u ∈ C{X1, . . . ,Xn}, ai ∈ C{X1, . . . ,Xn−1} s.t. :

u(0) 6= 0, ai(0) = 0 and f = u(X d
n+1 + a1X d−1

n+1 + · · ·+ ad ).

Moreover g ∈ C{X1, . . . ,Xn} ⇒ ∃! h ∈ C{X1, . . . ,Xn}, bi ∈

C{X1, . . . ,Xn−1} s.t. : g = hf + (b1X d−1
n + · · ·+ bd ).
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Riemann Extension Theorem. X ⊂ U ⊂ Cn an analytic set

and f analytic on U \ X , bounded in a nbhd of x , ∀x ∈ X

⇒ f extends to an analytic function on U.

Mumford’s Lemma. f : X → Y continuous between locally

compact top. spaces. y ∈ Y s.t. f−1(Y ) is compact.

⇒ ∃U and V open with f (U) ⊂ V and f : U → V proper.
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