Resolution of Singularities I The Blow-Up Operation

Will Pazner

February 12, 2010

1. Set up.

k :=field of characteristic 0

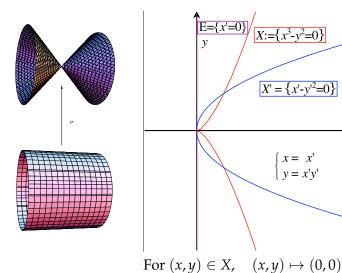
Defn. **Algebraic variety** $k^n \supset X := \text{zeros of } f_1, \dots, f_k \in Pol$

Defn. **Multiplicity** of *f* at *a* is

$$\mu_a(f) := \min \left\{ d : \frac{\partial^d f}{\partial x_{i_1}^{d_1} ... \partial x_{i_k}^{d_k}}(a) \neq 0 \text{ for } d_1 + \ldots + d_k = d \right\}$$

Defn. $a \in \text{Sing}(V(f)) \iff \mu_a(f) > 1$

e.g.
$$Cone = V(f = x^2 - y^2 - z^2)$$
 $Sing(Cone) = \{0\}$ $\mu_0(f) = 2$



Slope $y' = \frac{y}{x} \to 0 \iff \text{line}[x:y] \to x\text{-axis}$

2. Enticement.

Take "any" *f* on manifold *M* (f is in some fixed category, *e.g.* polynomials, or analytic functions)

Then \exists proper morphism ϕ : M' → M

(ϕ is a composition of "quadratic" maps)

 $f \circ \phi$ is locally a monomial (up to invertible factor) on M

Furthermore, even $J(\phi) \cdot (f \circ \phi)$ is locally a monomial

3. Blowing-up: key instrument.

 $C \hookrightarrow M$ manifolds. $U \subset M$ coordinate chart.

$$C = V(I)$$
, ideal $I = (f_0, \dots, f_m)$ on U .

$$[f]: U \setminus C \ni x \mapsto [f_0(x): \dots : f_m(x)] \in \mathbb{P}^m_{[\xi]}$$

$$\operatorname{Bl}_I U := \operatorname{closure} \operatorname{graph} [f] \subset U \times \mathbb{P}^m$$

$$\downarrow^{\sigma} \qquad \qquad \downarrow^{\pi}$$

$$U \qquad \xrightarrow{\operatorname{id}} \qquad \qquad U$$

closure graph
$$[f] = \{(x, [\xi]) : \xi_j f_i(x) = \xi_i f_j(x)\}_{i,j \le m}$$

So
$$\sigma$$
: Bl_I $U \to U$ where $\sigma = \pi|_{\text{Bl}_I U}$.

4

$$U \times \mathbb{P}^m = \bigcup_j V'_j \qquad V'_j := \{ \xi_j \neq 0 \}. \quad U'_j := V'_j \cap \operatorname{Bl}_I U.$$

Say $I := (x_1, ..., x_m)$ where $(x_1, ..., x_n)$ are coordinates on U. So $C = V(I) = \{(x) : x_1 = ... = x_m = 0\}$.

$$U_j' = V_j' \cap \{\xi_j x_i = \xi_i x_j\}_{i,j \le m}$$
 So coordinates on U_j' are:

$$y_j = x_j$$

 $y_i = \xi_i/\xi_j$ for $1 \le i \le m, i \ne j$
 $y_i = x_i$ otherwise

e.g. on chart
$$U_j'$$
 $U_j' \setminus U_i' = \{y_i = 0\}$
and $U_i' \cap \sigma^{-1}(C) = \{y_i = 0\}$

Furthermore

$$\sigma|_{U_i'}$$
: $x_j = y_j$ $x_i = y_j y_i$ $(1 \le i \le m, i \ne j)$ $x_i = y_i$ (otherwise)

5. Example: $f := x^n - y^m = 0$, $X = \{f = 0\} \subset k^2$

Assume gcd(n, m) = 1, n > m.

$$I = (x,y), \quad C = \{0\} = Sing(X)$$

Fact:
$$\overline{\sigma^{-1}(X \setminus C)} \subset U'_x \qquad \sigma|_{U'_x} \colon (x_0, y_0) \mapsto (x_0, x_0 y_0)$$

$$f \circ \sigma(x_0, y_0) = x_0^n - (x_0 y_0)^m = x_0^m (x_0^{n-m} - y_0^m) \text{ for } (x_0, y_0) \in U_x'$$
$$f' := x_0^{-m} (f \circ \sigma) = x_0^{n-m} - y_0^m, \quad \sigma^{-1}(C) = \{x_0 = 0\}.$$

Summarizing.
$$\sigma^{-1}(X) \cap U'_{x} = \{x_0 = 0\} \cup \{f' = 0\}$$

Repeat. By Euclidean Algorithm:

Finitely many blowups $\implies X_n$ has no singularities.

6. Effect of blowing up.

$$M \supset X := \{x : f(x) = 0\}$$
 $a \in X$ $d := \mu_a(f)$

Linear coordinate change $\implies a = 0$ and $\frac{\partial^d f}{\partial x^d}(a) \neq 0$ Why:

 $f = \sum_{|\alpha| \ge d} c_{\alpha} x^{\alpha} \implies \sum_{|\alpha| = d} c_{\alpha} x^{\alpha} \ne 0, x \in \xi \text{ for some line } \xi \text{ Make } \xi \text{ into the } x_n\text{-axis.}$

 $\tilde{x} := (x_1, \dots, x_{n-1})$. Near *a* can write

$$f(x) = c_0(\tilde{x}) + c_1(\tilde{x})x_n + \ldots + c_{d-1}(\tilde{x})x_n^{d-1} + c_d(x)x_n^d$$

$$c_d(x) \neq 0$$
. Im.F.T. $\Longrightarrow \frac{\partial^{d-1} f}{\partial x_n^{d-1}}(x) \sim (x_n - h(\tilde{x})) =: x_n' \text{ new coord.}$

$$N := \left\{ x : \frac{\partial^{d-1} f}{\partial x_n^{d-1}}(x) = 0 \right\}, \quad c_i := \left. \frac{1}{i!} \cdot \frac{\partial^i f}{\partial x_n^i} \right|_N, \quad i < d$$

7. Blowing-up with $C = \{x_1 = ... = x_m = x_n = 0\}$

Two types of charts: U'_n and all the others.

On $U'_n \setminus \bigcup_{j=1}^m U'_j = \{y_1 = \ldots = y_m = 0\}$ we show later $f' \neq 0$.

In coordinate chart U'_j for $1 \le j \le m$. Say j = 1.

$$\sigma^{-1}(C) \cap U_1' = \{y_1 = 0\}.$$

$$c'_i := y_1^{i-d}(c_i \circ \sigma) \Longrightarrow c'_i = c'_i(\tilde{y}), \text{ for } i < d$$

 $\tilde{y} := (y_1, \dots, y_{n-1})$

$$f' := y_1^{-d}(f \circ \sigma) = c'_0(\tilde{y}) + \ldots + c'_{d-2}(\tilde{y})y_n^{d-2} + c'_d(y)y_n^d$$

$$c'_d(y) \neq 0 \ \forall y \in \sigma^{-1}(C) \cap U'_1 \text{ since } \frac{\partial \sigma_n}{\partial y_n}(y) = y_1 = 0$$

In particular $\mu_y(f') \leq d$.

8. On $U'_n \setminus \bigcup_{j=1}^m U'_j = \{y_1 = \ldots = y_m = 0\} \ni y$ $f'(y) := y_n^{-d} (f \circ \sigma)(y) = c'_0(y) + c'_1(y) + \ldots + c'_d(y),$ where $c'_i := y_n^{i-d} (c_i \circ \sigma)$

$$\mu_x(c_i) \ge d - i \ \forall x \in C, \quad i.e.$$

$$c_i = \sum_{i, \ldots, \alpha_m} c_{i_{\alpha}}(x_{m+1}, \ldots, x_{n-1}) \cdot x_1^{\alpha_1} \ldots x_m^{\alpha_m}$$

Recall $(x_1, \ldots, x_m) = y_n \cdot (y_1, \ldots, y_m) \Longrightarrow$

In fact, $f'(y) \neq 0$ for $y \in U'_n \setminus \bigcup_{i \neq n} U'_i$

$$\left. \begin{array}{l} c'_d(y) \neq 0 \\ c'_j(y) = 0 \end{array} \right\} \implies \mu_y(f') = 0 \le d$$

Corollary. $d = \mu_a(f) \implies \mu_{a'}(f') \le \mu_a(f) \ \forall a' \in \sigma^{-1}(a)$.

Conclusion: we don't need to consider U'_n chart.

9. Monomial assumption

Assumption: (proved later using induction on dimension) $\exists \Omega \in \mathbb{O}^{n-1}$ such that $c_i(\tilde{x})^{d!/(d-i)} = (\tilde{x}^{\Omega})^{d!} \cdot c_i^*(\tilde{x})$

Where $\tilde{x}^{\Omega} := x_1^{\Omega_1} \dots x_{n-1}^{\Omega_{n-1}}, \quad d!\Omega_i \in \mathbb{N}$ with some $c_i^*(\tilde{x}) \neq 0 \ \forall \tilde{x}$.

 $S_{(f,d)}:=\{x\colon \mu_x(f)=d\}=\{x\colon x_n=0 \text{ and } \mu_{\tilde{x}}(\tilde{x}^\Omega)\geq 1\}=\bigcup_J Z_J$

 $Z_J := \{x_n = 0, x_j = 0 \ \forall j \in J\}$, for J s.th. $\sum_{j \in J} \Omega_j \ge 1$

Suffices to consider J s.th. $0 \le \left(\sum_{j \in J} \Omega_j\right) - 1 < \Omega_k \ \forall k \quad (*)$

Choose $C = Z_J$ for any such J. Say $J = \{1, ..., m\}$.

10. Multiplicity decreases.

We will show $|\Omega| := \sum_{k=1}^{n-1} \Omega_k$ decreases at points $y \in \sigma^{-1}(a)$ with $\mu_{a'}(f') = \mu_a(f) = d$. On U'_i say i = 1

Reminder: corollary $\implies \mu_{\nu}(f') \leq d$.

Either multiplicity decreases (done) or multiplicities are equal.

$$\begin{split} c_i'(\tilde{y})^{d!/(d-i)} &= (y_1^{(i-d)d!/(d-i)})(\sigma(\tilde{y})^{\Omega})^{d!}(c_i^* \circ \sigma(\tilde{y})) \\ &= (y_1^{(\sum_{k \in J} \Omega_k) - 1} y_2^{\Omega_2} \dots y_{n-1}^{\Omega_{n-1}})^{d!}(c_i^* \circ \sigma(\tilde{y})) \end{split}$$

Recall:

$$f' = c'_0(\tilde{y}) + \dots + c'_{d-2}(\tilde{y})y_n^{d-2} + c'_d(y)y_n^d$$
 with $c'_d(y) \neq 0 \ \forall y$

11. If $\mu_{a'}(f') = d$ then $y_n = 0$

$$\Omega' := (\sum_{k=1}^m \Omega_k - 1, \Omega_2, \dots, \Omega_{n-1})$$

Then $(\tilde{y}^{\Omega'})^{d!} \mid (c_i')^{d!/(d-i)} \ \forall i$ with some $(c_i^* \circ \sigma)(\tilde{y}) \neq 0 \ \forall \tilde{y}$ *i.e.* f' satisfies monomial assumption

$$|\Omega'| < |\Omega|$$
 by choice of C (see inequality $(*)$) \Longrightarrow $(\mu_{a'}(f'), |\Omega'|) < (\mu_a(f), |\Omega|)$ (ordered lexicographically)

Conclusion: multiplicity d decreases when $\sum_{k=1}^{n+1} \Omega_k < 1$.

After blowing up,
$$|\Omega'| - |\Omega| \ge 1/d!$$
 since $d!\Omega_i \in \mathbb{N}$

 \implies after at most $d!|\Omega|$ blowings-up, multiplicity decreases.

12. Induction on dim. \implies monomial assumption

$$A_f(\tilde{x}) := \prod_{i=0}^{d-2} c_i^{d!/(d-i)}(\tilde{x}) \times (\text{'their' differences})$$

 \prod' means include only nonzero factors

Desing. in (n-1)-dim $\Longrightarrow \exists \phi = \sigma_1 \circ \cdots \circ \sigma_\ell$ such that $(A_f \circ \phi)(\tilde{y})$ is locally monomial

So, W.L.O.G. may assume each factor in the product is locally a monomial on $N = \left\{ \frac{\partial^{d-1} f}{\partial x_n^{d-1}}(x) = 0 \right\}$.

Lemma (to come) \implies exponents are totally ordered $\implies \exists \Omega \text{ such that } (\tilde{x}^{\Omega})^{d!} \mid (c_i)^{d!/(d-i)}$

13. Lemma

$$\alpha, \beta, \gamma \in \mathbb{N}^n$$
 $a(x), b(x), c(x)$ invertible

$$a(x)x^{\alpha} - b(x)x^{\beta} = c(x)x^{\gamma} \implies \begin{cases} \text{ either } & \alpha_i \leq \beta_i \ \forall i \\ \text{ or } & \beta_i \leq \alpha_i \ \forall i \end{cases}$$

Proof. If $\alpha_k \leq \beta_k \ \forall k \ \text{done.}$ Otherwise $\exists k \ \text{s.t.} \ \beta_k < \alpha_k$.

Write
$$\alpha - \beta_k = (\alpha_1, \dots, \alpha_k - \beta_k, \dots, \alpha_n)$$

$$a(x)x^{\alpha-\beta_k}-b(x)x^{\beta-\beta_k}=c(x)x^{\gamma-\beta_k}$$
. Evaluate at $x_k=0$

$$\implies c(x)x^{\gamma-\beta_k} = -b(x)x^{\beta-\beta_k} \neq 0 \implies \beta = \gamma$$

$$\implies a(x)x^{\alpha} = (b(x) + c(x))x^{\beta}.$$

If $\exists j \text{ s.t. } \alpha_j < \beta_j$, proceed similarly. Done

14. I cheated: used stronger induction than proved

I ignored exceptional factors that accumulated before the 'last' drop in multiplicity of $f\mapsto f':=y_{\rm exc}^{-d}(f\circ\sigma)$ (say 'old' exceptional divisors).

As a consequence, choices of centres might **not** have normal crossings with with 'old' exceptional divisors as well.

Say
$$E_{\text{old}} := \{ H_k : H_k \text{ old exc.} \}$$

$$E_{\text{old}}(a) := \{ H_k \in E_{\text{old}} : a \in H_k \} \qquad s(a) := \#E_{\text{old}}(a)$$

$$\{ g_k = 0 \} := H_k \implies d g_k \neq 0$$

15.

Choose x_n such that both

$$\frac{\partial^d f}{\partial x_n^d}(a) \neq 0$$
 and $\frac{\partial g_k}{\partial x_n}(a) \neq 0$ $\forall H_k \in E_{\text{old}}(a)$

Consider besides
$$c_j(\tilde{x}) = \frac{\partial^j f}{\partial x_n^j}\Big|_N$$
, $0 \le j \le d-2$ all $a_k = g_k|_N$.

Now,

$$A_f(\tilde{x}) := \prod' c_j^{d!/(d-j)}(\tilde{x}) \times \prod' a_k^{d!}(\tilde{x}) \times \text{('their' differences)}$$

Before: $(\mu_{a'}(f'), |\Omega'|) < (\mu_a(f), |\Omega|)$ for $a' \in \sigma^{-1}(a)$

Now:
$$(\mu_{a'}(f'), s(a'), |\Omega'|) < (\mu_a(f), s(a), |\Omega|)$$