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1. Set up.

k := field of characteristic 0
Defn. Algebraic variety k" O X := zeros of fi,...,fx € Pol
Defn. Multiplicity of f ata is

1a(f) ::min{d: adf"’f (a) ¢0ford1+...+dk:d}

dye
i) -0y

Defn. a € Sing(V(f)) <= m(f) > 1

e.g. Cone = V(f = x> —y> —z2) Sing(Cone) = {0} po(f) =2



For (x,y) € X, (x,y)~ (0,0)
Slopey’ =% — 0 <= line[x: y] — x-axis



2. Enticement.

Take “any” f on manifold M (f is in some fixed category, e.g.
polynomials, or analytic functions)

Then 3 proper morphism ¢: M’ — M
(¢ is a composition of “quadratic” maps)
f o ¢islocally a monomial (up to invertible factor) on M

Furthermore, even J(¢) - (f o ¢) is locally a monomial



3. Blowing-up: key instrument.

C — M manifolds. U C M coordinate chart.
C=V(I),ideal I = (fo,...,fm) on U.

Bl; U := closure graph [f] C U x P"

lo | In
u id N u
closure graph [f] = {(x, [¢]): ¢ifi(x) = Cifi(x) }ij<m

Soc: Bl;U — U where ¢ = 7|p, .



uX]Pm:U]-V]( V], = {(:]7&0} U]/ = VJ{QBIIU.

SayI:= (xy,...,%y) where (x1,...,x,) are coordinates on U.
SoC=V(I)={(x):xg =... =x, =0}.

U]’ = V]( N {gxi = Cixj}ij<m So coordinates on U]{ are:

Yj =X
vi = Gi/ G forl1 <i<m,i#j
Yi =X otherwise

e.g. on chart LI]’- U]/\Uf = {y; =0}
and uin o 1(C) = {y; =0}
Furthermore

c7|u/(: xi=y; xi=yy (1<i<mi#j) x;=y; (otherwise)



5. Example: f :=x"—y" =0, X={f=0} Ck*

Assume ged(n,m) =1, n > m.

1= (xy), C= {0} = Sing(X)

Fact: 0—1(X\C) C U, alu: (x0,¥0) — (X0, XoYo0)
foa(xo,yo) = xG — (xoy0)™ = x5'(xg~" — yg') for (xo,50) € Uy
fr=x"(for)=xg " —yy, o (C)={x=0}
Summarizing. o~} (X) N U, = {xo = 0} U {f' =0}

Repeat. By Euclidean Algorithm:
Finitely many blowups = X, has no singularities.



6. Effect of blowing up.

MO X:={x:f(x)=0} aeX  d:=pulf)

Linear coordinate change = 4 = 0 and —{;( )#0  Why:

Vl

f = azd X" = Ljaj=acaX" # 0, x € § for some line ¢ Make
¢ into the x,-axis.

X := (x1,...,X,-1). Near a can write

F(x) = co(®) + e1 (@) + .+ ca1 (B)x "+l

ci(x) #0. InET. = il (x) ~ (x, — h(%)) =: x}, new coord.

-1
0x%;

N::{x:adj(x):O}, ci::.l,-al , i<d

a—1
9xy;



7. Blowing-up withC = {xy = ... = x, = x, = 0}
Two types of charts: Uj, and all the others.
On U;\UL U = {y1 = ... = ym = 0} we show later f" # 0.
In coordinate chart LI]{ for1 <j<m.Sayj=1.
o1 (C)NU; = {y1 = 0}.

b= Yn-1)

~

=y (foc) =ch(l) + ...+ iy +ch(y)yd

ch(y) #0Vy € o7}(C) N U since 3% (y) = y; = 0
In particular p, (f") < d.



8.0nU\ULii={yi=...=yn=0} >y
') =y (foo)y) = co(y) +ci(y) + ... +c4(y),

where ¢} := i 4 (c; 0 0)
px(ci) >d—ivxeC, e

c; = Z ci, (g1, - - Xno1) .x‘i‘l ‘

a
R aeti
la|>d—i

m

Recall (x1,...,%m) =Yn- WY1,---, Ym) =

(y) #0 )
Ef(yy):O} = wy(f')=0<d

Corollary. d = 1, (f) = wua(f') < pa(f) Va' € 7 1(a).
In fact, f'(y) # 0 for y € U} \ Ujzn Uj

Conclusion: we don’t need to consider Uj, chart.



9. Monomial assumption

Assumption: (proved later using induction on dimension)
30 € Q"' such that ¢;(%)*/ (- = ()" . ¢x (%)

Where ¥} := x?l .. .x,?j;l, d!Q); € IN with some ¢ (%) # 0 V.
Sia) == {x: pux(f) =d} = {x: x, = 0and puz(¥?) > 1} = U4
Zy:={x, = 0,x; = 0Vj € J}, for ] s.th. Y Qi >1

Suffices to consider | s.th. 0 < (ng Q]-> 1< Vk (%)

Choose C = Z; for any such J. Say | ={1,...,m}.



10. Multiplicity decreases.

We will show |Q)] := Y1 O decreases at points
y € o~ (a) with py (f') = ua(f) = d. On Ujsayj=1

Reminder: corollary = p,(f') <d
Either multiplicity decreases (done) or multiplicities are equal.
~\d! d! ~ [ ~
@)™ = @ @D o o)
-1 1/ % -
= P o)

Recall:
fr=c@) +... + @i+ )y with  cj(y) #0Vy



11. If py(f') = d theny, =0

Q/ = (Zl}?:l Qk — 1, 02, .. -/Qn—l)

Then ()% | (¢))*/ @) Vi  with some (c} o ) (§) # 0 V§
i.e. f’ satisfies monomial assumption

|QY| < |Q)f by choice of C (see inequality (*)) =
(na (F1), 1Y) < (pa(f), 192]) (ordered lexicographically)

Conclusion: multiplicity d decreases when Z,’z;“ll O < 1.
After blowing up, || — |Q)| > 1/d! since d!Q); € N

= after at most d!|Q}| blowings-up, multiplicity decreases.



12. Induction on dim. = monomial assumption

Af(%) = H/? o2 fl'/ = (%) x (‘“their’ differences)
[T means include only nonzero factors

Desing. in (n — 1)-dim = 3¢ = 07 0 - - - 0 0y such that
(Af 0 ¢)(#) is locally monomial

So, W.L.O.G. may assume each factor in the product is locally a
monomial on N = {g;;z(x) = 0},

Lemma (to come) = exponents are totally ordered
—> 3O such that ()% | (cz-)"”/(d*l)



13. Lemma

a, B,y € N" a(x),b(x),c(x) invertible

either wo; < B;Vi
or ﬁi < L% Vi

a(x)x® —b(x)xP = c(x)x7 = {
Proof. If a; < By Vk done. Otherwise Jk s.t. B < ay.
Write & — By = (a1, ..., & — Brs - - -, &n)

a(x)x*Pr — b(x)xP~Pr = c(x)x7~Pr. Evaluate at x; = 0
= c(x)x7 P = —b(x)xF P20 = B=1

= a(x)x* = (b(x) + c(x))xP.

If Jj s.t. a; < Bj, proceed similarly. Done =



14. I cheated: used stronger induction than proved

Iignored exceptional factors that accumulated before the ‘last’
drop in multiplicity of f — f' := y;4(foo) (say ‘old’
exceptional divisors).

As a consequence, choices of centres might not have normal
crossings with with “old” exceptional divisors as well.

Say Eoq := {H: Hy old exc.}
Eqa(a) := {Hi € Eqia: @ € Hy}  s(a) := #Eqq(a)

{gr=0}:=H, = dg#0



15.

Choose x, such that both

d
af()iO and ggk(a);t0 VH; € Eq4(a)

ox{ Xn
. . ey ﬂ B
Consider besides ¢;(¥) = o N,O <j<d-2
all a = gk|N‘
Now,
Af(X) := ' d'/ H/ 4 (%) x (‘their’ differences)

Before: (1, (f"), |QY]) < (pa(f), |Q]) fora’ € c=1(a)

Now: (pa ('), s(a'), [V]) < (ua(f),5(a), 1O2)



