University of Toronto
MAT477 Seminar in Mathematics

Professor P. Milman

Distance to Hypersurface Theorem

Dejan Ignjatovic

January 22, 2010



Theorem (Distance Formula)

For P a polynomial and a, x € C",

1
- dp(a,x) < dp(a,x) < Vn deg(P) dp(a, x)

where
V(P,x):={z€ C"|P(z) =P(x)} a=(ay,,a,) ELY
dp(a,x) = dist(a,V(P, x)) la| =a; + - a,
=z Def =l f/axt -+ dxy™
P —P
dp(a,x) = min ga) ()
1<|a|<deg (P) —,D“P(a)
al
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Motivation for Theorem

Recall that polynomials of degree 1 defined on C" satisfy

|P(a)l

dist(a,{z € R*|P(2) = 0}) = lgradP(a)|l .2

This is a special case of a similar well-known formula in R".

llgradP(a)||;2 = ‘maxj % (a)‘, with a constant that only depends on n.
]

Hence, when deg(P) =1

dist(a,{z € C*"|P(z) = 0}) =
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Preliminaries
Given any value of P(x), we can consider the polynomial Q(z) := P(z) — P(x).

Hence, we may assume that P(x) = 0.

For a,& € C" with |£] = 1 we will define a new polynomial

P¢(z) = P(z§ + a).

If P(a) = 0 then P(a) = P(x). Hence, dp(a,x) = 0 and dy(a, x) = 0 and so there is nothing to prove.

Thus, we assume that P(a) # 0 and so P;(0) # 0.
Now, define the distance from a to V' (P, x) along the complex line through a in the direction ¢ to be:

dist; (a,V(P, x)) = anEi(gl{l(zf +a) —al|:P(z§ +a) =0}
= I;}Eiélﬂzhpg(z) = O}.
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Claim 1:

Claim 2:

Claim 3:

Claim 4:

MAT477

Outline of Proof

1
dlstg(a V(P, x)) > —
i b

dlStg(a V(P, x)) < deg(P) 1_k<deg @) |1

IR
Vn deg(P) dj(a,x) = dp(a,x)

1
7 dp(a,x) < dp(a,x)

Distance to Hypersurface

=

in P:(0)
21_k<deg(P) 1 (k)(O)

P:(0)

= PY9(0)

x| =
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x| =

P£(0)

Proof of Claim 1: dists(a,V(P,x)) = %minlgksdeg(p) T, ® )
KE

First write P;(z) as a power series expansion P (z) = Y a,z* where aq;, = —P(k)(O) Then,
P¢(z) = 0 implies

m
a
Rt
a
=1 0
Hence,
m
2 21* < Z<R|z|>k
where
1
ag |k
R := max |—
1<k<m Ao

. w (1\F
Since Y, -4 (E) = 1, we have

i (%)k =1< i(RIzI)" < i(mmk
k=1 k=1 k=1
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1
Hence, R|z| = 5 and so

Gy |k
1<k<m 1Qg

x| =

P:(0)

1<ksm |1 [k
== klP()(O)

Recall that
dist; (a,V(P, x)) = anElg{lzl:Pse (2) = 0}.
Thus,
1
1 P.0) |
dist;(a,V(P,x)) == min __
2 1_k<deg(P) 1
=PY(0)
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1
. . . P.(0) |¥
Proof of Claim 2: dist¢(a,V(P,x)) < deg(P) min; g <geq (p) 0
K'e
. . ~ 1
Consider the polynomial P, (z) := z™ P, (;)
We can write PE (z) in two ways.
1) Pe(2) = XLy ap; 7
2) P¢(2) = ag [1}=1(z — z.).
Equating coefficients yields,
, a . m! .
! am—;| = ‘Epg(o)‘ < |Clo|(m—_j),Mm_’
where
1
M := max |z;| = — :
1<k<m dist; (a, V(P, x))
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Thus,
1
kl'P(k)(O) < 1<k<
_— smmw, m,
P:(0)
and so it follows that
1
k
P:(0
dist; (a VP, x)) < deg(P) L
1Jc<deg<P> 1 P(k>(0)
kl

Thus, we have proven

| =
=

1 P¢(0) P¢(0)
§1sk21din ol T o= < dist; (a V(P, x)) < deg(P) 1_k<d ol T o=
=de e
i VA Rl A ()

which is equivalent to

1
Ed; (a,x) < dp(a,x) < deg(P)dp(a,x)
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To prove the general case we will make use of the fact that

dist(a, VP, x)) = lrglzri dist; (a, V(P, x)).

We now make use of the Cauchy integral formula on polydiscs which states:

Let D = [[1 D; be an open polydisc, let 9D = [[} dD; denote its boundary, and let f be continuous on
the closure of D. Then,

f((b L) (n)

f(z1, .. 20) = (2TTi)"n oD (61— 21) - ($n — 2n)

ddy -+ déy

P (0) «
= Bial-k ba§“where by = 210

al

By definition P;(z) = P(z¢ + a) and so

1 S

1 o _ ETRE (2)
D PEE ) = | @ — 2@ (&, — zyyant1 251 = L

EETX---XT
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By taking absolute values and evaluating at z = 0 we get,

1
‘—D“P(a)‘ wh O dé; ...d¢
(2n )n .
1 )
Lol B =) P
EETX---XT
< geITI;aXxT T P(k)(O)‘

Thus, using the Cauchy integral formula, we have shown that for all |a| = k

1
PO

1
‘—D“P(a)‘ < max
al Tk

EETX-
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Proof of Claim 3: v/n deg(P) d}(a,x) = dp(a, x)
We know that

1
=P )

1
‘ED“P(a)‘ max o

EET X XT

Then, setting & = \/_ yields,

‘—D“P(a)| (\/_) |régllax P( )(0)|
—(\/_) max P( )(0)|
This implies,
1 1
e k
P@ [ 1 | P(0)
la|=k %D“P(a) ~nlél=t %PE(")(O)
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Therefore,
1
%
P:(0
»(a,x) = T1sk21din » |rgr}i ) —ii))
n 1<k<deg =1|1
k.Pg (0)
1
%
1 P:(0)
:_fg‘}l‘%u«e‘;(m 1,0
n =P®(0)
> = mi dists(a,V(P,x))
= — Imin Lstg( a, » X
Jnlé1=1de (P) ¢
Ly t(a,V(P,x))
= — ist(a, X
Vn deg(P)

Rearranging yields,

Vn deg(P) dj(a,x) = dp(a,x)
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Proof of Claim 4: --dj(a,x) < dp(a,x)

When [¢] = 1 we have

1 1 1 1
1 D*P(a) _|* D*P(a)|\* D*P(a)|k k
| P(k)(0)| z ()E“ S(E ()> < max (@) (2 1)
k! a! a! la|=k a!
la|=k la|=k la|=k
This implies,
1 L
L p@ gy L papig|”
k!" ¢ ma
P | = lelzk| P(@
After inverting, we get
1 1
k
1| p@ [ | PO
7 jal=k | 1 1 00
aD“P(a) k'P (0)
Therefore,
1
k
1 . Pe(o) .
—dp(a,x) < min < 2dist; (a,V(P,x))
n 1<k <deg (P) YN P(k)(o)

kl
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Applications

The Distance Formula can be used when dealing with Markov inequalities to relate algebraic
guantities purely in terms of geometric ones.

Defintion

Suppose that K ¢ R" is closed. We say that K admits a local Markov inequality of exponent o > 1 (in
uniform norms) if there are constants C, k = 0,1,2, --- such that for all polynomials P, x e K,0<e <1
and 0 < |a| < deg(P) <k,

ID*P(x)| < Co(Cre)*NIPllkns, )
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Theorem
The value ¢ in the Markov inequality is directly related to the cuspidality of the set K.

Outline of Proof:

The Markov inequality can be restated as
ID*P(a)] < Co(Cre™)“NIP (x5, (@)
and also as

~—1 o
max dr(a,x)=>C, ‘€
x€EKNB.(a) p(a,x) k

The distance formula allows us to replace the value dy(a, x) by dp(a, x) and so converting a purely
algebraic quantitiy into an inequality involving the geometric concept of distance.

Theorem

There exist Sobolev inequalities and they are equivalent to Markov inequalities for an appropriate o.

Recommended Readings:

P. Milman & L. Bos "A Sobolev-Gagliardo-Nirenberg and Markov type inequalities on subanalytic domains ",
Geometric And Functional Analysis, Volume 5, Number 6 p.853-923

D. Kinzebulatov "A note on Gagliardo-Nirenberg type inequalities on analytic sets”, C. R. Math. Rep. Acad. Sci. Canada,
Volume 30 (2009), p.97-105
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