Malgrange Preparation Theorem

Kejia Wang

The Department of Mathematics University of Toronto

March 09 2010

1. All Functions C^{∞} All rings commutative with Id

Def: A germ is an equivalence class of functions: representatives agree in the neighbourhood of some point.

E.g.
$$\mathcal{E}(n)$$
 ring of C^{∞} germs: $(\mathbb{R}^n, 0) \to \mathbb{R}$ at 0.

E.g.
$$\mathcal{E}(n) \supset m(n) = \{f \in \mathcal{E}(n) | f(0)=0 \}$$
 is unique maximal ideal

E.g.
$$f:(\mathbb{R}^n,0)\to(\mathbb{R}^p,0)\Rightarrow f^*:\mathcal{E}(p)\to\mathcal{E}(n)$$
 homomorphism

Def: $\widetilde{f}:(\mathbb{R}\times\mathbb{R}^n,0)\ni(t,x)\to f(t,x)\in\mathbb{R}$, is p-regular with respect to t:

if
$$\widetilde{f}(0,0) = \frac{\partial}{\partial t}\widetilde{f}(0,0) = \dots = \frac{\partial^{p-1}}{\partial t^{p-1}}\widetilde{f}(0,0) = 0$$
, but $\frac{\partial^p}{\partial t^p}\widetilde{f}(0,0) \neq 0$

2. Main Tools: Gen.Div.Thm and Nakayama Lemma

Generalized Division Theorem:Let $\widetilde{f},\widetilde{g}\in\mathcal{E}(n+1)$ with \widetilde{f}

p-regular. Then $\exists \widetilde{Q} \in \mathcal{E}(n+1)$ and $\widetilde{h_j} \in \mathcal{E}(n)$, j=1,...,p, s.th.

$$\widetilde{g}=\widetilde{Q}\cdot\widetilde{f}+\widetilde{P_h}(t,x)$$
 where $\widetilde{P_h}(t,x)=\sum_{j=1}^p\widetilde{h_j}(x)t^{p-j}$

Nakayama Lemma Given ring $\ensuremath{\mathfrak{R}}$ with unique maximal ideal m.

A is a fin.gen. \Re -module, then $m \cdot A = A \Rightarrow A = 0$.

Corollary: B is \Re -module and B \subset A then A = B+m·A \Rightarrow A=B.

3. Malgrange-Mather Prep Thm:

I. **Thm.** For **A** finitely generated $\mathcal{E}(n)$ module:

A is finite over $\mathcal{E}(p) \Leftrightarrow$ the v.space $\dim_{\mathbb{R}}(\mathbf{A}/(f^*m(p)\cdot\mathbf{A}))<\infty$

II.**Corollary:** $\{a_1,...,a_k\}$ generate **A** as an $\mathcal{E}(p)$ -module

 \Leftrightarrow they generate the real vector space $\mathbf{A}/(f^*\mathsf{m}(\mathsf{p})\cdot\mathbf{A})$.

Remark:

- ullet We'll see $I \Rightarrow II$ follows from Nakayama Lemma.
- We will often write $\mathcal{E}(p)$ -module for $f^*\mathcal{E}(p)$ -module.

4. Proof of Prep Thm I : \Rightarrow is easy

A finite over
$$\mathcal{E}(p) \Rightarrow \bigoplus_{i=1}^k \mathcal{E}(p) \mapsto \mathbf{A}$$
 is epimorphism (onto)

$$\Rightarrow \exists \ \mathbb{R}^k \cong \bigoplus_{i=1}^k \mathcal{E}(p)/m(p) \mapsto \mathbf{A}/(f^*m(p) \cdot \mathbf{A}) \text{is epi}$$
Note: $\mathbf{A} = \langle a_1, ..., a_k \rangle_{\mathcal{E}(p)} \Rightarrow \mathbf{A}/(f^*m(p) \cdot \mathbf{A}) =$

$$\text{span}\{[a_1], ..., [a_k]\} \text{ over } \mathcal{E}(p)/m(p) = \mathbb{R}.$$

The other direction:

Case1:
$$n=p+1$$
 and $\widetilde{f}: (\mathbb{R} \times \mathbb{R}^p, 0) \ni (t, x) \to (x) \in (\mathbb{R}^p, 0)$

is the projection onto the second factor.

5. Proof of the Prep Thm (Case1 : n=p+1)

Say
$$\mathbf{A} = \langle a_1, ..., a_k \rangle_{\mathcal{E}(p+1)}$$
, $\mathbf{A}/(f^*m(p) \cdot \mathbf{A}) = \langle a_1, ..., a_k \rangle_{\mathbb{R}}$.

$$\Longrightarrow orall \mathbf{a} \in \mathbf{A}, \quad \mathbf{a} = \sum_{j=1}^k c_j a_j + b a', \quad \text{where } c_j \in \mathbb{R}, \quad b \in f^* m(p)$$
 and $\mathbf{A} \ni a' = \sum_{j=1}^k g_j a_j, \quad \text{for } g_j \in \mathcal{E}(p+1);$

Say
$$z_j := bg_j \in f^*m(p) \cdot \mathcal{E}(p+1) \Rightarrow \mathbf{a} = \sum_{j=1}^k c_j a_j + \sum_{j=1}^k z_j a_j$$

For
$$\mathbf{a}=ta_i \Rightarrow ta_i = \sum_{j=1}^k (c_{ij} + z_{ij})a_j$$
 (#)

Say (δ_{ij}) :=identity matrix and $\vec{a} := (a_1, ..., a_k)$. Then $(\sharp) \Longrightarrow$

6. Still case 1

$$(t\delta_{ij}-c_{ij}-z_{ij})\cdot\vec{a}=0. (\sharp\sharp)$$

Say
$$(b_{ij}):=(\mathsf{t}\delta_{ij}-c_{ij}-z_{ij})$$
 and $(B_{ij}):=(b_{ij})^{adjoint}\Longrightarrow$

$$(B_{ij})\cdot(b_{ij})=\mathsf{det}(b_{ij})\cdot(\delta_{ij}) \qquad (*)$$

$$\det(\mathsf{t}\delta_{ij} - c_{ij} - z_{ij}) =: \triangle(t, x) \text{ is a function of } (\mathsf{t}, \mathsf{x}).$$

$$(\sharp\sharp) \text{ and } (*) \Rightarrow \triangle \cdot \vec{a} = 0$$

Since $z_{ij}(t,0)=0$ and \triangle is a monic polynomial in $t\Longrightarrow det(t\delta_{ij}-c_{ij}-z_{ij})$ is **q-regular** at (t,0) for $q\le k$.

7.End of step1

$$\triangle \cdot \vec{a} = 0 \Rightarrow \triangle \cdot \mathbf{A} = 0 \Rightarrow$$

A is a finite $\mathcal{E}(p+1)/\triangle \cdot \mathcal{E}(p+1)$ -module (assumed, n=p+1).

since \triangle is q-regular, the Generalized Division Thm \Longrightarrow

$$\mathcal{E}(p+1)/\triangle \cdot \mathcal{E}(p+1) = \langle 1, t, ..., t^{q-1} \rangle_{\mathcal{E}(p)}.$$

since **A** finite over $\mathcal{E}(p+1)/\triangle$. $\mathcal{E}(p+1)$ and

$$\mathcal{E}(p+1)/\triangle$$
 • $\mathcal{E}(p+1)$ is finite over $\mathcal{E}(p)$

 \Rightarrow **A** is finite over $\mathcal{E}(p)$, completing case **1**.

8. Case: \tilde{f} has rank=n \leq p and on ...

Rank Thm: \exists coordinates s.th. $\tilde{f}:(x_1,...,x_n) \rightarrow (x_1,...,x_n,0,...,0)$

 $\mathbb{R}^n \hookrightarrow \mathbb{R}^p \Rightarrow \text{germs } \tilde{\phi}: (\mathbb{R}^n,0) \to \mathbb{R} \text{ extend to } (\mathbb{R}^p,0)$, i.e

 $f^* : \mathcal{E}(p) \mapsto \mathcal{E}(n)$ is surjective and so $\mathbf{A} = \langle a_1, ..., a_k \rangle_{\mathcal{E}(p)} \Longrightarrow \mathbf{A} = \langle a_1, ..., a_k \rangle_{\mathcal{E}(p)}.$

General Case: maps $\tilde{f}:(\mathbb{R}^n,0)\to(\mathbb{R}^p,0)$ are composites:

$$(\mathbb{R}^n,0) \xrightarrow{(id,\tilde{f})} (\mathbb{R}^n \times \mathbb{R}^p,0) \xrightarrow{pr_2} (\mathbb{R}^p,0)$$

(immersion followed by a sequence of n projections of case1).

9. Hence suffices to show (Prep Thm conclusion):

Property
$$\mathbb{M}(\tilde{f})$$
 $dim_{\mathbb{R}}\mathbf{A}/(f^*m(p)\cdot\mathbf{A})<\infty\Rightarrow\mathbf{A}$ finite over $\mathcal{E}(p)$

$$(\mathbb{R}^n,0) \xrightarrow{\tilde{f}} (\mathbb{R}^p,0) \xrightarrow{\tilde{g}} (\mathbb{R}^q,0)$$

$$\mathbb{M}(\tilde{f}) \text{ and } \mathbb{M}(\tilde{g}) \Rightarrow \mathbb{M}(\tilde{g} \circ \tilde{f}).$$

Assume **A** finite over $\mathcal{E}(n)$ and $dim_{\mathbb{R}}(\mathbf{A}/(\tilde{g}\circ \tilde{f})^*m(q)\cdot \mathbf{A})<\infty$.

$$f^*g^*m(q) \subset f^*m(p) \Rightarrow \dim(\mathbf{A}/f^*m(p) \cdot \mathbf{A}) < \infty$$

Therefore using $\mathbb{M}(\tilde{f}) \Rightarrow \mathbf{A}$ is finite over $\mathcal{E}(p)$.

Next: $\mathbf{A}/g^*m(q) \cdot \mathbf{A} = \mathbf{A}/f^*g^*m(q) \cdot \mathbf{A}$, and is of finite dim.

Hence, $\mathbb{M}(\tilde{g}) \Rightarrow \mathbf{A}$ is finite over $\mathcal{E}(q)$. Done. $\sqrt{}$

10. Prep Thm II:

$$< a_1,...,a_k>_{\mathbb{R}} = \mathbf{A} \Leftrightarrow < a_1,...,a_k>_{\mathbb{R}} = \mathbf{A}/(f^*\mathsf{m}(\mathsf{p})\cdot\mathbf{A})$$

Proof: \Rightarrow is easy(as on page 4). Next \Leftarrow :

By Malg-Math Prep
$$\mathbf{A}/(f^*m(p)\cdot\mathbf{A})=< a_1,...,a_k>_{\mathbb{R}}$$

 \Longrightarrow **A** is finite over $\mathcal{E}(p)$.

In particular,
$$\mathbf{A} = \langle a_1, ..., a_k \rangle_{\mathcal{E}(p)} + m(p) \cdot \mathbf{A}$$
.

Nakayama Lemma
$$\Rightarrow$$
 A = $< a_1, ..., a_k >_{\mathcal{E}(p)}$.

11. Special Case : $\mathbf{A} = \mathcal{E}(n)$

Def: $\mathcal{E}(n) \supset m(n)^k := k^{th}$ power of m(n); $m(n)^{\infty} := \bigcap_{i=1}^{\infty} m(n)^i$

Def:
$$\widehat{\mathcal{E}(n)} := \mathcal{E}(n)/m(n)^{\infty} = \mathbb{R}[[x_1, x_2, ..., x_n]] \ni \hat{f} \leftarrow \tilde{f} \in \mathcal{E}(n)$$

$$\Rightarrow\widehat{\mathcal{E}(n)}\supset\widehat{m(n)}:=\{\widehat{f}\in\widehat{\mathcal{E}(n)}|f(\widehat{0})=0\}$$
 the unique max ideal.

Then $\mathcal{E}(n) \ni \widetilde{f} \to \widehat{f} \in \widehat{\mathcal{E}(n)}$ is the Taylor homomorphism and:

(i)
$$\widehat{f \cdot g} = \widehat{f} \cdot \widehat{g}$$
;

(ii) let $\hat{f}=p+m$ and $\hat{g}=q+r$, p, q Taylor polynomials of deg k and $m,r\in m(n)^{k+1}\Rightarrow \hat{f}\cdot \hat{g}=\widehat{f\cdot g}=\widehat{p\cdot q}=p\cdot q\pmod{m(n)^{k+1}}$.

12. Preparation Theorem $\mathbf{A} = \mathcal{E}(n)$

Preparation Theorem (in the Malgrange Form):

 f^* induces the homomorphism of power series $\widehat{f^*}:\widehat{\mathcal{E}(p)} \to \widehat{\mathcal{E}(n)}$

The following statements are equivalent:

- $1.\phi_1, \phi_2, ..., \phi_k \in \mathcal{E}(n)$ generate $\mathcal{E}(n)$ as an $f^*\mathcal{E}(p)$ module.
- $2.\hat{\phi_1},\hat{\phi_2},...,\hat{\phi_k}$ generate $\widehat{\mathcal{E}(n)}$ as an $\widehat{f^*}\widehat{\mathcal{E}(p)}$ -module.
- $3.\phi_1, \phi_2, ..., \phi_k$ generate $\mathcal{E}(n)/f^*m(p) \cdot \mathcal{E}(n)$ over \mathbb{R} .
- $4.\hat{\phi}_1,...,\hat{\phi}_k$ are the generators of $\widehat{\mathcal{E}(n)}/\widehat{f^*}\widehat{m(p)}\cdot\widehat{\mathcal{E}(n)}$ over \mathbb{R} .

13. Easy implications

- $1\Rightarrow 2$ direct, $1\Leftrightarrow 3$ is the Malg. Preparation theorem.
- $2\Rightarrow$ 4 is easy and direct from def.
- 3 \Rightarrow 4 Since $\mathcal{E}(n) = \phi_1 \cdot \mathbb{R} + ... + \phi_k \cdot \mathbb{R} + f^*m(p) \cdot \mathcal{E}(n)(\diamond)$ apply Taylor homomorphism $\mathcal{T}: \mathcal{E}(n) \to \widehat{\mathcal{E}(n)}$, which is onto (Thm. due to Borel) $\Longrightarrow \widehat{\phi_1} \cdot \mathbb{R} + ... + \widehat{\phi_k} \cdot \mathbb{R} + \widehat{f}^*\widehat{m(p)} \cdot \widehat{\mathcal{E}(n)} = \widehat{\mathcal{E}(n)}$.
- $4\Rightarrow 3$ $dim_{\mathbb{R}}\mathcal{E}(n)/(...)<\infty$, where $(...):=(m(p)\cdot\mathcal{E}(n)+m(n)^{\infty})$.

14. Proof of $4 \Rightarrow 3$, i.e (formal) \Rightarrow (in germs)

⇒ ∃ k such that
$$m(n)^k + (...)/(...) = m(n)^{k+1} + (...)/(...)$$

⇔ $m(n)^k + (...) = m(n)^{k+1} + (...)$ (**)
⇒ $m(n)^k + B = m(n)^{k+1} + B$, where B:=m(p) $\mathcal{E}(n) \subset$
A:= $m(n)^k + B$ ⇒ A = B + m(n)A and
Nakayama Lemma ⇒ B = A, i.e. m(p) $\mathcal{E}(n) = m(n)^k + m(p)\mathcal{E}(n)$ ⇒ m(p) $\mathcal{E}(n) = (...)$ ⇒ $\mathcal{E}(n)/m(p)\mathcal{E}(n) \cong \mathcal{E}(n)/(...)$ ≅ $\mathcal{E}(n)/m(p)\mathcal{E}(n)$
and is, therefore, generated by $\phi_1, \phi_2, ..., \phi_k$ over \mathbb{R} . □

15. Proof of Nakayama's Lemma and its corollary

Cor:
$$A \subset B+m \cdot A \Rightarrow A/B \subset (B+mA)/B = m(A/B)$$
.

By Nakayama,
$$A/B = 0$$
 and so $A = B$.

Proof of the Lemma: $\forall z \in m$, 1+z is a unit.

If
$$\mathsf{A} = \langle a_1,...,a_n \rangle_{\mathfrak{R}},$$
 then $\exists z_{ij} \in m$ s.th. $a_i = \sum_{j=1}^n z_{ij} a_j.$

In matrix form, a=Za, i.e (Z-Id)a=0.

det(Z-Id) is the char. polynomial at 1 and $=\pm 1+z$, $z\in m$

$$\implies$$
 Z-Id is invertible. Hence $a = (a_1, ..., a_n) = 0$ and $A = 0$. $\sqrt{}$