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1. All Functions C* All rings commutative with Id

Def: A germ is an equivalence class of functions:
representatives agree in the neighbourhood of some point.

E.g. &(n) ring of C* germs: (R",0) — R at 0.
E.g. £(n) D m(n) = {f € £(n)| f(0)=0 } is unique maximal ideal

E.g. f: (R",0) — (RP,0) = f*: &(p) — &(n) homomorphism

Def: 7:(R x R”,0)3(t,x)—f(t.x)€ R, is p-regular with respect to t:

if £(0,0) = ££(0,0) = ... = 222.(0,0) = 0, but 25£(0,0) # 0

t — otPt



2. Main Tools: Gen.Div.Thm and Nakayama Lemma

Generalized Division Theorem:Let £, € &(n+ 1) with f

p-regular. Then 3Q ¢ &(n+1) and IZ € &(n), j=1,...,p, s.th.

E=Q f+ Pr(t, x) where ﬁ;(t,x) = Zle fTJ-(X)tp*f

Nakayama Lemma Given ring R with unique maximal ideal m.
A'is a fin.gen. R-module, then m-A=A = A=0.

Corollary: B is R-module and B C A then A = B+m-A = A=B.



3. Malgrange-Mather Prep Thm:

I. Thm. For A finitely generated £(n) module:

A is finite over £(p) < the v.space dimg(A/(f*m(p) - A)) < oo

II.Corollary: {ai, ..., ax} generate A as an £(p)-module

& they generate the real vector space A/(f*m(p)-A).

Remark :
o We'll see I = II follows from Nakayama Lemma.

e We will often write €(p)-module for f*E(p)-module.



4. Proof of Prep Thm I : = is easy

A finite over £(p) = @fle E(p) — A is epimorphism (onto)
= IR = @, &(p)/m(p) — A/(F*m(p) - A)is epi
Note: A = < ay,...,ak >¢p) = A/(F*m(p) - A) =
span{[ai], ..., [ak]|} over E(p)/m(p)=R.
The other direction:
Casel: n=p+1and f : (R x RP,0) 3 (t,x) — (x) € (RP,0)

is the projection onto the second factor.



5. Proof of the Prep Thm (Casel : n=p+1)

Say A = < a1, ..., ak >¢(pr1), A/(FFm(p) - A) = < a1, ..., ak >R.

= VacA, a= cjaj + ba', where ¢; € R, be f*m(p)

k
j=1
and A>ad = Zjllegjaj, for gj € E(p+ 1);

Say zj:=bgj € f*m(p) - E(p+ 1)=a=1; Gaj + 21, Z3;

For a=ta; = tai:ZJl‘(zl(Cij + zj)a (%)

Say (dj;):=identity matrix and 3 := (a1, ..., ax). Then (§) =



6. Still case 1

(tj — cij — zj)-d = 0. (1)

Say (bj):=(td; — cij — z;j) and (Bjj) := (bj;)?¥eint —
(ﬂ()dﬂ i) - (07) (%)

det(td; — cjj — zj) = A(t,x) is a function of (t,x).

(#) and () = A - 3=0

Since z;j(t,0) = 0 and A is a monic polynomial in t =

det(td;; — cjj — zjj )is q-regular at (t,0) for q<k.



7.End of stepl

N-3=0=~A-A=0=>

A is a finite E(p+1)/A - E(p + 1)-module (assumed, n=p+1).

since A\ is g-regular, the Generalized Division Thm —>
8([3 + 1)/A . E(p + ].) =<1t .., a1 >e(p)-
since A finite over E(p+1)/A . E(p + 1) and
E(p+1)/A.E(p+ 1) is finite over E(p)

= A is finite over £(p), completing case 1.



8. Case: f has rank=n<p and on ...

Rank Thm: 3 coordinates s.th. :(xq, ..., Xo)— (X1, ..., Xn, 0, .., 0)
R" < RP = germs ¢ : (R",0) — R extend to (R”,0), i.e

E(p) — ( ) is surjective and so
A < a1, ..., dk >8( ) :>A:<a1,...,ak >8(p)-

General Case: maps f : (R”,0) — (RP,0) are composites:

(id,F)
_

(R",0) (R" x RP,0) —2— (RRP,0)

(immersion followed by a sequence of n projections of casel).



9. Hence suffices to show (Prep Thm conclusion):

Property M(f) dimgA/(f*m(p) - A) < co = A finite over &(p)

(R",0) —— (RP,0) —£— (R9,0)
M() and M(g) = M(g o ).
Assume A finite over &(n) and dimg(A/(& o f)*m(q) - A) < co.
f*g*m(q) C f*m(p) = dim(A/f*m(p) - A) < o0

Therefore using MI(f) = A is finite over &(p).

Next: A/g*m(q)- A=A/f*g*m(q) - A, and is of finite dim.

Hence, M(g) = A is finite over £(q). Done. /



10. Prep Thm II:
< ai,...,ax >p=A&< ag, ... a >R:A/(f*m(p).A)

Proof: = is easy(as on page 4). Next <:

By Malg-Math Prep A/(f*m(p) - A) = < a1, ..., ak >p
= A is finite over E(p).

In particular, A = < ay, ..., a >¢(p)+m(p)-A.

Nakayama Lemma = A = < a1, ..., ak >¢(p). vV



11. Special Case : A = &(n)

Def: &(n) D m(n)k := k" power of m(n); m(n)> := N2 m(ny

Def: &(n) := &(n)/m(n)*® = R[[x1, %2, ..., xa]] 3 F—F € &(n)

—

= &(n) D m(n) := {f 8/(;)|f(AO) = 0} the unique max ideal.

Then &(n)>f — f 68/(;) is the Taylor homomorphism and:
(i) f-g=F &
(ii) let f=p+m and g=q-+r, p, q Taylor polynomials of deg k

—

and mrem(n)**t = f-g = f - g=p- g=p-q (mod m(n)k+1).



12. Preparation Theorem A = &(n)

Preparation Theorem (in the Malgrange Form):
f* induces the homomorphism of power series fA*:S/(;) — 8/(;)
The following statements are equivalent:

1.¢1, @2, ..., 0k €E(n) generate E(n) as an F*E(p) module.

2.1, o, ..., by generate 8/(F) as an fA*S/(;)—moduIe.

3.¢1, ¢2, ..., Pk generate E(n)/f*m(p) - E(n) over R.

e~ -

4.4y, ..., ¢ are the generators of &(n)/f*m(p) - &(n) over R.



13. Easy implications

e 1=-2 direct, 1<3 is the Malg. Preparation theorem.
e 2=4 is easy and direct from def.

e 3=4 Since E(n) = ¢1 - R+ ... + ¢ - R+ F*m(p) - E(n)(o)

—

apply Taylor homomorphism T : €(n) — &(n), which is onto (Thm.

——

due to Borel) = ¢; - R+...4+¢y - R+F*m(p) - E(n)=E(n).

e 4=3 dimp€&(n)/(...) < oo, where (...):=(m(p) - E(n) + m(n)>°).



14. Proof of 4 = 3, i.e (formal) = (in germs)

= 3 k such that m(n)* + (...)/(...) = m(n)**1 + (...)/(...)
— m(n)k+(...) = m(n)kL 4 (...) (x%)

= m(n)*+B = m(n)*™

+B,where B:=m(p)&(n) C
A:=m(n)k+B = A = B + m(n)A and

Nakayama Lemma = B = A, i.e. m(p)&(n)= m(n)*+m(p)&(n)=

e~ -

m(p)E(n)=(...) = &(n)/m(p)&(n) = E(n)/(...) = &(n)/m(p)E(n)

and is, therefore, generated by ¢1, @2, ..., ¢k over R. [J



15.Proof of Nakayama’'s Lemma and its corollary

Cor: A C B+m-A = A/B C (B+mA)/B = m(A/B).

By Nakayama, A/B = 0 and so A = B. vV

Proof of the Lemma: Vzem, 14z is a unit.
If A= <ai,..,an >x, then 3z; € msith. a; = > 7, za;.
In matrix form, a=Za, i.e (Z-1d)a=0.

det(Z-Id) is the char. polynomial at 1 and = +1 + z, zEm

— Z-ld is invertible. Hence a = (a1,...,a,) =0and A =10. /



