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Abstract. Given a measure on the Thurston boundary of Teichmüller space, one can pick a
geodesic ray joining some basepoint to a randomly chosen point on the boundary. Different choices
of measures may yield typical geodesics with different geometric properties. In particular, we
consider two families of measures: the ones which belong to the Lebesgue or visual measure class,
and harmonic measures for random walks on the mapping class group generated by a distribution
with finite first moment in the word metric.

We consider the word length of approximating mapping class group elements along a geodesic
ray, and prove that this quantity grows superlinearly in time along almost all geodesics with respect
to Lebesgue measure, while along almost all geodesics with respect to harmonic measure the growth
is linear. As a corollary, the harmonic and Lebesgue measures are mutually singular. We also prove
a similar result for the ratio between the word metric and the relative metric (i.e. the induced
metric on the curve complex).

1. Introduction

Let G = Mod(S) be the mapping class group of an orientable surface S of finite type, which
acts on the Teichmüller space T (S) of marked hyperbolic metrics on S. Following Thurston, a
boundary of Teichmüller space is given by the space PMF of projective measured foliations, which
carries several measures:

• on the one hand, there is a natural Lebesgue measure class Leb on PMF given by pulling
back Lebesgue measure from the charts defined using train track coordinates;
• on the other hand, Kaimanovich and Masur [18] showed that if µ is a probability distribution

on G, whose support generates a non-elementary subgroup, then the image of a random
walk on G under the orbit map g 7→ gX0 converges to a point in PMF almost surely. We
let ν be the corresponding hitting measure (also known as harmonic measure).

In this paper, we analyze geometric properties of typical geodesics with respect to these measures.
To define what we mean by typical geodesics, let us fix a basepoint X0 ∈ T (S). Then there is a
map from PMF to the set of Teichmüller geodesic rays based at X0. In fact, we can associate
to each measured foliation F the unique unit area quadratic differential at X0 which has vertical
foliation proportional to F , and this quadratic differential determines a geodesic ray based at X0.
Thus, we can think of the above measures as measures on the set of geodesic rays from X0, and we
can talk about the behavior of geodesics which are typical with respect to either measure.

1.1. The word length ratio. Let us denote as ‖g‖G the word length of a group element g with
respect to some fixed generating set. As different choices of generators lead to quasi-isometric
metrics, our results will be independent of the particular choice.

Let γ be a Teichmüller geodesic ray based at X0. For each time t, we denote as γt the point at
distance t from the basepoint along γ, and we let gt be a group element such that gtX0 is a closest
element of the G-orbit of X0 to γt. This is illustrated schematically in Figure 1 below. We then
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define the word length ratio as the quantity

ρ(γ) := lim
t→∞
γt 6∈Tε

‖gt‖G
t

(for technical reasons, we restrict to taking limits over points γt which do not lie in the ε-thin
part Tε; however, since with respect to both measures generic geodesics are recurrent to the thick
part, the limit makes sense almost surely). Our first result establishes that the word metric grows
superlinearly along geodesics which are typical with respect to Lebesgue measure:

Theorem 1.1. Let X0 be a point in Teichmüller space. Then for Lebesgue-almost every geodesic
ray γ based at X0, the word length ratio is infinite:

ρ(γ) =∞.

We now state a corresponding result for random walks. Recall that a measure µ on the mapping
class group G has finite first moment in the word metric if

∫
G ‖g‖G dµ(g) < ∞. Moreover, we

say that µ is non-elementary if the support of µ generates a non-elementary subgroup of G as a
semigroup. The word length ratio is almost surely finite along typical geodesics with respect to
harmonic measure:

Theorem 1.2. Let µ be a non-elementary probability measure on Mod(S) with finite first moment
in the word metric, let ν be the harmonic measure determined by the corresponding random walk,
and let X0 ∈ T (S) a basepoint. Then there is a constant c > 0 such that

ρ(γ) = c

for ν-almost every geodesic ray γ based at X0.

γ

X0

gtX0

γt

Figure 1. Our definition of gt. The point γt lies on the geodesic γ, and gtX0 is a
closest orbit point to γt. In the case of genus 1, this corresponds to taking gt to be
the element in the orbit of X0 which lies in the same tile as γt of the Farey tessel-
lation.

1.2. The relative metric. A way to interpret this result is in term of different metrics on the
mapping class group. If G acts isometrically on a metric space (X, d), one can pick a basepoint
x0 ∈ X and consider the distance on G given by d(g, h) := d(gx0, hx0). In particular, the mapping
class group acts on the following three different metric spaces, and this can be used to define three
metrics on G:
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(1) the word metric ‖·‖G (or dG) previously mentioned arises from the action of G on its Cayley
graph;

(2) the mapping class group acts on the Teichmüller space equipped with the Teichmüller
metric: we will denote this metric as ‖ · ‖T or dT ;

(3) the mapping class group acts on the curve complex C(S): the resulting metric is called the
relative metric ‖·‖rel (or drel). The curve complex is a locally infinite, hyperbolic, simplicial
complex. The relative metric on G can also be seen as the word metric with respect to an
infinite generating set, constructed by adding to a finite generating set the stabilizers of
simple closed curves αi, where the αi are a set of representatives for orbits of simple closed
curves under G [27].

It is well known that ‖ · ‖rel . ‖ · ‖T . ‖ · ‖G, and the three metrics are not quasi-isometric
to each other. Moreover, except in some cases of low complexity, neither the word metric nor the
Teichmüller metric are hyperbolic in the sense of Gromov; the curve complex, on the other hand,
is known to be hyperbolic [27], but this comes at the price of not being locally compact.

However, if one restricts to geodesics that lie completely in some thick part, then the three metrics
are indeed quasi-isometric. Thus, one can interpret the results of Theorem 1.1 and Theorem 1.2 by
saying that typical geodesics with respect to Lebesgue measure have larger excursions in the thin
part than typical geodesics with respect to harmonic measure.

We can also modify the word length ratio and define the relative word length ratio ρrel(γ) as

ρrel(γ) := lim
t→∞
γt 6∈Tε

‖gt‖G
‖gt‖rel

.

For the relative word length ratio we have a similar result.

Theorem 1.3. Let X0 be a point in Teichmüller space. Then for Lebesgue-almost every geodesic
ray γ based at X0, we have

ρrel(γ) =∞.
Moreover, let µ be a non-elementary probability measure on Mod(S) with finite first moment in
the word metric, and let ν be the harmonic measure determined by the corresponding random walk.
Then there exists a constant c > 0 such that

ρrel(γ) = c

for ν-almost every geodesic ray γ based at X0.

Let us remark that in the special case of G = SL2(Z) (mapping class group of the torus),
Theorem 1.3 is equivalent to the following classical statement in terms of continued fractions. For
each r ∈ R, let us denote as an(r) the nth coefficient in the continued fraction expansion of r. Then
for Lebesgue-almost every r, we have

lim
n→∞

a1(r) + · · ·+ an(r)

n
= +∞,

while for almost every r with respect to harmonic measure, we have

lim
n→∞

a1(r) + · · ·+ an(r)

n
= c <∞.

Note that the statement of Theorem 1.3 for the Lebesgue measure follows immediately from
Theorem 1.1, as the Teichmüller metric is a coarse upper bound for the relative metric. For the
same reason, the statement of Theorem 1.3 implies that for the harmonic measure the word length
ratio ρ(γ) is almost surely bounded above and below between two positive constants: this is almost
the statement of Theorem 1.2, except for the existence of the limit.
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1.3. Singularity of harmonic measure. The theorem has the following corollary for the har-
monic measure:

Theorem 1.4. Let µ be a measure on the mapping class group with finite first moment in the
word metric, and such that the semigroup generated by its support is a non-elementary subgroup
of Mod(S). Then the corresponding harmonic measure ν on PMF is singular with respect to
Lebesgue measure.

The singularity of harmonic measure for random walks on the mapping class group was conjec-
tured by Kaimanovich and Masur [18]. The origin of this conjecture lies in the following analogy

with Riemannian manifolds. If M̃ is the universal cover of a compact surface M of negative curva-

ture, the harmonic measure on the ideal boundary of M̃ given by the Brownian motion is singular
with respect to the visual measure unless the surface has constant curvature (see Katok [16] and
Ledrappier [20]). In this light, the singularity of Theorem 1.4 is to be expected as Teichmüller
space is inhomogeneous (e.g., its isometry group is discrete). Note that the Teichmüller metric is
not Riemannian, so it is not clear how to define a Brownian motion, but one can use the random
walk as a discrete analog.

Note that the finite first moment assumption is essential; indeed, it is conjectured that there
exists a measure µ on Mod(S) such that the hitting measure of the corresponding random walk is
absolutely continuous on PMF : as a consequence of our result, such a measure must have infinite
first moment.

In [10], Gadre proved singularity of the harmonic measure for random walks on Mod(S) generated
by measures with finite support, while here we consider arbitrary measures of finite first moment.
His proof uses train track splittings on PMF , and relies on the exponential decay of measures of
shadow sets, which are not known for measures of finite first moment.

In this paper, we get the Lebesgue measure statistics by using the ergodicity of the Teichmüller
geodesic flow, combined with estimates on the volume of the thin part of the space of quadratic
differentials. In particular, we define the following function L : QM → R on the moduli space of
quadratic differentials:

L(q) :=
∑

α∈Cq(δ,ε)

1

`2q(α)
,

where `q(α) is the length of the curve α in the flat metric q, and Cq(δ, ε) the set of cylinders which
have core length ≤

√
ε and area ≥ δ. We then prove, using results of Eskin-Masur [7], that the

ergodic average of L is infinite along orbits of the Teichmüller flow; Theorem 1.1 follows since the
time integral of L is a lower bound for the word metric ‖ · ‖G.

The statistics for harmonic measure follows from linear progress in the relative metric, combined
with sublinear tracking between geodesics and sample paths. In particular, in [32] it is proven
that random walks on the mapping class group track Teichmüller geodesics sublinearly (in the
Teichmüller metric). In order to transfer the information about the ratio between the word and
the relative metric along sample paths, we will prove a tracking result in the word metric.

1.4. Background and remarks. For random walks on general groups, the question of singularity
of harmonic measure has a long history (see also the introduction of Kaimanovich and Le Prince
[17]). In the context of lattices in Lie groups, Furstenberg [8, 9] first constructed random walks on
discrete groups whose hitting measure is absolutely continuous on the boundary. For non-uniform
lattices of rank 1, these random walks have finite first moment in the Riemannian metric on the
Lie group, but do not have finite first moment in the word metric on the discrete subgroup.

For non-uniform lattices Γ in SL(2,R), Guivarc’h and Le Jan [13, 14] proved the singularity of
harmonic measures by studying the asymptotic winding around the cusp of the geodesic flow on
Γ\H2. Other approaches are given by Deroin, Kleptsyn and Navas [4] and by Blachère, Häıssinsky
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and Mathieu [2]. Our approach via the word length ratio can be also applied to non-uniform
lattices in SL(2,R) [12]. On the other hand, for finitely supported measures on uniform lattices in
SL(2,R), harmonic measure is expected to be singular; however, the question appears to be still
open.

Several authors have considered cusp excursions of Lebesgue-typical geodesics; in particular,
Sullivan [31] showed that on a non-compact hyperbolic manifold a generic geodesic ray ventures
into the cusps infinitely often with maximum depth in the cusps of about log t, where t is the time
along the geodesic ray. The same approach has been then adapted to the Teichmüller geodesic flow
by Masur [26].

Our method uses essentially only the geometry of the cusp, so it is natural to expect it to apply
to other group actions for which the orbit space is a non-compact manifold of finite volume and the
geodesic flow is ergodic, e.g. for fundamental groups of higher-dimensional hyperbolic manifolds
with cusps.

1.5. Outline of the paper. In Section 2 we present background material on Teichmüller theory; in
particular, we review the curve complex and marking complex, define the concept of excursion and
use results of Rafi in order to prove the coarse monotonicity in the word metric of the approximating
group elements along Teichmüller geodesics. In Section 3 we prove the asymptotic result for the
Lebesgue measure, i.e. Theorem 1.1. This is done by considering the ergodic average with respect to
the Teichmüller flow of an appropriate function defined on the moduli space of quadratic differentials
(Theorem 3.3) and then relate the average to the growth rate of the word metric along typical
geodesics. In Section 4 we prove Theorem 1.2, namely the asymptotics for harmonic measure.

1.6. Notation. We shall find it convenient to occasionally use big O notation. We say that f(x) =
O(g(x)) if there are constants A and B such that |f(x)| 6 A |g(x)| for all x > B. In particular,
f(x) = O(1) means that the function f(x) is bounded. We will also write f(x) . g(x) to mean
that the inequality holds up to additive and multiplicative constants, i.e. there are constants K
and c such that

f(x) 6 Kg(x) + c,

and similarly f(x) � g(x) will mean that there exist constants K, c such that

1

K
g(x)− c 6 f(x) 6 Kg(x) + c.

2. Preliminaries from Teichmüller theory

In Sections 2.1–2.3 we review some background material on quadratic differentials, subsurface
projections and short markings. In Sections 2.4 and 2.5 we review in detail some results of Rafi
[29] which relate subsurface projection distance first to the twist parameter along a Teichmüller
geodesic, and then to the excursion distance along the geodesic. In Section 2.6, we use results
of Rafi [30] to show that word length grows coarsely monotonically along Teichmüller geodesics,
and finally in Section 2.7, we show that a similar result holds for the nearest lattice points to the
geodesic, if they lie in the thick part of Teichmüller space.

2.1. Quadratic differentials and Teichmüller discs. Let S be a hyperbolic surface of finite
type, i.e. a surface of finite area which may have boundary components or punctures. We say such
a surface S is sporadic if it is a sphere with at most four punctures or boundary components, or
a torus with at most one puncture or boundary component. We shall primarily be interested in
non-sporadic surfaces, as in the sporadic cases the Teichmüller spaces are either trivial, or isometric
to H2, and covered by the case of SL(2,Z) (see [12]).
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Let S be a non-sporadic surface with no boundary components, but which may have punctures.
We will write T (S) for the Teichmüller space of a surface S, or just T if we do not need to explicitly
refer to the surface. We shall consider T together with the Teichmüller metric

dT (x, y) = 1
2 inf

f
logK(f),

where the infimum is taken over all quasiconformal maps f : x→ y, and K(f) is the quasiconformal
constant for the map f . The mapping class group G = Mod(S) of the surface acts by isometries
on T , and we shall write Tε for the thin part of Teichmüller space, i.e. all surfaces which contain a
curve of hyperbolic length at most ε. We shall write M for the quotient G\T , which is known as
moduli space. The thin part of Teichmüller space is mapping class group invariant, and we shall
write Mε for the subset of moduli space given by G\Tε.

Let Q be the space of unit area quadratic differentials, which may be identified with the unit
cotangent bundle to Teichmüller space [15]. We shall write π for the projection π : Q → T which
sends a quadratic differential to its underlying Riemann surface, and we shall write µhol for the
Masur-Veech measure, also known as the holonomy measure, as it may be defined in terms of
holonomy coordinates. The measure µhol is mapping class group invariant, and so gives a measure
on the moduli space of unit area quadratic differentials MQ = G\Q, which has finite volume
[25,33].

A quadratic differential q determines a flat structure on the surface, which may be thought
of as a union of polygons glued together along parallel sides, where the vertices of the polygons
may correspond to points of cone angle nπ, for n > 1. If n > 2, then the vertex corresponds to
a zero of order n − 2 for the quadratic differential q, and for n = 1 the vertices correspond to
cone points of angle π which are simple poles for the quadratic differential, and correspond to the
punctures of the surface. There is an affine action of SL(2,R) on the flat surface, which gives rise
to a new quadratic differential. The orbits of quadratic differentials under the action of SL(2,R)

give a foliation of Q by copies of SL(2,R), and we shall write D̃q for the orbit of the quadratic

differential q. We shall write Dq for the image of D̃q in T , and this is called a Teichmüller disc,
which is geodesically embedded in T . With the metric induced from the Teichmüller metric, Dq is
isometric to the hyperbolic plane of constant curvature −4, and it will be convenient for us to use
coordinates coming from the disc model of hyperbolic plane, with the initial quadratic differential
q corresponding to the origin.

The group of rotations of R2 acts on flat surfaces, and hence on Q. In terms of quadratic
differentials, rotation by angle θ in R2 sends q 7→ e−2iθq, and this action is trivial on Teichmüller
space T . It follows from the definition that holonomy measure is invariant under rotation, i.e.
µhol(U) = µhol(e

iθU), for all θ, for any subset U ⊂ Q. In particular, this means that if we
consider the conditional measure from µhol on the image of a point q ∈ Q under rotation, i.e.
{eiθq : θ ∈ [0, 2π]}, then this is precisely the invariant Haar or Lebesgue measure on the circle.

Finally, given X ∈ T , the space Q(X) of unit area quadratic differentials on X is the unit
cotangent space at X, and we can denote by sX the conditional measure induced by the holonomy
measure on Q(X). The map Q(X) → PMF which associates to each quadratic differential on
X the projective class of its vertical foliation pushes forward the measure sX to a measure in the
Lebesgue measure class, so we can indifferently use sX and Lebesgue measure on PMF when
discussing sets of full measure. For a thorough review of the different measures on T (S), PMF
and related spaces, we refer the reader to Athreya, Bufetov, Eskin and Mirzakhani [1, Section 2]
and Dowdall, Duchin and Masur [6, Section 3].

2.2. Curve complex and subsurface projections. In this section we review the properties we
will use of two combinatorial objects associated with a surface, namely the curve complex and the
marking complex.
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We say a simple closed curve on a surface S is essential if it does not bound a disc, and is not
parallel to a puncture or boundary component. The curve complex C(S) is a finite dimensional
but locally infinite simplicial complex whose vertices are isotopy classes of essential simple closed
curves on S, and whose simplices consist of collections of curves which can be realised disjointly on
the surface. For the non-sporadic surfaces, the curve complex is a non-empty connected simplicial
complex. In the case of a torus with one puncture or boundary component, or a sphere with four
punctures or boundary components, the definition above gives a complex with no edges, so we
alter the definition to connect two vertices if their corresponding curves can be realised by curves
which intersect at most once (in the case of the once punctured torus) or at most twice (in the
case of the four punctured sphere). In the case of the annulus the curve complex is defined to be
the infinite graph with vertices consisting of arcs connecting the two boundary components of the
annulus modulo isotopy fixing the endpoints with edges between two arcs if they can be realized
disjointly. The curve complex of the annulus is quasi-isometric to Z with a quasi-isometry given
by the algebraic intersection number. We define the curve complex to be empty for the remaining
sporadic surfaces.

We say a subsurface Y ⊆ S is essential if each boundary component is an essential simple closed
curve in S. Given an essential subsurface Y ⊆ S, which is not a disc or a three-punctured sphere,
one can also consider C(Y ), the complex of curves of Y . There is a coarsely well-defined subsurface
projection πY : C(S)→ C(Y ) which we now describe. Choose an element in the isotopy class of the
curve γ which has the minimal possible number of intersections with Y , and then take a regular
neighbourhood of the union of the boundary of Y with the intersection of the curve γ with Y , i.e.
N(∂Y ∪ (γ∩Y )). Choose a component of the boundary of this regular neighbourhood to be πY (γ).
This is coarsely well defined.

To define the annular projection π(γ) of a curve γ with essential intersection with an annulus A

essentially one passes to the annulus cover S̃ of S given by the core curve α of A and chooses πA(γ)

to be a component of the lift of γ that is an arc running from one boundary component of S̃ to the
other. The set of components of the lift of γ that satisfy this property form a finite diameter set in

the curve complex of the annulus S̃ and so the projection is coarsely well-defined. Finally the map
πA has the property that if Dα denotes the Dehn twist about α, then

(1) dC(A)(πA(Dn
α(γ)), πA(γ)) = 2 + |n|.

Thus, defining the projection this way achieves the desired property of recording the twisting around
α. There is a natural Z action on C(A) by Dehn twisting around the core curve of the annular cover

Ŝ. The group Z also has an inclusion into the mapping class group of S as Dehn twists around α,
and so it acts on C(A) through this inclusion. The projection map πA is coarsely equivariant with
respect to the two Z actions. we will often abuse notation and write πα to mean the subsurface
projection to an annulus whose core curve is α.

A marking consists of a collection of simple closed curves αi forming a maximal simplex in the
curve complex, or equivalently, a pants decomposition of the surface, together with a transverse
curve τi for each pants curve αi, which is an element of the annular curve complex corresponding
to αi. The curves αi are known as the base curves of the marking. We remark that the definition
we give here corresponds to the definition of a complete marking from [28]. They consider more
general markings, in which the set of base curves does not need to form a maximal simplex in C(S),
and all base curves are not required to have a transversal. However, complete markings suffice for
our purposes.

If α is a simple closed curve in S, then a clean transverse curve for α is a simple closed curve
β, such that a regular neighbourhood of α ∪ β, isotoped to have minimal intersection, is either a
sphere with four boundary components, or a torus with a single boundary component. A clean
marking is a marking (αi, τi), such that each transverse curve τi is of the form παi(βi), for some
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clean transverse curve βi, which is disjoint from the union of the other base base curves ∪αj , for
j 6= i. A clean marking m′ = (αi, βi) is compatible with a marking m = (αi, τi), if the base of m is
equal to the base of m′, and for each simple closed curve αi in the base, dαi(τi, παiβi) is minimal.
There are only finitely many clean markings m′ compatible with a given marking m.

The marking complex M(S) is a graph whose points are clean markings, and whose edges are
given by elementary moves as defined by Masur and Minsky [28]. These moves are called twists
and flips. In a twist, a transverse curve βi is replaced by the image of the transverse curve under
a Dehn twist along its corresponding pants curve Dαi(βi). In a flip, a transverse curve βi and
its corresponding base curve αi are interchanged, i.e. a new clean marking is chosen which is
compatible with the marking formed by replacing (αi, παi(βi)) with (βi, πβi(α)). The mapping
class group acts on the marking complex and the space of orbits is finite. We will write dM for the
induced metric on the marking complex obtained by setting the length of each edge equal to one.

The mapping class group is finitely generated, so a choice of generating set gives rise to a word
metric, in which the length of a group element is the shortest length of any product of generators
representing the group element. Different generating sets give rise to quasi-isometric metrics. We
shall assumed we have fixed a generating set, and we shall write ‖ · ‖G, or dG, for the word metric
distance in the mapping class group. Masur and Minsky showed that the distance dM in the
marking complex is quasi-isometric to the word metric in the mapping class group.

Proposition 2.1. [28, Theorems 6.10 and 7.1] Fix a complete clean marking m0 and a system of
generators for Mod(S). Then there exist constants C1, C2 such that for each g ∈ Mod(S)

C−11 ‖g‖G − C2 6 dM (m0, gm0) 6 C1‖g‖G + C2.

There is a coarsely well-defined map from the marking complex M(S) to the curve complex C(S),
which takes a marking to one of the short curves in the marking. In particular, for any essential
subsurface Y ⊆ S, this gives us a map from the marking space M(S) to C(Y ), given by composing
π and πY . Given markings m and n, denote by dY (m,n) the diameter in C(Y ) of the union of the
projections of m and n. If α is a simple closed curve, then dα will denote the distance in the curve
complex of the annulus with core curve α.

Masur and Minsky [28, Theorem 6.12] proved a distance formula expressing the distance in the
marking complex M(S), and hence by Proposition 2.1, the distance in Mod(S) in the word metric,
in terms of subsurface projections. We now describe their formula, using the cutoff function bxcA,
defined by

(2) bxcA =

{
x if x > A
0 otherwise.

Theorem 2.2 ([28] Quasi-distance formula). There exists a constant A0 > 0, which depends only
on the topology of the surface S, such that for any A > A0, there are constants C1 and C2, which
depend only on A and the topology of S, such that for any pair of clean markings m and m′ in
M(S),

C−11 dM (m,m′)− C2 6
∑
Y⊆S
bdY (m,m′)cA 6 C1dM (m,m′) + C2

where the sum runs over all subsurfaces Y of S, including S.

2.3. Short curves and short markings. Given a hyperbolic surface X, there is a systole map
from Teichmüller space T (S) to the curve complex C(S) given by sending X to a shortest curve on
X. This map is coarsely well defined: there may be multiple shortest curves, but there are only
finitely many choices, and they are a bounded distance apart in the curve complex, where these
bounds depend only on the topology of S. This follows from the fact that by Bers’ Lemma, for any
surface S there is a constant L depending on S such that any hyperbolic metric on S contains a
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simple closed curve of length at most L, and the collar lemma says that for any simple closed curve
γ of length L, there is an ε > 0, depending on L, such that an ε-neighbourhood of γ is embedded,
and so this bounds the number of intersections of any pair of curves of length L. In particular, for
any Teichmüller geodesic γt, this gives a sequence of simple closed curves αt.

A reparameterization of R is a continuous, monotonically increasing function φ : R → R, which
need not be onto. We say a function f from R to a metric space is an unparameterized (K, c)-
quasigeodesic if there is a reparameterization φ such that f ◦φ is a (K, c)-quasigeodesic, which may
be of finite length.

Masur and Minsky [28] showed that the image of a Teichmüller geodesic under the shortest curve
map is an unparameterized quasigeodesic in the curve complex. Rafi [30] showed that the composi-
tion of subsurface projection with the shortest curve map gives an unparameterized quasigeodesic
in the curve complex of the subsurface.

Theorem 2.3 ([30, Theorem B]). There are constants K and c, which only depend on the surface
S, such that for any Teichmüller geodesic γ, and any subsurface Y ⊆ S, the sequence of curves
πY (αt) arising from the projection of the shortest curves αt to C(Y ) is an unparameterized (K, c)-
quasigeodesic in C(Y ).

Given a hyperbolic surface X, let us define the shortest marking m(X) in the following way.
First, choose a pants decomposition by picking the shortest simple closed curves in the hyperbolic
metric, using the greedy algorithm. To be precise, start by choosing one of the shortest curves on
the surface, then choose one of the shortest curves on the complementary surface, and continue
until you have a pants decomposition of the original surface. Then, for each curve αi of the pants
decomposition choose a transverse curve τi which is perpendicular to αi in the hyperbolic metric.
If there are multiple shortest curves, then the shortest marking may not be unique, but there are
only a finite number of choices, with a bound depending on the topology of the surface. This gives
a map from T (S) to M(S), which is coarsely well-defined, and we shall write mt for the image of
a point on a Teichmüller geodesic γt under this map.

2.4. Projections and isolated intervals. Rafi [29] shows that for any Teichmüller geodesic γ,
and any subsurface Y , there is a (possibly empty) interval IY during which Y is isolated, i.e. the
boundary components of Y are short in the hyperbolic metric. In order to make this statement
precise, let us pick a constant ε0 > 0 which is smaller than the Margulis constant. Given a
Teichmüller geodesic γ(t), and a simple closed curve α, we shall write Lt(α) for the length of α in
the hyperbolic metric γ(t).

Proposition 2.4 ([29, Corollary 3.3]). Let ε0 > 0 be sufficiently small. Then there exists ε1 6 ε0
such that, for any geodesic in the Teichmüller space and any curve α in S, there exists a connected
(perhaps empty) interval Iα such that

(1) for t ∈ Iα, Lt(α) 6 ε0;
(2) for t /∈ Iα, Lt(α) > ε1.

Outside the active interval Iα, the map from the Teichmüller geodesic to the curve complex of
the annulus corresponding to α is coarsely constant.

Proposition 2.5 ([29, Proposition 3.7]). There is a constant K, depending only on the topology of
the surface S, and the choices for the constants ε0 and ε1, such that if [r, s] ∩ Iα = ∅, then

dα(mr,ms) 6 K.

In the next section we show that the length of the active interval for an annulus is roughly log
of the projection distance of the endpoints of the geodesic into the subsurface.
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2.5. Excursions and twist parameter. The material in this section is due to Rafi [29, 30].
However, we need versions of his results in terms of the excursion parameter, and we use some of
the contents of the proofs, not just the main stated results, so we write out all of the details for
the convenience of the reader.

A horoball H in the hyperbolic plane is a subset of the plane which in the Poincaré disc model
corresponds to a Euclidean disc whose boundary circle is tangent to the boundary at infinity. Given
a horoball H and a geodesic γ which spends a finite amount of time in H, let us define the excursion
E(γ,H) of γ in H as the "relative visual size" of the set of rays which go deeper than γ inside H.
Namely, consider a basepoint X0 on the Teichmüller disc in T , and let γH be the geodesic through
X0 which tends to the cusp of H, and γT a geodesic through X0 which is tangent to H. Let φ0 be
the angle between γ and γH , and φmax be the angle between γH and γT (see Figure 2). Then

Definition 2.6. The excursion of the geodesic γ in the horoball H is defined as

(3) E(γ,H) :=
φmax
φ0

.

It turns out that E(γ,H) is, up to an additive error, also the hyperbolic length of the projection
of γ ∩H to the complement of H.

X0

H

φmax

φ0

γ
γH

γT

Figure 2. Excursion in the horoball H.

Let (X, q) be a quadratic differential on X, and α a simple closed curve on X. The choice of q
determines a Teichmüller geodesic γ and a pair (F+, F−) of contracting and expanding foliations.
Each t determines a new quadratic differential qt and hence a flat metric on X, which we will call
the qt-metric.

For a given t, α is realized by a family of parallel flat geodesics, and we will denote as βt the
perpendicular to α in the qt-metric. The twist parameter tw+

t (α) is the highest intersection number
between a leaf of F+ and the transversal βt, and similarly we define tw−t (α).

Given a simple closed curve α corresponding to metric cylinder, there is a unique rotation eiθα

which takes the metric cylinder to a vertical metric cylinder. The endpoint of the geodesic ray
corresponding to the quadratic differential eiθαq determines a point ξα on the boundary at infinity
of the Teichmüller disc D. We shall write Hε(α) as the set of points in the disc for which α is short
in the flat metric:

Hε(α) := {q ∈ D : `2q(α) 6 ε}.
As seen in the disc, this set is a horoball tangent to the boundary at infinity at ξα. The fundamental
estimate is the following:
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Proposition 2.7. Let H = Hε(α) as above, and let t1 and t2 respectively be the entry time and
exit time from H (i.e. t1 6 t2) along the Teichmüller geodesic γ. Let moreover A be the area of the
maximal flat cylinder in (X, q0) with core curve α. Then we have, up to universal multiplicative
and additive constants,

tw−t2(α)− tw−t1(α) � A

ε
E(γ,H).

Proof. Consider the universal cover of the flat cylinder corresponding to α at time t, in the flat
metric qt. We shall assume that the contracting foliation is vertical, and the expanding foliation is
horizontal. Let `t be the length of α at time t, and let θt be the angle αt makes with the vertical
contracting foliation, as illustrated below in Figure 3.

θt

θt

θt

`t

ht

vtHt

wt

βt

α

`t
H ′t

Figure 3. Estimating intersections in the flat annulus.

Let ht and vt be the horizontal and vertical lengths of `t in the qt metric, i.e.

ht = h0e
t = `0 sin θ0e

t

vt = v0e
−t = `0 cos θ0e

−t.

Let wt be the length of βt, which is the width of the flat annulus. Let Ht be the length of the
intersection of a leaf of the horizontal foliation with the universal cover of the flat annulus, and let
H ′t be the length of the intersection of the horizontal leaf with two adjacent translates of βt.

Up to constant additive error, tw−t (α), which is the maximum number of intersections between
the horizontal leaf of the foliation and β, is given by Ht/H

′
t. Therefore

tw−t (α) =
Ht

H ′t
+O(1) =

wt sin θt
`t cos θt

+O(1).

The area of the annulus is A = wt`t, and tan θt = tan θ0e
2t, so this implies that

(4) tw−t (α) =
A

`2t
tan θ0e

2t +O(1).

The total length of α is given by

(5) `2t = h2t + v2t = `20(sin
2 θ0e

2t + cos2 θ0e
−2t),

11



and recall that we choose ti such that `2ti = ε, which by (4) implies

(6) tw−t2(α)− tw−t1(α) =
A

ε
tan θ0(e

2t2 − e2t1) +O(1).

Note that by definition the ti are solutions to the equation

`2ti = `20(sin
2 θ0e

2ti + cos2 θ0e
−2ti) = ε i = 1, 2

If we set Xi := e2ti , then Xi are the solutions to

(7) X2 − ε2

`20 sin2 θ0
X +

1

tan2 θ0
= 0

hence

(8) e2t2 − e2t1 = X2 −X1 =

√
ε2

`40 sin4 θ0
− 4

tan2 θ0

and putting (6) and (8) together

(9) tw−t2(α)− tw−t1(α) =
A tan θ0

ε
(e2t2 − e2t1) +O(1) =

A

ε

√
ε2

`40 sin2 θ0 cos2 θ0
− 4 +O(1).

Let us now relate this quantity to the excursion in the horoball H.

Lemma 2.8. Let φmax be the angle between a geodesic γT tangent to H and the geodesic γH which
goes straight into the cusp of H. Then

sinφmax =
ε

`20
,

where `0 is the length of α at time t = 0.

Proof. When θ0 = θmax then the geodesic is tangent to the horoball H, hence t1 = t2 in equation
(8), so

ε2

`40 sin4 θmax
=

4

tan2 θmax
.

The claim follows by recalling that a rotation of angle θ in the flat metric picture corresponds to
multiplying the quadratic differential by e2iθ, hence φmax = 2θmax. �

The proposition now follows easily from the lemma, equation (9) and the fact that φ0 = 2θ0:

tw−t2(α)− tw−t1(α) =
2A

ε

sinφmax
sinφ0

√
1− sin2 φ0

sin2 φmax
+O(1) � A

ε
E(γ,H)

where in the last equality we used equation (3) and the fact that sinφ � φ (note that we can
assume sinφ0 ≤ 1

2 sinφmax, otherwise the claim is trivially verified).
�

Remark. Note that one can also relate the twist parameter to the time spent by the geodesic inside
the horoball, namely

tw−t2(α)− tw−t1(α) � A

ε
(et2−t1 − et1−t2).

The distance between the projections from the marking complex to the complex of the annulus
can be compared to the excursion in the horoball:

12



Proposition 2.9. Let ε > 0 sufficiently small, and (X0, q) a unit area quadratic differential, which
determines the geodesic ray γt. Let A be the q-area of the maximal flat cylinder with core curve
α, and suppose that α is not short in the q-metric (i.e. `2q(α) ≥ ε). If the geodesic γ crosses the
horoball H = Hε(α) and t is larger than the exit time of γ from H, then

dα(m0,mt) �
A

ε
E(γ,H)

where mt is the shortest marking on γt, and the quasi-isometry constants depend only on X0, ε and
the topology of S.

Before proving the proposition, let us recall the definition of extremal length:

Extσ(α) := sup
ρ

(`ρ(α))2

A(ρ)

where the sup is taken over all metrics ρ in the same conformal class as σ. For any quadratic
differential q with area 1 and any curve α,

(`q(α))2 6 Extσ(α) 6
Lσ(α)

2
eLσ(α)/2

where the left-hand side is by definition, while the right-hand side is due to Maskit [23], and Lσ(α)
is the length of α in the hyperbolic metric corresponding to the conformal structure σ.

Recall tw±q denotes the twist parameter in the flat metric associated to q, as defined in the
previous section. Analogously, given a hyperbolic metric σ on S and a simple closed curve α, we
can define a twist parameter tw±σ (α) with respect to the hyperbolic metric by taking a curve β
perpendicular to α with respect to the hyperbolic metric and letting

tw±σ (α) := i(F±, β).

The following proposition of Rafi relates the two twist parameters:

Proposition 2.10 ([29, Theorem 4.3]). The two twist parameters are the same up to an additive
error comparable to 1/Lσ(α). That is,

tw±σ (α) = tw±q (α) +O

(
1

Lσ(α)

)
.

Proof of Proposition 2.9. Let us choose ε0 in such a way that if `2q(α) = ε, then Lσ(α) > ε0. Let
t1 and t2 be the times when the qt-length of α is exactly ε, and let t > t2. By the previous choice,
Lσti (α) > ε0 for i = 1, 2, so by Proposition 2.4 [0, t1] and [t2, t] are disjoint from Iα, hence by
Proposition 2.5

dα(m0,mt) = dα(mt1 ,mt2) +O(1).

On the other hand, the progress in subsurface projection across the horoball is comparable to the
progress in the twist parameter for the hyperbolic metric,

dα(mt1 ,mt2) = |iα(βt1 , F
+)− iα(βt2 , F

+)|+O(1) = |tw+
σ1(α)− tw+

σ2(α)|+O(1)

and by Proposition 2.10 it is also comparable to the progress in the twist parameter defined via
the flat metric:

|tw+
σ1(α)− tw+

σ2(α)| = |tw+
q1(α)− tw+

q2(α)|+O

(
1

Lσ1(α)

)
+O

(
1

Lσ2(α)

)
and since Lσi(α) > ε0

dα(m0,mt) = |tw+
q1(α)− tw+

q2(α)|+O(1).
13



Finally, by Proposition 2.7 the twist is comparable to the excursion, thus

dα(m0,mt) �
A

ε
E(γ,H).

�

2.6. Coarse monotonicity for the word metric. In [30], Rafi shows the following non-backtracking
or reverse triangle inequality for subsurface projections along a Teichmüller geodesic. Recall that
given a Teichmüller geodesic γt we write mt for the shortest marking at γt, and we write dY (ms,mt)
to mean the distance in the curve complex C(Y ) between the images of ms and mt under subsurface
projection to Y .

Theorem 2.11 ([30, Theorem 6.1]). There exists a constant C, only depending on the topology of
S, such that for every Teichmüller geodesic γ, and every subsurface Y ,

(10) dY (mr,ms) + dY (ms,mt) 6 dY (mr,mt) + C,

for all constants r 6 s 6 t.

The above theorem along with the Masur-Minsky quasi-distance formula (2.2) implies that the
distance in the marking complex is coarsely monotonic along a Teichmüller ray.

Proposition 2.12. There exists constants C1 > 0 and C2 that depend only on S such that along
a Teichmüller geodesic γt, for 0 < s < t the distance in the marking complex satisfies

dM (m0,ms) 6 C1dM (m0,mt) + C2.

Proof. Let C be the constant in Rafi’s reverse triangle inequality, Theorem 2.11. Assume 0 < s < t,
then (10) implies

(11) dY (m0,mt) > dY (m0,ms)− C
for all subsurfaces Y ⊆ S. The Masur-Minsky quasi-distance formula (Theorem 2.2) holds for all
floor constants sufficiently large, though the quasi-isometry constants depend on A. Choose a floor
constant A > 2C, and let K1 and K2 be the associated quasi-isometry constants. By the definition
of the floor function, if bxcA is non zero, then x > A. This implies that x−A/2 > x/2, and as the
floor function is monotonic,

(12) bx−A/2cA > bx/2cA.
As we have chosen A > 2C, combining (11) and (12) implies

(13) bdY (m0,mt)cA > b12dY (m0,ms)cA,
again for all subsurfaces Y ⊆ S. Now summing (13) over all subsurfaces Y ⊆ S, the quasi-distance
formula implies

dM (m0,mt) >
1

K1

(∑
b12dY (m0,ms)cA −K2

)
.

By definition of the floor function, b12xcA = 1
2bxc2A, so

dM (m0,mt) >
1

2K1

(∑
bdY (m0,ms)c2A − 2K2

)
.

The quasi-distance formula holds for all A sufficiently large, so in particular holds for 2A, though
with different quasi-isometry constants, which we shall denote K3 and K4. This implies that

dM (m0,mt) >
1

2K1K3
(dM (m0,ms)−K3K4 −K2)

whence the result. �
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2.7. Projection to closest Teichmüller lattice point. Let q be a quadratic differential, let qt
be the image of q under the Teichmüller geodesic flow after time t, and let Xt be the image of qt
in T . The orbit of X0 under the mapping class group is called a Teichmüller lattice, and let gtX0

be a choice of closest lattice point in T to Xt, i.e. such that

dT (gtX0, Xt) 6 dT (gX0, Xt) for all g ∈ Mod(S).

For any given point Xt, there are at most finitely many closest lattice points, however it is possible
that the number of closest lattice points increases as you choose points deeper in the thin part.
Let mt be a shortest marking on Xt, and ‖ · ‖G the word metric on the mapping class group with
respect to some choice of generators.

Lemma 2.13. If X0 and Xt both lie in the thick part T \ Tε, then

‖gt‖G � dM (m0,mt)

where the quasi-isometry constants only depend on X0, the choice of ε and the generating set for
the mapping class group.

Proof. Let K1 be the diameter of the thick part T \ Tε in moduli space; then, by definition there
exists a group element g such that in Teichmüller space dT (gX0, Xt) 6 K1, so by definition of gt

dT (gtX0, Xt) 6 K1.

Hence by group invariance
dT (X0, g

−1
t Xt) 6 K1.

In the Teichmüller ball of radius K1 only finitely many markings appear as short markings, hence
there exists K2, depending only on K1, and the surface S, such that the distance in the marking
complex is bounded:

dM (m0, g
−1
t mt) 6 K2.

As a consequence,

|dM (m0,mt)− dM (m0, gtm0)| 6 dM (gtm0,mt) = dM (m0, g
−1
t mt) 6 K2.

Finally, the distance in the word metric ‖gt‖G is quasi-isometric to the distance dM (m0, gtm0) in
the marking complex by Proposition 2.1. �

By combining the previous lemma with the coarse monotonicity statement of Proposition 2.12,
we get that the word length of the closest point projection to the Teichmüller lattice is coarsely
monotone along the thick part of a Teichmüller ray:

Proposition 2.14. There exists constants C1 > 0 and C2, that depend only on X0 and ε0 and
the choice of generators, such that along a Teichmüller geodesic γt, for 0 < s < t the word metric
satisfies

‖gs‖G 6 C1‖gt‖G + C2

whenever γ0, γs and γt all lie in the thick part T \ Tε0.

3. Lebesgue measure sampling

The goal of this section is to study the asymptotic behaviour of typical Teichmüller geodesics
with respect to Lebesgue measure, proving Theorem 1.1. More precisely, we want to keep track of
short curves in the flat metric as the metric changes under the action of Teichmüller flow, and prove
an asymptotic result, Theorem 3.3. In Section 3.1 we recall results of Masur [26] and Eskin and
Masur [7] which show that the growth rate of the number of metric cylinders with area bounded
below is quadratic. In Section 3.2 we consider the function given by the sum of the squares of the
reciprocals of the short curves, and show that the average value of this function tends to infinity
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along almost every Teichmüller geodesic with respect to Lebesgue measure. Then in Section 3.3 we
show that this function gives a lower bound for the average of the sums of the excursions along the
geodesic. Finally in Section 3.4 we show that the sum of the excursions is a lower bound for the
word metric along the Teichmüller geodesic, and so the word metric along the geodesic has faster
than linear growth, which completes the proof of the Theorem 1.1.

3.1. Metric cylinders with bounded area. Let q be a quadratic differential of unit area. A
metric cylinder for q is a cylinder in the flat metric associated to q which is the union of freely
homotopic closed trajectories of q. We shall label each metric cylinder by the homotopy class α of
the corresponding closed trajectory.

Let us now fix some 0 < δ < 1, and let Cq(δ) be the set of metric cylinders for the q-metric with
area bounded below by δ. Moreover, let us denote by Cq(δ, ε) the set of cylinders whose area is
bounded below by δ and whose core curve has length shorter than the square root of ε:

Cq(δ, ε) := {α ∈ Cq(δ) : `2q(α) 6 ε}.

Lemma 3.1. Suppose ε < δ. Then any two distinct elements of Cq(δ, ε) are disjoint on q. As
a corollary, the cardinality of Cq(δ, ε) is bounded above by a constant which depends only on the
topology of S.

Proof. We follow the argument in [26, Lemma 2.2]. Denote by α the core curve of some cylinder
which belongs to Cq(δ, ε). Since the metric cylinder of α has area A(α) > δ, any curve τ which
crosses α is such that δ 6 `q(α)`q(τ) 6 `q(τ)

√
ε, hence `q(τ) >

√
ε, so τ cannot belong to Cq(δ, ε).

�

Given the quadratic differential q, let us denote as Nq(δ, T ) the number of cylinders in the q-
metric which have area bounded below by δ and length smaller than T . As Eskin and Masur
showed, Nq(δ, T ) grows quadratically as a function of T :

Theorem 3.2. There exists 0 < δ < 1 and a constant cδ > 0 such that, for almost every quadratic
differential q of unit area, we have

lim
T→∞

Nq(δ, T )

T 2
= cδ.

Proof. Let 0 < δ < 1. By the general counting argument of Eskin-Masur [7, Theorem 2.1] applied
to the set of metric cylinders with area bounded below by δ, we get the existence of the limit cδ
almost everywhere. On the other hand, by [26, Proposition 2.5], for every quadratic differential

there exists some δ > 0 such that lim infT→∞
Nq(δ,T )
T 2 > 0, so the constant cδ must be positive for

some δ. �

A finer statement, at least in the case of translation surfaces, is due to Vorobets [34].

3.2. Asymptotic length of short curves. Let us now quantify the idea of keeping track of short
curves in the flat metric. For the rest of the paper, we will fix some δ > 0 for which Theorem 3.2
holds, and some ε < δ. Let us define the function L : QM→ R as

L(q) :=
∑

α∈Cq(δ,ε)

1

`2q(α)
.

Note that by Lemma 3.1 the number of terms in the sum is always finite, so the function is well-
defined. Let us fix denote by qt the image of the quadratic differential q under the Teichmüller
geodesic flow after time t. Our goal is to prove that the ergodic average of L is infinite:
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Theorem 3.3. For µhol-a.e. quadratic differential q of unit area, we have

lim
T→∞

∫ T
0 L(qt) dt

T
=∞.

In the proof of Theorem 3.3, we will make use of the following relations between metric cylin-
ders and the geometry of Teichmüller discs. Let us fix a base point q0 in the space of quadratic
differentials, and call Dq0 the Teichmüller disc given by the SL2(R)-orbit of q0. For every metric

cylinder α on q0, there is an angle θα such that α is vertical in the quadratic differential eiθαq0.
The angle θα determines a point in the circle at infinity of Dq0 . For each metric cylinder on q0 with
core curve α, let us define the set

Hε(α) := {q ∈ Dq0 : `2q(α) 6 ε},

of points in the Teichmüller disc for which the length of α is less than the square root of ε. Recall
the metric induced on Dq0 by the Teichmüller metric is the hyperbolic metric of constant curvature
−4, and Hε(α) is a horoball for that metric.

Lemma 3.4. The Euclidean diameter s of the horoball Hε(α) is

s =
2ε

ε+ `2q0(α)

where `q0(α) is the length of α in the flat metric associated to the quadratic differential q0.

Proof. By integrating the hyperbolic metric of curvature −4 we have

d(q0, Hε(α)) =

∫ 1−s

0

dx

1− x2
=

1

2
log

2− s
s

and, since the Teichmüller map exponentially shrinks the curve α,

e−2d(q0,Hε(α))`2q0(α) = ε

hence the claim. �

We will need the following estimate from elementary Euclidean geometry:

Lemma 3.5. In the unit disc, let θ(r,R) be the angle at the center of the disc corresponding to
the intersection of the circle of radius R > 1

2 centered at the origin, with a circle of radius r 6 1
2

tangent to the boundary, with R+ 2r − 1 > 0. Then there is a constant K such that

1

K

√
(1−R)(R+ 2r − 1) 6 θ(r,R) 6 K

√
(1−R)(R+ 2r − 1).

Proof. By the law of cosines, r2 = (1−r)2 +R2−2R(1−r) cos(θ/2). The claim follows by standard
algebraic manipulation and approximation. �

Let qt,θ denote the quadratic differential given by flowing the quadratic differential eiθq0 for time
t.

Lemma 3.6. For almost every quadratic differential q0 there exists a constant c > 0, such that for
each ε > 0 there exists a time tε such that∑

α∈Cq0 (δ)

Leb({θ ∈ [0, 2π] : qt,θ ∈ Hε(α)}) > cε ∀ t > tε,

where Leb denotes Lebesgue measure on the circle.
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Proof. Let 1
2 < R < 1, and consider the set of horoballs of the collection Hε(α) with α ∈ Cq0(δ) and

Euclidean diameter s > 3
2(1 − R). By Lemma 3.4, these horoballs correspond precisely to metric

cylinders with core curve α such that

`2q0(α) 6
3R+ 1

3(1−R)
ε.

By Theorem 3.2, the number of such cylinders is, for R large, at least cδ
2

3R+1
3(1−R)ε. By Lemma 3.5,

every corresponding horoball intersects the circle of Euclidean radius R centered at the origin in
an arc of visual angle

θ >
1

K
√

2
(1−R)

and by Lemma 3.1 every quadratic differential belongs to at most a universally bounded number
M of horoballs, hence the total visual angle is at least cδ

6KM
√
2
ε. �

In order to prove Theorem 3.3, let us first define a discrete version of L. Namely, for each n and
α we denote as Hn(α) the horoball

Hn(α) := {q ∈ Dq0 : `2q(α) 6 2−nε}.

Now, the function Ψ : QM→ R is defined as

Ψ(q) :=
∑

α∈Cq(δ)

∞∑
n=1

2nχHn(α).

It is easy to see that Ψ is bounded above by a multiple of L:

Lemma 3.7. For each quadratic differential q, we have

Ψ(q) 6 4εL(q).

Proof. Let α ∈ Cq(δ) be a short curve on q: then there exists a positive integer M such that

2−M ε 6 `2q(α) 6 2−M+1ε.

Now, since q lies in H1(α) ∪ · · · ∪HM (α),

∞∑
n=1

2nχHn(α) 6 1 + 2 + · · ·+ 2M 6 2 · 2M 6 4ε

`2q(α)

and summing over α yields the claim. �

Proof of Theorem 3.3. By Lemma 3.7, it is enough to prove the statement for Ψ. Let us now
truncate the function Ψ by defining, for each N ,

ΨN (q) :=
∑

α∈Cq(δ)

N∑
n=1

2nχHn(α).

Let us now fix N . By Lemma 3.1, ΨN is bounded on the moduli spaceMQ of unit area quadratic
differentials, hence µhol-integrable; by ergodicity of the geodesic flow, for a generic Teichmüller disc
for almost all radial directions θ the ergodic average of ΨN along the flow tends to its integral:

lim
T→∞

∫ T

0

ΨN (qt,θ) dt

T
=

∫
MQ

ΨN (q) dµhol for a.e. θ.
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Then, if we integrate both sides w.r.t. to the angular measure dθ and apply the dominated conver-
gence theorem,

lim
T→∞

∫
S1

dθ

∫ T

0

ΨN (qt,θ) dt

T
=

∫
MQ

ΨN (q) dµhol

and by Fubini

lim
T→∞

∫ T
0 dt

∫
S1 ΨN (qt,θ) dθ

T
=

∫
MQ

ΨN (q) dµhol.

Now, by Lemma 3.6, for each t > T2−N∫
S1

ΨN (qt,θ) dθ >
N∑
n=1

2n · c2−n = cN

hence ∫
MQ

ΨN (q) dµhol = lim
T→∞

∫ T
0 dt

∫
S1 ΨN (qt,θ) dθ

T
> cN.

Since the previous estimate works for all N , then also∫
MQ

L(q) dµhol =∞

hence the ergodic average tends to infinity almost everywhere:

lim
T→∞

∫ T

0

L(qt) dt

T
=

∫
MQ

L(q) dµhol =∞ for a.e. q ∈MQ.

�

3.3. Average excursion. Let us now turn the asymptotic estimate of the previous section into an
asymptotic about excursions. If q is a quadratic differential, let us denote as γq the corresponding
Teichmüller geodesic ray. We now define the concept of total excursion traveled by the geodesic γq
inside the horoballs up to time T :

Definition 3.8. Given a quadratic differential q, the total excursion E(q, T ) is the sum of all
excursions in all horoballs crossed by the geodesic ray γq up to time T :

E(q, T ) :=
∑

γq([0,T ])∩Hε(α) 6=∅

E(γq, Hε(α)).

Our goal is to prove that also the average total excursion is infinite.

Theorem 3.9. For µhol-almost every quadratic differential q of unit area, we have

lim
T→∞

E(q, T )

T
=∞.

Theorem 3.9 follows from Theorem 3.3 and the following

Proposition 3.10. Let q be a quadratic differential with geodesic ray γq, and let T > 0 be such
that both q and γq(T ) lie outside all horoballs of the type Hε(α). Then∫ T

0
L(qt) dt 6

C

ε
E(q, T )

for some universal constant C.
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Proof. Let α ∈ Cq(δ) be a curve which has become short before time T , i.e. such that γq([0, T ]) ∩
Hε(α) is non-empty. Let T1 be the time the geodesic enters Hε(α), and T2 the time the geodesic
exits. Moreover, let N be the maximum integer k such that the geodesic enters Hk(α). Note that
there is a universal constant C1 such that for each n > 1 and each α

Leb({t ∈ [0, T ] : qt ∈ Hn+1(α) \Hn(α)}) 6 C1.

Then ∫ T2

T1

1

`2qt(α)
dt 6

N∑
n=1

2n

ε
Leb({t ∈ [0, T ] : qt ∈ Hn+1(α) \Hn(α)}) 6 C1 · 2N+1

ε
.

In order to compare the right hand side with the excursion, let us denote by ε̃ the smallest value of
`2qt(α) along the geodesic ray γq. By the definition of N , we have ε̃ � 2−N ε. Now, by the definition
of excursion and Lemma 2.8,

E(γq, Hε(α)) =
φmax
φ0
� sinφmax

sinφ0
=
ε

ε̃
� 2N

(where all the approximate equalities hold up to multiplicative constants), hence the claim follows.
�

Remark. A precise analysis of how E(q, T ) grows along Leb-typical geodesics is carried out in [11].
It culminates in a strong law analogous to the one established by Diamond and Vaaler for continued
fractions [5].

3.4. The word metric. Let us complete the proof of Theorem 1.1 and Theorem 1.3 for the
Lebesgue measure by proving that the word metric is bounded below by the total excursion. Let
us pick ε0 to define the thick part as in section 2.4, and let us choose δ so that Theorem 3.2 holds.
Finally, we choose ε so that if X belongs to the thick part T \ Tε0 and α is the core curve of a
metric cylinder of q-area larger than δ on X, then `2q(α) > ε.

Let X0 lie in the thick part T \ Tε0 , and let γ be a Teichmüller geodesic with γ(0) = X0. Recall
for each time t, gt is a closest point projection of γ(t) to the Teichmüller lattice.

Proposition 3.11. If γ(T ) lies in the thick part T \ Tε0, then

‖gT ‖G > C1E(γ, T )− C2

where the constants depend only on X0, the choice of ε0 and the choice of generating set for Mod(S).

Proof. Since γ(0) and γ(T ) lie in the thick part, by Lemma 2.13

‖gT ‖G � dM (m0,mT ).

By the Masur-Minsky quasi-distance formula (Theorem 2.2), for any B large enough

dM (m0,mT ) �
∑
Y⊆S
bdY (m0,mT )cB >

∑
γ([0,T ])∩Hε(α)6=∅

bdα(m0,mT )cB

where on the right-hand side we only consider projections to annuli of area bounded below, and
whose core curve becomes short before time T . Now by Proposition 2.9, for some constants K1

and K2,

dα(m0,mT ) > K1E(γ,Hε(α))−K2

so if B > K2

bdα(m0,mT )cB > bK1E(γ,Hε(α))−K2cB >
K1

2
bE(γ,Hε(α))c 2B

K1
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and we can choose ε̃ a bit smaller than ε so that bE(γ,Hε(α)c 2B
K1

> E(γ,Hε̃(α)), hence∑
γ([0,T ])∩Hε(α)6=∅

bdα(m0,mT )cB >
∑

γ([0,T ])∩Hε̃(α) 6=∅

E(γ,Hε̃(α)) = E(q, T ).

�

Proofs of Theorem 1.1 and Theorem 1.3 (Lebesgue measure). Theorem 1.1 follows directly from The-
orem 3.9 and Proposition 3.11. Moreover, by Theorem 2.3, the relative metric is a lower bound
for Teichmüller distance, i.e. there exist constants K, c, depending only on the topology of S, such
that

‖gT ‖rel 6 KT + c.

This completes the proof of the first part of Theorem 1.3. �

4. Hitting measure sampling

In Section 4.1 we review some background material from the theory of random walks, and recall
some previous results which show that the ratio between the word metric and the relative metric
along the locations wnX0 of a sample path of the random walk remains bounded for almost all
sample paths. This means that if a location wnX0 of the sample path is close to the geodesic, then
this ratio is also bounded for points on the geodesic close to wnX0. However, the results of the
previous section apply to all points along the geodesic which lie in the thick part of Teichmüller
space, so we need to extend the bounds to these other points. In Section 4.2 we use some results
of [32] to show that the distance between the locations of the sample path and the corresponding
geodesic grows sublinearly, and then in Section 4.3 we use the coarse monotonicity of word length
along the geodesic to show that this also bounds the ratio between word length and relative length
for all points along the geodesic which lie in the thick part.

4.1. Random walks. Let µ be a measure on the mapping class group G = Mod(S). We say that
µ has finite first moment with respect to the word metric on G if∫

G
‖g‖G dµ(g) <∞

where ‖ · ‖G is a word metric on G with respect to a choice of finite set of generators (note that
the finiteness does not depend on this choice). The step space is the infinite product GN with the
product measure P := µN. Let wn = g1g2 . . . gn be the location of the random walk after n steps.
The path space is GN, with the pushforward of the product measure under the map

(g1, g2, g3, . . . ) 7→ (w1, w2, w3, . . .).

It will also be convenient to consider bi-infinite sample paths. In this case the step space is the set
GZ of bi-infinite sequences of group elements with the product measure. The location of the random
walk is given by w0 = 1, and wn = g1g2 . . . gn if n, if n is positive, and wn = g−10 g−1−1 . . . g

−1
n−1, if n

is negative. The path space is GZ, as a set, but with measure coming from the pushforward of P
under the map

(. . . , g−1, g0, g1, g2, . . . ) 7→ (. . . w−1, w0, w1, w2, . . .).

Let us fix a base point X0 ∈ T , and consider the image of the sample paths wnX0 in T .
Kaimanovich and Masur showed that almost every sample path converges to a uniquely ergodic
foliation in the space PMF of projective measured foliations, Thurston’s boundary for Teichmüller
space. Recall that the harmonic measure ν on PMF is defined as the hitting measure of the random
walk, i.e. for any measurable subset A ⊆ PMF ,

ν(A) := P(wn : lim
n→∞

wnX0 ∈ A).
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Theorem 4.1 (Kaimanovich and Masur [18]). Let µ be a probability distribution on the mapping
class group whose support generates a non-elementary subgroup. Then almost every sample path
(wn)n∈N converges to a uniquely ergodic foliation in PMF , and the resulting hitting measure ν is
the unique non-atomic µ-stationary measure on PMF .

Since the mapping class group is non-amenable, the random walk makes linear progress in the
word metric ‖ · ‖G, or indeed in any metric quasi-isometric to the word metric.

Theorem 4.2 (Kesten [19], Day [3]). Let µ be a probability distribution on a group, whose support
generates a non-amenable subgroup. Then there exists a constant c1 > 0 such that for almost all
sample paths

(14) lim
n→∞

‖wn‖G
n

= c1.

Even though the relative metric is smaller than the word metric, more recent results prove that
the growth rate is still linear in the number of steps.

Theorem 4.3 (Maher [21], Maher-Tiozzo [22]). Let µ be a probability distribution on the mapping
class group which has finite first moment in the word metric, and such that the semigroup generated
by its support is a non-elementary subgroup. Then there is a constant c2 > 0 such that for almost
all sample paths

lim
n→∞

‖wn‖rel
n

= c2.

Note that in [21], the result is proven under the additional condition that the support of µ is
bounded in the relative metric, while such condition is not needed in [22].

From these results it follows that the quotient between the word metric and the relative metric
converges to c1/c2 for almost every sample path, i.e.

lim
n→∞

‖wn‖G
‖wn‖rel

=
c1
c2

for almost all sample paths. The limit above is a limit taken along the locations (wn)n∈N of the
random walk. In order to compare this to the previous statistic we need to relate locations of the
random walk to points on a Teichmüller geodesic.

By the work of Kaimanovich and Masur [18], for almost every bi-infinite sample path w ∈ GZ,
there are well-defined maps

F± : GZ → PMF
given by

F+(w) := lim
n→∞

wnX0

and

F−(w) := lim
n→∞

w−nX0.

Furthermore, the two foliations F+(w) and F−(w) are almost surely uniquely ergodic and dis-
tinct, so there is a unique oriented Teichmüller geodesic γw whose forward limit point in PMF is
F+(w) and whose backward limit point is F−(w). There is also a unique geodesic ray ρw starting
at the basepoint X0 whose forward limit point is F+. We shall always parameterize ρw as unit
speed geodesic with ρw(0) = X0. As F+ is uniquely ergodic, the distance between γw and ρw tends
to zero, by Masur [24], and we shall parameterize γw such that dT (ρw(t), γw(t))→ 0.
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For each bi-infinite sample path we can define the function

D : GZ → R
given by

D(w) := dT (X0, γw)

which represents the Teichmüller distance between the base point X0 and the geodesic γw. This is
well-defined and measurable, by Lemma 1.4.4 of [18]. In particular, this implies that for any ε > 0
there is a constant M such that the probability that D(w) 6M is at least 1− ε.

The shift map σ maps the step space to itself by incrementing the index of each step by one, i.e.

σ : (gn)n∈Z 7→ (gn+1)n∈Z.

This is a measure preserving ergodic transformation on the step space, and the induced action of
σ on the path space is given by

σ : (wn)n∈Z 7→ (w−11 wn+1)n∈Z.

4.2. Distance between geodesic and sample path. The geodesic γw is determined by its
endpoints F+(w) and F−(w), and the distribution of these pairs is given by harmonic measure ν
and reflected harmonic measure ν̌ respectively.

The distance from a location wn to the corresponding geodesic γw is given by

dT (wnX0, γw) = dT (X0, w
−1
n γw)

since the mapping class group acts on T by isometries, and by the definition of the shift map,

dT (wnX0, γw) = dT (X0, γσnw).

As already noted in [18], if ε is sufficiently small, almost every geodesic with respect to harmonic
measure returns to the ε-thick part T \ Tε infinitely often.

Our goal is to show that every step of the random walk lies within sublinear distance in the word
metric from some point in the thick part of the limit geodesic.

In [32], sublinear tracking is proven in the Teichmüller metric: we will adapt the argument to
the word metric. The fundamental argument for sublinear tracking in [32] is the following lemma.

Lemma 4.4 (Tiozzo [32]). Let T : Ω → Ω a measure-preserving, ergodic transformation of the
probability measure space (Ω, λ), and let f : Ω → R>0 any measurable, non-negative function. If
the function

g(ω) := f(Tω)− f(ω)

belongs to L1(Ω, λ), then for λ-almost every ω ∈ Ω one has

lim
n→∞

f(Tnω)

n
= 0.

We now explain how to apply the lemma above in the current setting. Given a point X ∈ T , let
us denote as proj(X) the set of lattice points at minimal distance from X:

proj(X) := {h ∈ G : dT (hX0, X) is minimal}.
Such a projection may possibly vary wildly if X lies in the thin part, but it is controlled in the
thick part: namely, given ε > 0 there is a constant K(ε) such that

dT (X,hX0) 6 K(ε), ∀X /∈ Tε ∀h ∈ proj(X).

We now associate to almost every sample path w a subset P (w) of the mapping class group, which
we now describe. Almost every bi-infinite sample path w ∈ GZ determines two uniquely ergodic
foliations, F±(w). Let γw be the bi-infinite Teichmüller geodesic joining them. Now, let us define

23



P (w) as the set of mapping class group elements h ∈ G such that hX0 is the closest projection
from some point X in γw \ Tε, i.e.

P (w) :=
⋃

X∈γw\Tε

proj(X).

This is illustrated in Figure 4.

Tε

Tε

X0

wnX0

pn

P (w)

γw(tn)

F−

F+

γw

Figure 4. Sample path locations and basepoint orbits close to the geodesic.

The key result is the following:

Proposition 4.5. Fix ε > 0, sufficiently small. Then for almost every sample path (wn)n∈N, with
corresponding Teichmüller ray ρw, there exists a sequence of times tn →∞ with ρw(tn) ∈ ρw \ Tε,
such that

lim
n→∞

dG(wn, hn)

n
= 0

for any hn ∈ proj(ρw(tn)).

Proof. Let us fix ε > 0 sufficiently small. Recall that P (w) is the collection of group elements
corresponding to closest lattice points to points on the geodesic γw which lie in the thick part of
Teichmüller space. Note that, since the mapping class group acts by isometries with respect to
both the Teichmüller and word metrics, then P is equivariant, in the sense that

P (σnw) = w−1n P (w).

Let us now define the function ϕ : GZ → R on the space of bi-infinite sample paths as

ϕ(w) := dG(1, P (w))

i.e. the minimal word-metric distance between the base point X0 and the set of closest projections
from the thick part of the geodesic γw. The shift map σ : GZ → GZ acts on the space of sequences,
ergodically with respect to the product measure µZ. By the equivariance of P , we have for each n
the equality

(15) ϕ(σnw) = dG(wn, P (w)).

We shall now apply Lemma 4.4, setting (Ω, λ) = (GZ, µZ), T = σ, and f = ϕ. The only condition
to be checked is the L1-condition on the function g(ω) = f(Tω)− f(ω), which in this case becomes

g(ω) = ϕ(σw)− ϕ(w) = dG(1, P (σw))− dG(1, P (w)).
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Now, using (15) we have

|dG(1, P (σw))− dG(1, P (w))| = |dG(w1, P (w))− dG(1, P (w))| ≤ dG(1, w1)

which has finite integral precisely by the finite first moment assumption. Thus, it follows from
Lemma 4.4 that for almost all bi-infinite paths w one gets

lim
n→∞

dG(wn, P (w))

n
= 0.

By definition of P (w), there exists a sequence of times tn, such that γw(tn) lies in γw \Tε, the ε-thick
part of the geodesic γw, and group elements pn ∈ G such that pn ∈ proj(γw(tn)), and furthermore

(16) lim
n→∞

dG(wn, pn)

n
= 0.

Now let F+ be the terminal foliation of the geodesic γw, and denote as ρw the geodesic ray through
X0 with terminal foliation F+. We have obtained a sequence of points lying in the intersection of
the geodesic γw with the thick part T \ Tε, and we now show how to obtain a sequence of points
lying in the intersection of the geodesic ρw with the thick part T \ Tε.

Recall that since γw and ρw have the same terminal foliation F+, and F+ is almost surely
uniquely ergodic, then the distance between the positive ray ρw and the geodesic γw tends to
zero, and we have chosen parameterizations such that dT (γw(t), ρw(t)) → 0. In particular, after
discarding finitely many initial values, we may assume

dT (γw(tn), ρw(tn)) 6
log 2

2
,

for all n. Now for each n sufficiently large consider the sequence take ρw(tn). Then:

(1) By Wolpert’s lemma, ρw(tn) lies in the ε
2 -thick part;

(2) if hn ∈ proj(ρw(tn)), then dT (ρw(tn), hnX0) 6 K(ε/2) so

dT (hnX0, pnX0) 6 dT (hnX0, ρw(tn)) + dT (ρw(tn), γw(tn)) + dT (γw(tn), pnX0)

6 1 + 2K(ε/2),

hence dG(hn, pn) 6 K ′, so by equation (16) we have also

lim
n

dG(wn, hn)

n
→ 0.

This completes the proof of Proposition 4.5. �

4.3. Intermediate times. So far, we have shown that every step of the sample path is close
enough to some point on the thick part of the geodesic, hence the closest projection to the lattice
will behave like the sample path. However, we still need to deal with the case in which there are
points in the thick part of the Teichmüller geodesic which are not close to the sample path.
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wn−1

wn
wn+1

wn+2

ρw(tn) ρw(tn+1)ρw(T )

hn
hn+1gT

γ

Figure 5. Intermediate times.

Proof of Theorem 1.2 and Theorem 1.3 (harmonic measure). Given a sample path w, let ρw be the
geodesic ray joining the base point X0 to the limit foliation F+(w), and let tn be the sequence of
times given by Proposition 4.5. Let now T > 0 be a time for which the geodesic ρw(T ) lies in the
thick part, and let gTX0 be a projection of ρw(T ) to the Teichmüller lattice. Since tn →∞, there
exists an index n = n(T ) such that tn 6 T 6 tn+1. By Proposition 2.14, there exist constants
C1 > 0, C2 such that

dG(hn, gT ) 6 C1dG(hn, hn+1) + C2.

Moreover, by Proposition 4.5 and triangle inequality,

lim
n→∞

dG(hn, hn+1)

n
6 lim

n→∞

dG(hn, wn) + dG(wn, wn+1) + dG(wn+1, hn+1)

n
= 0

(where we used the finite first moment condition to ensure dG(wn, wn+1)/n → 0). Thus, we also
have

lim
n→∞

dG(hn, gT )

n
= 0

and again by Proposition 4.5

lim
n→∞

dG(wn, gT )

n
6 lim

n→∞

dG(wn, hn) + dG(hn, gT )

n
= 0.

Similarly, since the relative metric is bounded above by the word metric,

lim
n→∞

drel(wn, gT )

n
= 0.

Finally, by computing the ratio between the word and relative metric,

lim
T→∞

ρw(T )/∈Tε

‖gT ‖G
‖gT ‖rel

= lim
T→∞

ρw(T )/∈Tε

dG(1,gT )
n(T )

drel(1,gT )
n(T )

= lim
n→∞

dG(1,wn)
n

drel(1,wn)
n

=
c1
c2
> 0.

This completes the proof of Theorem 1.3. The proof of Theorem 1.2 is exactly the same, replacing
drel with dT and noting that, since the Teichmüller metric is a coarse upper bound for the relative
metric, Theorem 4.3 implies also positive drift in the Teichmüller metric. �
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