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Abstract
We give a proof of the sublinear tracking property for sample paths
of random walks on various groups acting on spaces with hyperbolic-like
properties. As an application, we prove sublinear tracking in Teichmiiller
distance for random walks on mapping class groups, and on Cayley graphs
of a large class of finitely generated groups.

1 Introduction

In probability, the classical law of large numbers says the following: suppose
X, is a sequence of independent, identically distributed real valued random
variables, and suppose they have finite expectation: E[X,] = ¢ < co. Then
their average converges almost surely to the expectation:

X1+"'+Xn
n

— L. (1)

We can think of the stochastic process Y,, := X; + --- + X,, as a random
walk on the group R acting by translations on the real line: we are starting at
x = 0 and every time we are adding a random element X;. In this way, the
law of large numbers is equivalent to saying that almost every sample path can
be approximated by the unit speed geodesic (¢) := ¢t up to an error which is
sublinear in the number of steps: in fact, (1) can be rewritten as

[ X1+ + X —y(én)|
n

— 0. (2)

As noted by Kaimanovich [16], the latter formulation lends itself to a natural
generalization to non-abelian groups. Indeed, let G be a group acting isometri-
cally on a geodesic metric space (X,d), and p a probability distribution on G.
A random walk on G is defined by drawing each time independently an element
gn from G with distribution p, and considering the product

Wy, i =G1 .- Gn-

If we fix a basepoint x in X, the sequence (w,)nen is a stochastic process with
values in X, so we can think of it as a random walk on X. In this setting, the
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natural question arises as a generalization of (2) whether almost every sample
path (w,z) can be approximated by some geodesic ray v : [0,00) — X, with
sublinear error:
i 4@n:7)
im ———~

n—00 n

=0.

If such a property holds, we will say that the random walk has the sublinear
tracking or geodesic Tay approzximation property. The appropriate equivalent
to finite expectation for non-abelian group actions is the finite first moment
condition, i.e.

/ d(z, gx) du(g) < oo.
G

Of particular interest in geometry and topology is the action of the mapping
class group G = Mod(S) of a compact, orientable surface S of genus g > 1
on the Teichmiiller space X = T(S), equipped with the Teichmdiller metric
dr. The first goal of this paper is to establish sublinear tracking in Teichmiiller
metric for random walks with finite first moment on mapping class groups:

Theorem 1. Let p be a probability measure on Mod(S) with finite first mo-
ment, whose support generates a non-elementary group, and fix some x in the
Teichmailler space T(S). Then, there exists A > 0 such that for almost all
sample paths there exists a Teichmiiller geodesic ray v : [0,00) — T(S) with
~v(0) = z and such that

L dr(war,y(An)

n— oo n

=0.

The theorem answers a question posed by Kaimanovich [18]. The theory of
random products of group elements goes back to Furstenberg, who established a
first multiplicative ergodic theorem for random walks on the group G = GL,(R)
(Furstenberg-Kesten [11]), then generalized to stationary, not necessarily inde-
pendent increments by Oseledets [32].

In the 80’s, Kaimanovich [16] realized that the multiplicative ergodic the-
orem is equivalent to sublinear tracking for random walks on the symmetric
space X = GL(n,R)/O(n,R) and proved it for general symmetric spaces of
noncompact type. Moreover, he showed that, as a consequence of the entropy
criterion [15], sublinear tracking allows one to identify the Poisson boundary
of the random walk, i.e. to get a Poisson representation formula for bounded
p-harmonic functions (see Theorem 5). This method has been applied to fun-
damental groups of compact Riemannian manifolds of negative curvature [15],
and word hyperbolic groups [17].

Karlsson and Margulis [23] proved sublinear tracking in the case of uniformly
convex, Busemann non-positively curved spaces (which include CAT(0) spaces).
Moreover, in the case of trees Ledrappier proved that the tracking is much better
than sublinear, namely logarithmic [25].

It is known that Teichmiiller space is neither Gromov hyperbolic [29] nor
Busemann non-positively curved [26], so the previous arguments do not apply;
Kaimanovich and Masur [19] proved that for a random walk on the mapping
class group such that the support of y generates a non-elementary subgroup,
almost every sample path converges to the Thurston boundary PMJF, and in
particular the limit foliation is almost surely uniquely ergodic. This allowed
them to identify the Poisson boundary of such a walk with (a subset of) PMF.



In 2005, Duchin [7] proved sublinear tracking along subsequences of times in
which the limit geodesic lies in the thick part of Teichmiiller space.

Let us note that Teichmiiller space also carries the Weil-Petersson metric,
which is CAT(0) (though incomplete), so sublinear tracking in that metric can
be proven using the original argument of Karlsson and Margulis [22].

Our method is purely ergodic theoretic, and it can be applied much more
generally whenever one can find a compactification X of the space X on which
the action of G extends, and which satisfies a few geometric properties (see The-
orem 6). One sufficient condition is the stable visibility of the boundary: we say
a compactification is stably visible if any sequence of geodesics whose endpoints
converge to two distinct points on the boundary intersects some bounded set of
X (see section 2.3). If that property holds, we have sublinear tracking:

Theorem 2. Let G be a countable group acting via isometries on a proper,
geodesic, metric space (X,d) with a non-trivial, stably visible compactification
X. Moreover, let ji be a probability measure on G such that the subgroup gen-
erated by p is non-elementary, and p has finite first moment. Then there exists
A >0 such that, for each x € X and for almost every sample path (w,x) there
exists a geodesic ray v : [0,00) = X such that

1 d(waz, 1 (4n)

n—00 n

=0.

Several interesting compactifications are stably visible, for instance:

1. the hyperbolic compactification of Gromov hyperbolic spaces (section 3.1);
2. the end compactification of Freudenthal and Hopf;

3. the Floyd compactification (section 3.2);

4. the visual compactification of a large class of CAT(0) spaces (section 3.4).

As long as these boundaries are non-trivial (i.e. they contain at least 3 points),
our argument yields sublinear tracking in all these spaces.

As an example, let us consider the action of a finitely generated group G
on its Cayley graph X, which is a geodesic space when equipped with the word
metric (with respect to some choice of generators). If G is word hyperbolic,
sublinear tracking in the word metric follows from considering the hyperbolic
compactification (a different proof in this case is in [17]). However, our method
works under much weaker conditions, for instance as long as the Floyd boundary
is non-trivial. This includes the case of groups with infinitely many ends, as well
as non-elementary Kleinian groups and relatively hyperbolic groups (see section
3.2).

Another application is to discrete groups of isometries of CAT(0) spaces, such
as the fundamental groups of Riemannian manifolds of nonpositive sectional
curvature. In this case, a general result has been obtained in [23]. However, our
method also works under some restrictions: namely, if X is a Hadamard space
of rank one and G a discrete group of isometries of X which satisfies the duality
condition of Eberlein-Chen (see section 3.4).

Finally (section 3.5), we shall apply our technique to random walks on lamp-
lighter groups over trees. Lamplighter groups have been the center of much



study because they provided several counterexamples to long-standing conjec-
tures. (see especially [20] and [9]). The Poisson boundary for lamplighter ran-
dom walks over trees has been analyzed by Karlsson and Woess [24].

Note that in all the abovementioned cases our results, together with the ray
criterion of Kaimanovich (Theorem 5), provide an identification of the Poisson
boundary of the walk with a certain geometric boundary.

Note moreover that the main argument (Theorem 6) extends to the case of
stationary, not necessarily independent increments, i.e. to integrable, ergodic
cocycles (see Remark 8), once one assumes the almost sure convergence of sam-
ple paths to the boundary.

The idea of the proof is in all cases the following. Suppose for the sake of
clarity that the probability measure p has finite support, so the length of each
step of the random walk is bounded: then, if a sample path escapes linearly
from the limit geodesic, it takes a linear number of steps to come back close to
it, hence there will be a positive frequency of times for which the walk is far
from the geodesic. On the other hand, by the ergodic theorem applied to the
space of bilateral sample paths, the frequency of times the sample path is within
bounded distance from the limit geodesic is positive: since we can choose these
proportions independently, we get a contradiction.
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2 General setting

Let (X,d) be a metric space. A geodesic segment is an isometric embedding of
a segment [a,b] into X, i.e. amap v : [a,b] — X such that d(y(s),vy(t)) = |s—t]
for all s,t € [a,b]. A geodesic ray is an isometric embedding v : [0,00) — X,
while a geodesic line is an isometric embedding 7 : (—o0,00) — X. We shall
denote as I'X the set of geodesic lines in X, and as P(I'X) the set of all subsets
of '’ X. A metric space is geodesic if any two points can be joined by a geodesic
segment. It is proper if closed balls are compact.

Let now G be a countable group acting by isometries on a geodesic metric
space (X, d). A bordification X of X will be a Hausdorff, second-countable topo-
logical space such that X is homeomorphic to an open dense subset of X, and
such that the action of G on X extends to an action on X by homeomorphisms.
In the following we will always identify X with a subset of X, and denote by
0X := X \ X the boundary of X. A bordification is non-trivial if X contains
at least three points.

Definition 3. A subgroup G' C G is called elementary with respect to the
bordification X if it fixes a finite subset of 0X; otherwise, it is called non-
elementary.

Finally, a compact bordification will be called a compactification. Note that
by our definition a compactification X is metrizable; moreover, the existence of
a compactification according to the previous definition forces X to be locally
compact.



2.1 Random walks

Let i be a probability measure on G. The step space Q := G is the space
of infinite sequences of group elements, which we will consider as a probability
space with the product measure P := pN. For each n, let us define the G-valued
random variable w, : Q - G

(91,92 ) = Wn :=g1... Gn

given by choosing each element g; € G independently according to the measure
1, and taking the product of the first n elements in the sequence. Moreover, if
we fix a basepoint x € X, we can let w, act on x hence the sequence (w,),ecn
is a sequence of random variables on the space (£2,P) with values in X which
we will call a random walk on X.

A probability measure p on G is said to have finite first moment if the
average step size is finite:

/ d(z, gz) du(g) < o0
G

for some x € X. If p has finite first moment, then almost every sample path
escapes towards infinity at some well-defined linear rate A:

Proposition 4. Let p be a probability measure on G with finite first moment.
Then there exists A > 0 such that

d(x, w,x) A

lim
n—o00 n

for each © € X and P-a.e. sample path.

The proposition is an immediate consequence of Kingman’s subadditive er-
godic theorem. Note that in general A can very well be zero, in which case the
random walk remains at sublinear distance from the starting point. If instead A
is positive, we can ask whether the random walk converges “in direction”. First
of all, it makes sense to ask whether almost every sample path converges to some
well-defined point on the boundary of X; moreover, since (X,d) is a geodesic
space, we can ask whether there exists a geodesic ray in X which approximates
the sample path. If P-a.e. sample path converges to some point in dX, then a
harmonic measure (or hitting measure) v is defined on X as the pushforward
of P with respect to the limit map:

v(A) :=Pwe : lim wy,z € A).

n— oo

Let us denote ji the reflected measure

i(g) :=ulg™") Vged.

Moreover, let P be the product measure i on GV, and  the hitting measure
on 0X relative to the reflected measure.

Note that the measure v is stationary, in the sense that it satisfies the

equation
> ulg)gy =v.
geG



In general, a measure space (B,v) on which G acts measurably is called a
pu-boundary (or Furstenberg boundary) if v is a stationary measure and for al-
most every sample path (w,) the sequence of measures (w,v) converges to a
d-measure. The Poisson boundary of the random walk (G, p) is its maximal
p-boundary (it is unique up to sets of measure zero): it can also be equivalently
defined in other ways, for instance as the space of ergodic components of the
shift map on the path space (see [20] and [18]). Moreover, the Poisson boundary
provides a Poisson representation formula for harmonic functions on the group:
indeed, if (B,v) is a Poisson boundary of the walk (G, i), then the formula

f(g) = /B f() d(gr)(@)

provides an isomorphism between the space L (B, ) of bounded functions on
the boundary and the space H;°(G) of bounded harmonic functions on G.

By definition, the Poisson boundary is an abstract measure space; on the
other hand, whenever the group G has some geometric structure, it is often
possible to construct a “geometric” boundary of G (or of the space X on which
G acts) using this structure, and a major theme of research is to compare this
boundary to the Poisson boundary. In this respect, an important criterion was
given by Kaimanovich [15], using the sublinear tracking property. We say that
the action of G on X has exponentially bounded growth if there exists x € X
and C' > 0 such that

#{ge G : d(z,gr) <R} < e VR > 0.

The following criterion implies that sublinear tracking, together with exponen-
tially bounded growth, is sufficient to identify the Poisson boundary of the walk.

Theorem 5 ([15]). Let G be a countable group acting by isometries on the
metric space (X,d), and p a probability measure on G with finite first moment.
Let (B,v) be a p-boundary, and 7, : B — X be a sequence of measurable maps
such that, for almost every sample path (w,x), one has

i A2 7(6))

n—00 n

=0

where £ is the image of w, in B. If the action has exponentially bounded growth,
then (B, v) is the Poisson boundary of (G, ).

A simple corollary is that if the rate of escape A = 0, the Poisson boundary
is trivial (see also [20], [6]).

2.2 Abstract sublinear tracking

The goal of this section is to prove an abstract sublinear tracking criterion.
Roughly speaking, the only two ingredients that are needed are that almost
every sample path converges to the boundary, and that given two different points
of the boundary, it is possible to choose a geodesic line in a G-equivariant way.

Theorem 6. Let G be a countable group acting by isometries on a geodesic
metric space X, and let X = X U IJX be a bordification of X. Let u be a
probability measure on G with finite first moment, and suppose the following
are true:



1. P-a.e. sample path (w,x) converges to some & € 0X, and P-a.e. sample
path (Wwpx) converges to somen € 0X.

2. There exists a G-equivariant map P : 0X x 90X — P(T'X) which associates
to any pair of points of the boundary a set of geodesics in X in such a way
that the map D : 0X x 0X — R defined as

D(n,§) :== sup d(z,7)
YEP(n,6)

is Borel-measurable and finite v ® U-a.e. (note that we set D(n,§) = oo
if P(n,€) =0, so the condition includes that P(n,£) is almost surely non-
empty).
Then, there exists A > 0 such that for P-a.e. sample path (w,x) there exists a
geodesic ray v : [0,00) — X such that

lim d(wnx,v(An))

n—00 n

=0.

The proof of the theorem is based on the following elementary lemma in
ergodic theory:

Lemma 7. Let Q be a measure space with a probability measure A\, and let
T :Q — Q be a measure-preserving, ergodic transformation. Let f : Q — R be
a non-negative, measurable function, and define the function g : Q2 — R as

o) = f(Tw) — fw)  VweQ 3)
If g € LY (2, \), then, for A-almost every w € €, one has

tim L9 g,

n—00 n

Proof. As a consequence of (3) we can write, for each n > 1 and each w € Q,

Shse 9(T"w) _ f(T"w) — f(w)

n n

By the ergodic theorem, for almost every w, the left-hand side converges to
Jo 9 dX. This implies that for A-almost every w, the limit

TTL
lim 7f( w)
n— o0 n
exists. On the other hand, there exists C' > 0 such that Q¢ :={w : f(w) < C}
has positive measure u(Q¢) > 0. Again by the ergodic theorem, for A-almost

every w, the set
{neN : f(T"w) < C}

has positive density, which implies that

TR ACAC)) <limint & — 0.

n—00 n n—oo 1

As a consequence, since the limit exists, we have

T'Vl TYL
lim f(T"w) — liminf f(T"w)
n—o0 n n—oo n

=0.



Proof of Theorem 6. Let us apply the lemma with Q := G% the space of all
bi-infinite sequences, endowed with the product measure \ := p%. Let z € X
be a fixed base point, and define the boundary maps bnd* : GZ — 9X as

bnd*(g) == lim gy - gn2 bnd™ (g) := li_>m 9ot 19 e (4)

n—oo

Note that by condition 1. bnd* are defined for almost every sequence in GZ.
Let us now take T := o the shift on the space of bi-infinite sequences, which
acts ergodically on G”. Note that, for each g€ G? (recall w, = g1+ gn),

bnd*(0"g) = w,, "bnd* (g) bnd ™~ (¢"g) = w;, 'bnd~ (g). (5)

We are now ready to define the non-negative function f : GZ — R as the
maximum distance between the base point and any geodesic joining the two
limits of the random walk given by a fixed sequence:

flg) = sup d(z, 7).
y€P(bnd T (g),bnd~(g))

By condition 2., f is finite for almost all sequences. Let us now see how the
shift o acts on f: by definition one has

flo"g) = sup d(z,7)
~y€P(bndt (omg),bnd~ (omg))

and, since G acts by isometries,

fle"g) = sup d(wn, w,7)
wnyEP(wnbnd* (o™ g),wabnd~ (cg))

then, by eq. (5) we have

flo"g) = sup d(wp, ).
~y€P(bndt (g9),bnd~(g))

Now, by triangle inequality we have

[f(og) = f(g)] < d(z, gox) (6)

hence the finite first moment implies that the function F(g) := f(cg) — f(g) is
integrable, so one can apply the lemma and get, for a.e. g € G?,

. Sup’YGP(bndJr (g),bnd~(g)) d(wnx,'y)
lim =0
n— 00 n

This obviously implies, for each v € P(bnd™(g), bnd ™ (g)),

lim d(wnz,7)

n—oo n

=0.
Let us now choose some v € P(bnd*(g),bnd™(g)) and fix a parametrization
~v: R — X. The previous equation implies the existence of a sequence (t,) of

times such that J
lim (wnxa 7(t7z))

n—o0 n

=0.



Notice that this implies lim,, . 2!

d('wn$7'wn+1£)
n

= A; now, by finite first moment for a.e.

— 0, hence either lim,, .., %" = A or lim,_,o =

sample path o
—A. In the first case, w,x is approximated by the positive ray v [[9,cc), in the

second by the negative ray v |(_oo,0]-

Let us observe that the proof does not require the space X to be compact,
so it can be applied to non-proper spaces as long as one can prove convergence
to the boundary. Moreover, we intuitively think of the map P : 90X x0X — I'X
as choosing a geodesic which “joins” two points of the boundary, but actually
the only property we need is that the choice is G-equivariant. In particular, we
do not require that, if the geodesic v belongs to P(n,&), v(t) tends to n (or &)
as t — oo.

Remark 8. We also never use that the increments of our walk are independent,
so it works more generally in the context of cocycles. Indeed, let u: Q) — G be a
measurable map defined on some probability space (2, A), and suppose T : ) — Q
is an ergodic, measure preserving map. We can define the cocycle u : NxQ — G
as

u(n,w) = w(w)u(Tw) - u(T" *w).

The cocycle is integrable if [ d(z,u(n,w)x) dA(w) < oo for some x € X. The
previous argument yields sublinear tracking for integrable, ergodic cocycles, once
again under the hypothesis of convergence to the boundary.

2.3 Stable visibility

Let us now formulate a geometric property of a compactification that, at least in
the case of proper spaces, is sufficient to yield sublinear tracking. We call a com-
pactification X stably visible if any sequence of geodesic segments whose end-
points converge to two distinct points on the boundary intersects some bounded
set of X:

Definition 9. A compactification X of a geodesic metric space (X,d) is stably
visible if the following holds: given any sequence 7y, = [n,&n] of geodesic seg-
ments in X connecting n, with &, and such that £, — £ € 0X, n, > n € 0X
with ) # &, there exists a bounded set B in X which intersects all geodesics vy, .

The goal of this section is to prove the following theorem:

Theorem 10. Let G be a countable group acting via isometries on a proper,
geodesic, metric space (X,d) with a non-trivial, stably visible compactification
X. Moreover, let p be a probability measure on G such that the subgroup gen-
erated by p is non-elementary, and p has finite first moment. Then there exists
A >0 such that, for each x € X and for almost every sample path (w,x) there
exists a geodesic Tay v : [0,00) = X such that

lim d(w,x,v(An))

n—00 n

=0.

Moreover, if the action has exponentially bounded growth, then A > 0.

Note that in order to apply Theorem 6 it is necessary to produce a map from
0X x 0X to subsets of the set of geodesics I'X. In this section, given a pair of



points &, n on X, we will denote as P(§,n) the set of geodesic lines v : R — X
such that lim; o y(t) = £ and lim;,_o, y(t) = 1. Such a set will be called a
pencil.

Lemma 11. Let X be a proper, geodesic, metric space with a stably visible
compactification X. Then:

1. the action of G is projective: if ghx — £ € 0X for some x € X, then
gny — & forally € X;

2. as X is proper, then for each n,§ € 0X with n # &, the pencil P(&,n) is
non-empty;

3. for each pair (n,&) with n # £, there exists a bounded set B C X which
intersect all geodesics in P(n,&);

4- if §o, &1 and &3 are three distinct points of 0X, then there are neighbour-
hoods Uy, Uy, Us of &, &1, & in X such that each geodesic vy joining
m € Uy and ny € Uy is disjoint from Uy.

Proof. 1. Suppose gpz — £ € 0X. By properness, d(g,z,x) is unbounded,
and moreover let us note that the distance d(gnx,gny) = d(x,y) is bounded
independently of n. Suppose now that there is a (sub)sequence g, such that
gny — n € X, n # & Since g,y is also unbounded in X, then € 9X. Now,
let us choose for each n a geodesic v, joining g,z and g,y. Then by stable
visibility there exists a ball B C X which interesects all ,,. Since the distance
d(gnz, gny) is bounded, the union of all v, must lie in some ball B’ C X, which
contradicts the unboundedness of g,x.

2. Let us take a sequence &, — £ and 7, — 7, and geodesics 7, joining
them. The claim follows by the Ascoli-Arzela theorem.

3. Immediate.

4. If the claim is false, then there exist sequences &y »,, 1,5 and &2 5, such that
&im — & for each ¢ = 0, 1,2, and geodesics y,, which join &; ,, and &3, and such
that &y, also belongs to v,: let us denote as 71, the part of v, between &,
and &, and as 72, the part between &, and & ,. Then by stable visibility,
there exists a ball B C X which intersects all geodesics 1,5, and 2 ,: let us
pick a point a,, € BNy, and B, € BNz, Then clearly the distance
between «,, and 3, is bounded, whereas d(cw,, &o,n) — 00 and d(Bn, o,n) — 00,
contradicting the fact that o, &y, and 3, lie in that order on the geodesic ,.

O

Lemma 12. Let X be a proper geodesic space with a stably visible compactifi-
cation. Then for each x € X the function D : 0X x 0X — R

D(&,m) := sup d(z,7)
YEP(&m)

s measurable with respect to the Borel o-algebra.

Proof. Recall X is a second-countable compact Hausdorff space, hence metriz-
able, and X is a closed subset, hence compact. Pick a metric d on X, and for
each integer k > 1 pick a cover of X made of finitely many d-balls of radius
% and centers on 0X. Taking the union over all k yields a countable sequence

(Un)nen of open sets in X with the following properties:

10



1. the U, N 0X are a base for the topology of 0.X;
2. for each R, only finitely many U, intersect the ball B(z, R) in X;

3. for each sequence nj — oo, the intersection (7, Uy, contains at most
one point.

Let us now fix some R > 0, and say that a pair (U, V) of open sets in X avoids
the ball of radius R if there is a point u € UN X, a point v € VN X and a
geodesic segment «y joining u to v which does not intersect the ball B(z, R). Let
us define the collection S := {(U,,,U,,) : (Un,Upn) avoids the ball of radius R}
which is a countable collection of pairs of open sets. We claim that the following
identity holds

{n) e0Xx x0X : D& >Ry= () | UnxUn

N min{m,n}>N

(Un,Um)€ES
which implies D is measurable. Indeed, one inclusion is trivial: if £ and 7 are
joined by a geodesic avoiding the ball of radius R, however we choose neigh-
bourhoods U and V of £ and 7 respectively, then the pair (U, V) avoids the
ball of radius R. On the other hand, suppose (7, &) belongs to the intersection
of a sequence U,, x Uy, of pairs of open sets avoiding the ball of radius R: by
definition, there is a sequence 7; of geodesics joining a point & of Uy, to a point
M, of Uy, and avoiding the ball of radius R. By stable visibility, all geodesics 7
must intersect some ball B(z, R’), hence by properness and the Ascoli-Arzeld
theorem there exists a geodesic line v which joins £ and 7, avoiding B(x, R). O

Proof of Theorem 10. Conditions 1. and 4. of Lemma 11 correspond to con-
ditions (CP) and (CS) of Kaimanovich [18]. As a consequence of Theorem 2.4
n [18], if the compactification is non-trivial and the group generated by the
support of i is non-elementary, then P-a.e. sample path converges to a point in
dX, and so does P-a.e. backward sample path. Moreover, the limit measures v
and © are non-atomic (hence the diagonal in 0X x 90X has zero measure). More-
over, by Lemma 11.3 and Lemma 12 the function D(,7) := sup, ¢ p(¢,, d(z,7),
where P(n, ) is the pencil of geodesics joining 1 and &, is a.e. finite and measur-
able, hence we can apply Theorem 6 and get the main claim. Finally, since v is
non-atomic, the Poisson boundary of the walk is non-trivial. As a consequence,
if the action has exponentially bounded growth, then by the entropy criterion
(Theorem 5) the rate of escape A cannot be zero. O

3 Applications

3.1 Gromov hyperbolic spaces

The first setting where we apply our technique is in Gromov hyperbolic spaces:
we treat it first mainly because of its simplicity. Let X be a geodesic metric
space, and fix § > 0. Let us recall that X is called J§-hyperbolic if geodesic
triangles are d-thin, which means that given any three points z,y,z € X, the
geodesic [z, y] lies in a d-neighbourhood of the union [z, z] U [z, y]. The Gromov
product of y and z with respect to x is defined as

(4,2)2 = g dl,y) + d(w, ) — d(y, 2)).

11



A §-hyperbolic space is naturally endowed with the hyperbolic boundary 0X:

Definition 13. The hyperbolic boundary 0X of X is the set of sequences
(zn) C X such that

liminf (2, ). = 00
n,Mm—00

modulo the equivalence relation () ~ (yn) if

lminf (2, Ym ). = 00.
m,n— 00
Now, if X is proper, then X := X U X can be given a second-countable,
Hausdorff topology in such a way that X is compact (we refer to [2] for back-
ground material). Moreover, 0X coincides with the visual compactification 0, X
given by equivalence classes of geodesic rays, where two rays are identified if their
distance stays bounded:

0 X = {7:[0,00) — X geodesic ray }/ ~
with 1 ~ 72 if sup, d(71(t), v2(t)) < co. Moreover, the action of G by isometries

extends to an action on X by homeomorphisms. Let us check stable visibility:

Lemma 14. The hyperbolic compactification of a proper, §-hyperbolic space X
1s stably visible.

Proof. Pick two sequences &, — & and 7, — 1. Since n # &, the Gromov
product (&,, 7). is bounded. The claim now follows from the fact that in a J-
hyperbolic space the Gromov product approximates the distance to the geodesic,
namely for any three points x,y, z € X the following inequality holds:

(y,2)a < d(w, [y, 2]) < (¥, 2)2 + 26
where [y, z] is a geodesic joining y and z. O

By the results of the previous section we can thus infer the following sublinear
tracking:

Theorem 15. Let G be a countable group of isometries of a proper, geodesic
d-hyperbolic space (X,d), such that the hyperbolic boundary 0X contains at least
three points. Moreover, let u be a probability measure on G with finite first mo-
ment and such that the group generated by its support is non-elementary. Then
there exists A > 0 such that for any x € X, almost every sample path (w,x)
converges to some point in 0X, and there exists a geodesic ray v : [0,00) = X
with v(0) = x such that

o d(waz, 1 (An)

n—00 n

=0.

Proof. By Theorem 10, for almost every sample path (w,z) there exist a geodesic
ray 7 : [0,00) — X which tracks the sample path sublinearly. Such a geodesic
need not pass through x: however, since the hyperbolic boundary and the vi-
sual boundary coincide, there exists a geodesic ray v such that 4/(0) = z and
limy 00 7' (t) = 1 = limy_ o, ¥(¢t) and such geodesic lies within bounded Haus-
dorff distance of v, yielding the result. O

A different proof of sublinear tracking on word hyperbolic groups is already
contained in [17] (and attributed to T. Delzant), where it is used to prove that
the hyperbolic compactification coincides with the Poisson boundary of the walk.

12



3.2 Groups with non-trivial Floyd boundary

Let G be a finitely generated group, and let us denote as T' = T'(G, S) the Cayley
graph relative to a generating set S. I' is a proper, geodesic metric space with
respect to the word metric given by S. Several compactifications of I' have
been studied, starting with the end compactification £(G) of Freudenthal and
Hopf [13]. Tt is not hard to check that the end compactification is stably visible
according to the definition of section 2.3, hence we can apply theorem 10 and
get sublinear tracking for random walks on the Cayley graph, as long as the
group generated by the support of p is non-elementary with respect to £(G)
(convergence to the boundary for groups with infinitely many ends is due to
Woess [34]).

However, several interesting groups (for instance fundamental groups of com-
pact hyperbolic surfaces) turn out to have trivial end compactification. In 1980,
W. Floyd [10] introduced a finer compactification of the Cayley graph of a
finitely generated group, and applied it to the study of Kleinian groups. Let us
now recall Floyd’s construction.

Let F be a summable, decreasing function F : N — R™T such that given
k € N there exist M, N > 0 so that

MF(r) < F(kr) < NF(r) Vr.

Let us now define a new metric on I'(G,S): namely, let us set the length of
the edge between vertices a,b € G to be min{F(|a|), F(]b])}, and let us extend
it to a metric dp on I' by taking shortest paths. The Floyd compactification
is the completion of I'(G,S) with respect to dp. The complement of ' in
the completion will be called a Floyd boundary OrG (note it depends on the
choice of F'). A Floyd boundary is called non-trivial if it contains at least three
points (which implies it must contain infinitely many of them). As long as such
boundary is non-trivial, we have sublinear tracking:

Theorem 16. Let G be a finitely generated group, S a generating set and let
I =T(G,S) be its Cayley graph, with the associated word metric d. Suppose
G has non-trivial Floyd boundary Or G with respect to some scaling function F,
and let o be a probability measure on G with finite first moment and such that
the group gemerated by the support of p is non-elementary. Then there exists
A > 0 such that for almost every sample path (wy,) there exists a geodesic ray
v :[0,00) = T such that

L d(wn,y(An))

n—00 n

=0.
The proof of the theorem is based on the fact that the Floyd compactification

is stably visible, which follows from the following lemma of A. Karlsson [21]
(which is used to identify the Floyd and Poisson boundaries):

Lemma 17. Let z and w be two points in T’ and let [z, w] be a geodesic segment
connecting z and w. Then

dp(z,w) < 4rF(r) + 2 Z F(j)
where r = d(e, [z, w]).
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Proof of Theorem 16. It is enough to check stable visibility: indeed, let &, —
£ €IrX and n, —» n € OpX, with £ # 1. Then dr(n,£) > 0, hence by lemma
17 and summability of F', the set of values r, := d(e, [£n,n,]) is bounded.
The claim now follows by Theorem 10 (note that the action has exponentially
bounded growth because G is finitely generated). O

Since there is a natural surjection from the Floyd boundary onto the space
of ends £(G), groups with infinitely many ends also have non-trivial Floyd
boundary, hence the previous theorem applies.

The theorem also applies to Kleinian groups: indeed, Floyd [10] constructed
a continuous surjection from the boundary of a geometrically finite Kleinian
group onto its limit set, and more recently the same result was extended by Ma-
han Mj [31] to arbitrary finitely generated Kleinian groups. As a consequence,
Theorem 16 yields sublinear tracking for random walks on a non-elementary,
finitely generated Kleinian group.

Finally, Gerasimov [12] recently constructed the Floyd map for general rela-
tively hyperbolic groups. Namely, he proved for any relatively hyperbolic group
G that there exists a surjection from some Floyd boundary of G (defined us-
ing an exponential scaling function) onto the Bowditch boundary. Thus, non-
elementary relatively hyperbolic groups have non-trivial Floyd boundary, hence
we can apply our theorem and obtain sublinear tracking in the word metric on

G.

3.3 Teichmiiller space

Let now S be a closed surface of genus g > 1, and X = T(S) the Teichmiiller
space of S, endowed with the Teichmdiiller metric dp. The mapping class group

Mod(S) := Diff"(S)/Diffy(S)

of orientation-preserving diffeomorphisms of S modulo isotopy acts on T (S),
and the quotient is the moduli space of Riemann surfaces of genus g.

A vast area of research has addressed the question of what properties 7 (.5)
shares with spaces of negative curvature. Masur [26] showed that Teichmiiller
space is not a CAT(0) space, and not even Busemann non-positively curved.
Moreover, it is not Gromov hyperbolic (Masur and Wolf [29]); Minsky [30] also
proved that near the cusp Teichmiiller metric can be modeled on a sup metric
of a product of lower dimensional spaces, which is also in contrast with negative
curvature geometry. For a survey on the geometric properties of the Teichmiiller
metric, we refer to [28].

In terms of random walks on Mod(S), Kaimanovich and Masur [19] proved
that almost every sample path converges to some point in the Thurston com-
pactification, and identified the Poisson boundary of the walk with the set UE
of uniquely ergodic projective measured foliations. Duchin [7] proved that, for
walks with finite first moment, the random walk tracks Teichmiiller geodesics
sublinearly along subsequences of times for which the geodesic lies in the thick
part of moduli space.

Our technique yields sublinear tracking for random walks with finite first
moment without any restriction:
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Theorem 18. Let p be a distribution on Mod(S) with finite first moment,
whose support generates a non-elementary group. Then, there exists A > 0
such that for each x € T(S) and for almost all sample paths (w,x) there exists
a Teichmiiller geodesic Tay vy which passes through x and such that

n—00 n

=0.

Let us also remark that in [7], the tracking is a consequence of an additional
geometric property of Teichmiiller space (“thin-framed triangles are thin”). Our
result is completely independent of it, and indeed uses only [19].

In order to prove Theorem 18, we are going to use the Thurston compact-
ification of Teichmiiller space. Let S be the set of homotopy classes of simple
closed curves. The geometric intersection number i(«, 3) between two elements
of § is the minimal number of intersections of any two representatives of o and
5. The map

a =i, a)

defines an inclusion of S into the set RS of functions on the set of simple closed
curves. The closure of the image of the set {ra,«a € §,r > 0} is the space MF
of measured foliations, and its projectivization is denoted as PMF, the space
of projective measured foliations. The intersection number i(-,-) extends to a
continuous function on MF x MF, and given two elements Fy, F5 in PMF it
is well-defined whether i(Fy, F) is zero or non-zero.

As discovered by Thurston, the space X = TUPM.F can be given a topology
which makes it homeomorphic to a closed ball in euclidean space, in such a way
that PMF corresponds to the boundary sphere. The space PMF is called the
Thurston boundary of Teichmiiller space, and the mapping class group acts on
it by homeomorphisms.

A measured foliation F' is minimal if it intersects all simple closed curves,
ie. i(F,a) > 0 for all @ € S. Two minimal foliations F' and G are said to be
topologically equivalent if i(F,G) = 0, and transverse if ((F,G) > 0. If F is
minimal and the only topologically equivalent foliations to F' are its multiples,
then F is said to be uniquely ergodic. The space of projective classes of (minimal)
uniquely ergodic measured foliations will be denoted by UE.

In the previous cases, in order to prove the theorem we used the stable vis-
ibility of the compactification to associate to almost each pair of points on the
boundary a geodesic in an equivariant way. In this case, even though stable
visibility fails if the genus of S is at least two, there is a more direct way to
construct such a function. Indeed, let Q(S) be the bundle of quadratic differ-
entials over Teichmiiller space. The choice of some g € Q(S) determines a flat
(often singular) structure on S, and a pair of transverse measured foliations,
namely the horizontal foliation H, := ker(Re q*/?) and the vertical foliation
V, := ker(Im ¢'/2).

On the other hand, given any two transverse measured foliations Fi, Fy €
MUF, there exists a unique quadratic differential ¢ € Q(S) such that H, = Fy
and ‘/q = FQ.

The Teichmiiller geodesic flow just expands along the leaves of the horizontal
foliation and shrinks along the vertical foliation by the same factor, hence any
pair F1, Fy € PMUF of transverse projective measured foliations determines a
unique Teichmiiller geodesic: we will denote such geodesic as [Fi, Fb).
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Lemma 19. Given x € T(S5), the function D : PMF x PMF — R
D(Fy, Fy) = dp(z, [F1, Fy])
is defined v @ U-a.e. and measurable.

Proof. By ([19], Theorem 2.2.4), v-a.e. sample path converges to some uniquely
ergodic projective measured foliation F' € UE C PMF, and so does r-a.e.
backward sample path. Moreover, since the measures v and o are non-atomic,
the diagonal A := {(F,F) : F 