MATH 1045HF TOPICS IN ERGODIC THEORY: INTRODUCTION TO RANDOM WALKS ON GROUPS

GIULIO TIOZZO

This class will focus on properties of group actions from a probabilistic point of view, investigating the relations between the dynamics, measure theory and geometry of groups.

Overview. We will start by introducing random walks on matrix groups and lattices in Lie groups, following the work of Furstenberg.

Topics of discussion will be: positivity of drift and Lyapunov exponents. Stationary measures. Geodesic tracking. Entropy of random walks. The Poisson-Furstenberg boundary. Applications to rigidity.

We will then turn to a similar study of group actions which do not arise from homogeneous spaces, but which display some features of negatively curved spaces: for instance, hyperbolic groups (in the sense of Gromov) and groups acting on hyperbolic spaces. This will lead us to applications to geometric topology: in particular, to the study of mapping class groups and $Out(F_N)$.

Prerequisites. An introduction to measure theory and/or probability, basic topology and basic group theory. No previous knowledge of geometric group theory or Teichmüller theory is needed.

Location. Tue-Thu 11-12.30, in BA 6180.

Instructor. Giulio Tiozzo, tiozzo@math.utoronto.ca. Some additional information may be posted on my website http://www.math.toronto.edu/tiozzo/especially under *Teaching*.

Office hours. Tentatively, Tue at 2 PM. I still don't know what my office will be, so I'll keep you posted.

Grading. If you need a grade for this class, talk to me and we will arrange for you to give some presentations towards the end of the course.

Lecture plan.

- (1) Introduction to the class
- (2) The ergodic theorems: Birkhoff, Kingman, the martingale convergence theorem
- (3) Random walks on abelian groups Boundary theory
- (4) Stationary measures
- (5) Convergence to the boundary: Furstenberg's theorem
- (6) Definitions of the Poisson boundary
- (7) Entropy of random walks
- (8) Triviality of Poisson boundary: the entropy criterion
- (9) Identification of the Poisson boundary
- (10) Ray approximation and strip approximation
- (11) Furstenberg's rigidity for lattices in $SL_n(\mathbb{R})$

GIULIO TIOZZO

(12) The Martin boundary

Sublinear tracking

- (13) The multiplicative ergodic theorem
- (14) Sublinear tracking in CAT(0) spaces: Karlsson-Margulis
- (15) Sublinear tracking in Teichmüller space
- (16) Positive drift for random walks Applications to topology
- (17) Hyperbolic geometry
- (18) Introduction to Gromov-hyperbolic spaces
- (19) Applications: free groups
- (20) The mapping class group
- (21) The curve complex and its boundary
- (22) The group $Out(F_N)$ and the complexes on which it acts
- (23) Horofunction compactification
- (24) Random walks on weakly hyperbolic groups

Bibliography.

At least for the first part of the class, the main reference will be

• A. Furman, Random walks on groups and random transformations, in Handbook of dynamical systems, Vol. I. They are also available online at http://homepages.math.uic.edu/~furman/preprints/hb.pdf.

For the boundary theory, we will mainly rely on the survey

• V. Kaimanovich, Boundaries of invariant Markov operators: the identification problem, in Ergodic theory of Z^d actions, eds. M. Pollicott, K. Schmidt. Also available online.

The later part of applications to geometric group theory and topology is somewhat new, so we will rely more heavily on research papers.

- (1) General texts on random walks on groups
 - (a) Y. Benoist, J.-F. Quint, Random walks on reductive groups
 - (b) P. Bougerol, J. Lacroix, *Products of random matrices with applications* to Schrödinger operators
 - (c) W. Woess, Random walks on infinite graphs and groups
- (2) Boundary theory
 - (a) H. Furstenberg, Non-commuting random products
 - (b) H. Furstenberg, Poisson boundaries and envelopes of discrete groups
 - (c) V. Kaimanovich, A. Vershik, Random walks on discrete groups: boundary and entropy
 - (d) V. Kaimanovich, The Poisson formula for groups with hyperbolic properties
- (3) Hyperbolic geometry
 - (a) M. Bridson, A. Haefliger, Metric spaces of nonpositive curvature
 - (b) B. Farb, D. Margalit, A primer on the mapping class group
- (4) Applications
 - (a) A. Karlsson, G. Margulis, A Multiplicative Ergodic Theorem and Nonpositively Curved Spaces
 - (b) V. Kaimanovich, H. Masur, *The Poisson boundary of the mapping* class group
 - (c) J. Maher, G. Tiozzo, Random walks on weakly hyperbolic groups

 $\mathbf{2}$