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In a nutshell

We study the bifurcation locus E for the one-
parameter family of α-continued fraction transfor-
mations Tα, and describe its self-similar structure
in terms of tuning operators.
This combinatorial description is used to character-
ize the plateaux of the entropy function h(α) and to
explain the fractal structure observed in the graph
of the entropy.

Introduction

The family {Tα}α∈(0,1] of α-continued fraction
transformations is a family of discontinuous interval
maps, which generalize the well-known Gauss map.

Figure 1: Graphs of Tα for α = 1, α = 0.6, α = 0.15.

Tα : [α− 1, α]→ [α− 1, α] is de�ned as

Tα(x) :=
1

|x|
−
⌊

1

|x|
+ 1− α

⌋

Entropy

For all α > 0 the map Tα admits an invariant mea-
sure µα absolutely continuous w.r.t. Lebesgue.
We shall study the entropy h(α) of Tα with respect
to µα; it is a continuous function, piecewise smooth
for α ≥ 1/2.

Figure 2: h(α) as a function of α. You can see a phase

transition for α =
√
5−1
2

, and in�nitely many others
as you zoom in.

For 0 < α < 1/2 the entropy has a more complex
behaviour; Nakada and Natsui [NN] proved that the
entropy is not monotone on any interval [0, c].

Thickening Q
Every r ∈ (0, 1) ∩ Q admits exactly two continued
fraction expansions; in this way, one can associate
to every rational value, two �nite strings S0 and
S1 of positive integers, S0 has even length and S1

odd length. For instance, since 3/10 = [0; 3, 3] =
[0; 3, 2, 1], the two strings associated to 3/10 will be
S0 = (3, 3) and S1 = (3, 2, 1).
Now, for each r ∈ Q∩ (0, 1) we de�ne the quadratic

interval associated to r as the open interval

Ir := (α1, α0)

whose endpoints are the two quadratic irrationals
α0 = [0;S0] and α1 = [0;S1]. Let us set

E := [0, 1] \
⋃

r∈(0,1]∩Q

Ir

The largest element of E is g := (
√
5− 1)/2, which

corresponds to the rightmost phase transition of the
entropy (Figure 2).

The connected components of [0, 1] \ E are them-
selves quadratic intervals, called maximal quadratic
intervals; the set QE of extremal rational numbers

is
QE := {r ∈ (0, 1] : Ir is maximal}

Matching and monotonicity

For all parameters belonging to a maximal
quadratic interval, the transformation Tα satis�es
a matching condition which implies monotonicity
of the entropy:

Theorem ([CT]). Let Ir be a maximal quadratic

interval, and r = [0; a1, . . . , an] with n even. Let

N =
∑
i even

ai M =
∑
i odd

ai JrK :=M −N

Then

TN+1
α (α) = TM+1

α (α− 1) ∀α ∈ Ir

The sign of the matching index JrK determines the

monotonicity of entropy on Ir:
- if JrK > 0, the entropy h(α) is increasing on Ir,
- if JrK = 0 it is constant,

- if JrK < 0 it is decreasing.

Dictionary

There is an explicit correspondence between maxi-
mal quadratic intervals and real hyperbolic compo-
nents of the Mandelbrot setM: in other words, the
bifurcation set E has the same combinatorial struc-
ture as the real section of the boundary ofM.

Figure 3: On the top, the entropy of α-c.f. as a func-
tion of α; colored strips correspond to maximal inter-
vals. At the bottom, a section of the Mandelbrot set
along the real line, with external rays landing on the
real axis.

Tuning

In the Mandelbrot set, the baby copies of M are
homeomorphic images of the whole M via the
Douady-Hubbard tuning operators.
Analogously, we de�ne tuning operators acting on
the parameter space of α-continued fraction trans-
formations.
For any r ∈ QE let us de�ne the tuning window

Wr := [ω, α0] with ω := [0;S1S0], α0 := [0;S0] and
the tuning operator

τr([0; a1, a2, . . . ]) = [0;S1S
a1−1
0 S1S

a2−1
0 . . . ]

This map is order-preserving and it maps E inside
itself. Since τr(E) = E ∩Wr, τr induces a bijection
between all maximal intervals and those contained
in Wr; if Ip is a maximal interval then τr(Ip) =
Iτr(p) and

Jτr(p)K = −JrKJpK.

A tuning window r is called neutral if JrK = 0; ifWr

is a neutral tuning window then the formula above
shows that the entropy is locally constant onWr\E .

Plateaux and monotonicity

Using tuning windows, we can explain the self-
similar structure of h and characterize the plateaux:

Theorem. Let Wr be a non-neutral tuning win-

dow. Then the monotonicity of the entropy on Wr

re�ects the monotonicity on the whole parameter

space [0, 1].

Figure 4: Illustration of the theorem in the case
r = 1/3: on the left, three maximal intervals and
their tuned images on the right: since JrK > 0, the
monotonicity on corresponding intervals is reversed
(e.g., entropy is increasing on the green interval on
the left and decreasing on its image on the right).

Theorem. Let a plateau be a maximal connected

set over which the entropy is constant. Then, every

plateau of h is a neutral tuning window Wr.

For instance, the plateau [g2, g] (see Figure 2) is the
neutral tuning window W1/2.

Questions

• Is h(1/2) the global maximum of h?

• Is the entropy smooth outside E?

• Can we use use this combinatorial technique
to study the Mandelbrot set?

• Can we extend the dictionary to a correspon-
dence between limit sets of Fuchsian semi-
groups and rays landing on Julia sets?
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