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Plateaux and tuning for the entropy of a-continued fraction transformations

Carlo Carminati (Universita di Pisa) and Giulio Tiozzo (Harvard University)

We study the biturcation locus & for the one-
parameter family of a-continued fraction transfor-
mations 7,, and describe its self-similar structure
in terms of tuning operators.

This combinatorial description is used to character-
ize the plateaux of the entropy function h(a) and to
explain the fractal structure observed in the graph
of the entropy.

The family {T.}ac(0,1) of a-continued fraction
transformations is a family of discontinuous interval
maps, which generalize the well-known Gauss map.
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Figure 1: Graphs of T, for a =1,a = 0.6, a = 0.15.
T, :

a—1,a] = |a—1,al is defined as
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For all > 0 the map 1, admits an invariant mea-
sure [, absolutely continuous w.r.t. Lebesgue.
We shall study the entropy h(«) of T, with respect

to Lo 1t 1s a continuous function, piecewise smooth
for a > 1/2.

35F

3L

2.5

2 L

1.5 |

1

/ analytic
0.5 yt
numerical
zoom [}
|

0

0.2 0.4 0.6 0.8 1

Figure 2: h(«a) as a function of .. You can see a phase
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transition for a = , and infinitely many others

as you zoom 1n.

For 0 < a < 1/2 the entropy has a more complex
behaviour; Nakada and Natsui [NN]| proved that the
entropy is not monotone on any interval |0, c|.

Every r € (0,1) N Q admits exactly two continued
fraction expansions; in this way, one can associate
to every rational value, two finite strings Sy and
S, of positive integers, Sy has even length and 5
odd length. For instance, since 3/10 = [0;3,3]| =
0; 3,2, 1], the two strings associated to 3/10 will be
S() — (3,3) and Sl — (3, 2, 1).

Now, for each » € QN (0,1) we define the quadratic
interval associated to r as the open interval

[r L= (041, Oé())

whose endpoints are the two quadratic irrationals

ag = [0; Sg] and a; = [0; S;]. Let us set
=01\ (J L
re(0,1]NQ

The largest element of £ is g := (v/5 — 1)/2, which
corresponds to the rightmost phase transition of the
entropy (Figure 2).

The connected components of [0,1] \ £ are them-
selves quadratic intervals, called maximal quadratic
intervals; the set Qg of extremal rational numbers
1S

Qg :={r€(0,1] : I, is maximal}

For

all

quadratic interval, the transformation 7,
a matching condition which implies monotonicity
of the entropy:

belonging to a maximal
satisfies

parameters

Theorem ([CT|). Let I, be a maximal quadratic
interval, and r = [0; a4, ...,a,| with n even. Let

N=>» a M=) a [r]==M-N
1 even v odd

Then
TV o) =TY (o — 1) Va € I,

The sign of the matching index |r| determines the
monotomczty of entropy on I,:

-if [r] > 0, the entropy h(«) is increasing on I,

- if [r]] = 0 it is constant,

- if [r]] < 0 it is decreasing.

There 1s an explicit correspondence between maxi-
mal quadratic intervals and real hyperbolic compo-
nents of the Mandelbrot set M: in other words, the
bifurcation set £ has the same combinatorial struc-
ture as the real section of the boundary of M.
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Figure 3: On the top, the entropy of a-c.f. as a func-
tion of «; colored strips correspond to maximal inter-
vals. At the bottom, a section of the Mandelbrot set
along the real line, with external rays landing on the
real axis.
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In the Mandelbrot set, the baby copies of M are
homeomorphic images of the whole M via the
Douady-Hubbard tuning operators.
Analogously, we define tuning operators acting on
the parameter space of a-continued fraction trans-
formations.
For any r € Qg let us define the tuning window
W, = |w, o] with w := [0;51S0], ag := [0; Sp] and
the tuning operator
Tr([o; ai,as, ... ]) — [O, 51581_151582_1 . ]
This map is order-preserving and it maps & inside
itself. Since 7.(£) = & N W,., 7, induces a bijection
between all maximal intervals and those contained
in W,; if I, is a maximal interval then 7,.([,) =

I+ (py and
[7+(p)] = —[rllpl-

A tuning window 7 is called neutral if |r] = 0; if W,.
is a neutral tuning window then the formula above
shows that the entropy is locally constant on W\ £.
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Using tuning windows, we can explain the self-
similar structure of A and characterize the plateaux:

Theorem. Let W, be a non-neutral tuning win-
dow. Then the monotonicity of the entropy on W,
reflects the monotonicity on the whole parameter
space [0, 1].

Figure 4: Illustration of the theorem in the case
r = 1/3: on the left, three maximal intervals and
their tuned images on the right: since [r] > 0, the
monotonicity on corresponding intervals is reversed
(e.g., entropy is increasing on the green interval on
the left and decreasing on its image on the right).

Theorem. Let a plateau be a maximal connected
set over which the entropy 1s constant. Then, every
plateau of h is a neutral tuning window W,.

For instance, the plateau [g?, g] (see Figure 2) is the

neutral tuning window Wy /.
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e Is h(1/2) the global maximum of A7
e Is the entropy smooth outside £7

e Can we use use this combinatorial technique
to study the Mandelbrot set?

e Can we extend the dictionary to a correspon-
dence between limit sets of Fuchsian semi-
groups and rays landing on Julia sets?

- J

References

|ICT| C CARMINATI, G T10720, A canonical thick-

ening of Q and the entropy of a-continued frac-

tions, to appear in Ergodic Theory Dynam. Sys-
tems.

INN|] H Naxkapa, R Narsui, The non-

monotonicity of the entropy of «a-continued
fraction transformations, Nonlinearity 21

(2008), 1207-1225.

J




