Plateaux and tuning for the entropy of α -continued fraction transformations Carlo Carminati (Università di Pisa) and Giulio Tiozzo (Harvard University) available on arXiv:1111.2554

IN A NUTSHELL

We study the bifurcation locus \mathcal{E} for the oneparameter family of α -continued fraction transformations T_{α} , and describe its self-similar structure in terms of *tuning operators*.

This combinatorial description is used to characterize the plateaux of the entropy function $h(\alpha)$ and to explain the fractal structure observed in the graph of the entropy.

INTRODUCTION

The family $\{T_{\alpha}\}_{\alpha \in (0,1]}$ of α -continued fraction transformations is a family of discontinuous interval maps, which generalize the well-known Gauss map.

$$T_{\alpha}(x) := \frac{1}{|x|} - \left\lfloor \frac{1}{|x|} + 1 - \alpha \right\rfloor$$

ENTROPY

For all $\alpha > 0$ the map T_{α} admits an invariant measure μ_{α} absolutely continuous w.r.t. Lebesgue. We shall study the entropy $h(\alpha)$ of T_{α} with respect to μ_{α} ; it is a continuous function, piecewise smooth for $\alpha \geq 1/2$.

Figure 2: $h(\alpha)$ as a function of α . You can see a phase transition for $\alpha = \frac{\sqrt{5}-1}{2}$, and infinitely many others as you zoom in.

For $0 < \alpha < 1/2$ the entropy has a more complex behaviour; Nakada and Natsui [NN] proved that the entropy is not monotone on any interval [0, c].

entropy (Figure 2). The connected components of $[0,1] \setminus \mathcal{E}$ are themselves quadratic intervals, called *maximal* quadratic intervals; the set \mathbb{Q}_E of extremal rational numbers $\mathbb{Q}_E := \{ r \in (0, 1] : I_r \text{ is maximal} \}$

THICKENING \mathbb{Q}

Every $r \in (0,1) \cap \mathbb{Q}$ admits exactly two continued fraction expansions; in this way, one can associate to every rational value, two finite strings S_0 and S_1 of positive integers, S_0 has even length and S_1 odd length. For instance, since 3/10 = [0; 3, 3] =[0; 3, 2, 1], the two strings associated to 3/10 will be $S_0 = (3,3)$ and $S_1 = (3,2,1)$.

Now, for each $r \in \mathbb{Q} \cap (0, 1)$ we define the quadratic *interval* associated to r as the open interval

$$I_r := (\alpha_1, \alpha_0)$$

whose endpoints are the two quadratic irrationals $\alpha_0 = [0; \overline{S_0}]$ and $\alpha_1 = [0; \overline{S_1}]$. Let us set

$$\mathcal{E} := [0,1] \setminus \bigcup_{r \in (0,1] \cap \mathbb{Q}} I_r$$

The largest element of \mathcal{E} is $g := (\sqrt{5} - 1)/2$, which corresponds to the rightmost phase transition of the

MATCHING AND MONOTONICITY

For all parameters belonging to a maximal quadratic interval, the transformation T_{α} satisfies a *matching condition* which implies monotonicity of the entropy:

Theorem ([CT]). Let I_r be a maximal quadratic interval, and $r = [0; a_1, \ldots, a_n]$ with n even. Let

$$N = \sum_{i \text{ even}} a_i \qquad M = \sum_{i \text{ odd}} a_i \qquad \llbracket r \rrbracket := M - N$$

Then

$$T_{\alpha}^{N+1}(\alpha) = T_{\alpha}^{M+1}(\alpha - 1) \qquad \forall \alpha \in I_r$$

The sign of the matching index [r] determines the monotonicity of entropy on I_r : - if $\llbracket r \rrbracket > 0$, the entropy $h(\alpha)$ is increasing on I_r , - if $\llbracket r \rrbracket = 0$ it is constant,

- if [r] < 0 it is decreasing.

There is an explicit correspondence between maximal quadratic intervals and real hyperbolic components of the Mandelbrot set \mathcal{M} : in other words, the bifurcation set \mathcal{E} has the same combinatorial structure as the real section of the boundary of \mathcal{M} .

Figure 3: On the top, the entropy of α -c.f. as a function of α ; colored strips correspond to maximal intervals. At the bottom, a section of the Mandelbrot set along the real line, with external rays landing on the real axis.

 $I_{\tau_r(p)}$ and

A tuning window r is called *neutral* if [r] = 0; if W_r is a *neutral tuning window* then the formula above shows that the entropy is locally constant on $W_r \setminus \mathcal{E}$.

DICTIONARY

TUNING

In the Mandelbrot set, the baby copies of \mathcal{M} are homeomorphic images of the whole \mathcal{M} via the Douady-Hubbard tuning operators.

Analogously, we define tuning operators acting on the parameter space of α -continued fraction transformations.

For any $r \in \mathbb{Q}_E$ let us define the *tuning window* $W_r := [\omega, \alpha_0]$ with $\omega := [0; S_1 \overline{S_0}], \alpha_0 := [0; \overline{S_0}]$ and the tuning operator

 $\tau_r([0; a_1, a_2, \dots]) = [0; S_1 S_0^{a_1 - 1} S_1 S_0^{a_2 - 1} \dots]$

This map is order-preserving and it maps \mathcal{E} inside itself. Since $\tau_r(\mathcal{E}) = \mathcal{E} \cap W_r$, τ_r induces a bijection between all maximal intervals and those contained in W_r ; if I_p is a maximal interval then $\tau_r(I_p) =$

 $[\tau_r(p)] = -[r][p].$

PLATEAUX AND MONOTONICITY

Using tuning windows, we can explain the selfsimilar structure of h and characterize the plateaux:

Theorem. Let W_r be a non-neutral tuning window. Then the monotonicity of the entropy on W_r reflects the monotonicity on the whole parameter *space* [0, 1].

Figure 4: Illustration of the theorem in the case r = 1/3: on the left, three maximal intervals and their tuned images on the right: since $[\![r]\!] > 0$, the monotonicity on corresponding intervals is reversed (e.g., entropy is increasing on the green interval on the left and decreasing on its image on the right).

Theorem. Let a plateau be a maximal connected set over which the entropy is constant. Then, every plateau of h is a neutral tuning window W_r .

For instance, the plateau $[g^2, g]$ (see Figure 2) is the neutral tuning window $W_{1/2}$.

QUESTIONS

• Is h(1/2) the global maximum of h?

• Is the entropy smooth outside \mathcal{E} ?

• Can we use use this combinatorial technique to study the Mandelbrot set?

• Can we extend the dictionary to a correspondence between limit sets of Fuchsian semigroups and rays landing on Julia sets?

REFERENCES

[CT] C CARMINATI, G TIOZZO, A canonical thickening of \mathbb{Q} and the entropy of α -continued fractions, to appear in Ergodic Theory Dynam. Sys-

NAKADA, R NATSUI, The nonmonotonicity of the entropy of α -continued *fraction transformations*, Nonlinearity **21** (2008), 1207-1225.