Counting loxodromics for group actions

Giulio Tiozzo
University of Toronto

Summary

1. introduction to counting

Summary

1. introduction to counting
2. the random walk case

Summary

1. introduction to counting
2. the random walk case
3. graph structures

Summary

1. introduction to counting
2. the random walk case
3. graph structures
4. growth quasitightness

Summary

1. introduction to counting
2. the random walk case
3. graph structures
4. growth quasitightness
5. main theorem

Summary

1. introduction to counting
2. the random walk case
3. graph structures
4. growth quasitightness
5. main theorem
6. applications to RelHyp and RAAGs

Summary

1. introduction to counting
2. the random walk case
3. graph structures
4. growth quasitightness
5. main theorem
6. applications to RelHyp and RAAGs
joint with Ilya Gekhtman and Sam Taylor

Counting

Let G be a finitely generated group, and S a generating set.

Counting

Let G be a finitely generated group, and S a generating set. Define $S_{n}:=\left\{g \in G:|g|_{S}=n\right\}$.

Counting

Let G be a finitely generated group, and S a generating set. Define $S_{n}:=\left\{g \in G:|g|_{S}=n\right\}$. Count: For $A \subseteq G$, define

$$
P^{n}(A):=\frac{\# A \cap S_{n}}{S_{n}}
$$

the counting measure.

Counting

Let G be a finitely generated group, and S a generating set. Define $S_{n}:=\left\{g \in G:|g|_{S}=n\right\}$. Count: For $A \subseteq G$, define

$$
P^{n}(A):=\frac{\# A \cap S_{n}}{S_{n}}
$$

the counting measure. The set A is generic if

$$
P^{n}(A) \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

Genericity of pseudo-Anosov mapping classes

Question [Thurston?]: Are pseudo-Anosov mapping classes generic in $\operatorname{Mod}(S)$?

Genericity of pseudo-Anosov mapping classes

Question [Thurston?]: Are pseudo-Anosov mapping classes generic in $\operatorname{Mod}(S)$?
This conjecture is open!

Genericity of pseudo-Anosov mapping classes

Question [Thurston?]: Are pseudo-Anosov mapping classes generic in $\operatorname{Mod}(S)$?
This conjecture is open!
A positive proportion of mapping classes are pseudo-Anosov [Cumplido-Wiest]

Genericity of pseudo-Anosov mapping classes

Question [Thurston?]: Are pseudo-Anosov mapping classes generic in $\operatorname{Mod}(S)$?
This conjecture is open!
A positive proportion of mapping classes are pseudo-Anosov [Cumplido-Wiest]

Genericity for random walks

Theorem (Maher, Rivin 2008)
For any (nice) measure μ on $\operatorname{Mod}(S)$, if

$$
w_{n}=g_{1} \ldots g_{n}
$$

Genericity for random walks

Theorem (Maher, Rivin 2008)
For any (nice) measure μ on $\operatorname{Mod}(S)$, if

$$
w_{n}=g_{1} \ldots g_{n}
$$

where g_{i} are i.i.d. with distribution μ,

Genericity for random walks

Theorem (Maher, Rivin 2008)
For any (nice) measure μ on $\operatorname{Mod}(S)$, if

$$
w_{n}=g_{1} \ldots g_{n}
$$

where g_{i} are i.i.d. with distribution μ, one has

$$
\mathbb{P}\left(w_{n} \text { is pseudo-Anosov }\right) \rightarrow 1
$$

Boundary measures

In general: if you have a boundary for G, for a random walk, you get a hitting measure on ∂G as

$$
\nu(A):=\mathbb{P}\left(\lim _{n \rightarrow \infty} w_{n} x \in A\right)
$$

Boundary measures

In general: if you have a boundary for G, for a random walk, you get a hitting measure on ∂G as

$$
\nu(A):=\mathbb{P}\left(\lim _{n \rightarrow \infty} w_{n} x \in A\right)
$$

and also a Patterson-Sullivan measure as

$$
\lambda:=\lim _{n \rightarrow \infty} \frac{1}{\# S_{n}} \sum_{g \in S_{n}} \delta_{g}
$$

Boundary measures

In general: if you have a boundary for G, for a random walk, you get a hitting measure on ∂G as

$$
\nu(A):=\mathbb{P}\left(\lim _{n \rightarrow \infty} w_{n} x \in A\right)
$$

and also a Patterson-Sullivan measure as

$$
\lambda:=\lim _{n \rightarrow \infty} \frac{1}{\# S_{n}} \sum_{g \in S_{n}} \delta_{g}
$$

Question: Is there a random walk whose hitting measure is the Patterson-Sullivan measure?

Boundary measures

In general: if you have a boundary for G, for a random walk, you get a hitting measure on ∂G as

$$
\nu(A):=\mathbb{P}\left(\lim _{n \rightarrow \infty} w_{n} x \in A\right)
$$

and also a Patterson-Sullivan measure as

$$
\lambda:=\lim _{n \rightarrow \infty} \frac{1}{\# S_{n}} \sum_{g \in S_{n}} \delta_{g}
$$

Question: Is there a random walk whose hitting measure is the Patterson-Sullivan measure?

- Main ingredient for Furstenberg's rigidity theorem for lattices in Lie groups;

Boundary measures

In general: if you have a boundary for G, for a random walk, you get a hitting measure on ∂G as

$$
\nu(A):=\mathbb{P}\left(\lim _{n \rightarrow \infty} w_{n} x \in A\right)
$$

and also a Patterson-Sullivan measure as

$$
\lambda:=\lim _{n \rightarrow \infty} \frac{1}{\# S_{n}} \sum_{g \in S_{n}} \delta_{g}
$$

Question: Is there a random walk whose hitting measure is the Patterson-Sullivan measure?

- Main ingredient for Furstenberg's rigidity theorem for lattices in Lie groups;
- Connell-Muchnik for hyperbolic groups

Boundary measures

In general: if you have a boundary for G, for a random walk, you get a hitting measure on ∂G as

$$
\nu(A):=\mathbb{P}\left(\lim _{n \rightarrow \infty} w_{n} x \in A\right)
$$

and also a Patterson-Sullivan measure as

$$
\lambda:=\lim _{n \rightarrow \infty} \frac{1}{\# S_{n}} \sum_{g \in S_{n}} \delta_{g}
$$

Question: Is there a random walk whose hitting measure is the Patterson-Sullivan measure?

- Main ingredient for Furstenberg's rigidity theorem for lattices in Lie groups;
- Connell-Muchnik for hyperbolic groups

General setup: isometry groups of δ-hyperbolic spaces

Let G be a countable group of isometries of a δ-hyperbolic metric space X.

General setup: isometry groups of δ-hyperbolic spaces

Let G be a countable group of isometries of a δ-hyperbolic metric space X.
Note: X need not be proper, or locally compact.

General setup: isometry groups of δ-hyperbolic spaces

Let G be a countable group of isometries of a δ-hyperbolic metric space X.
Note: X need not be proper, or locally compact. Example: locally infinite graph, vertices of countable degree

General setup: isometry groups of δ-hyperbolic spaces

Let G be a countable group of isometries of a δ-hyperbolic metric space X.
Note: X need not be proper, or locally compact.
Example: locally infinite graph, vertices of countable degree

- for $G=\operatorname{Mod}(S), X=C(S)$ the curve complex
(Harvey, Masur-Minsky);

General setup: isometry groups of δ-hyperbolic spaces

Let G be a countable group of isometries of a δ-hyperbolic metric space X.
Note: X need not be proper, or locally compact.
Example: locally infinite graph, vertices of countable degree

- for $G=\operatorname{Mod}(S), X=C(S)$ the curve complex (Harvey, Masur-Minsky);
- for G relatively hyperbolic, $X=$ coned-off space
(Farb, Bowditch, ...)

General setup: isometry groups of δ-hyperbolic spaces

Let G be a countable group of isometries of a δ-hyperbolic metric space X.
Note: X need not be proper, or locally compact.
Example: locally infinite graph, vertices of countable degree

- for $G=\operatorname{Mod}(S), X=C(S)$ the curve complex (Harvey, Masur-Minsky);
- for G relatively hyperbolic, $X=$ coned-off space (Farb, Bowditch, ...)
- for G a right-angled Artin group, $X=$ extension graph (Kim-Koberda)

General setup: isometry groups of δ-hyperbolic spaces

Let G be a countable group of isometries of a δ-hyperbolic metric space X.
Note: X need not be proper, or locally compact.
Example: locally infinite graph, vertices of countable degree

- for $G=\operatorname{Mod}(S), X=C(S)$ the curve complex (Harvey, Masur-Minsky);
- for G relatively hyperbolic, $X=$ coned-off space (Farb, Bowditch, ...)
- for G a right-angled Artin group, $X=$ extension graph (Kim-Koberda)
- for $G=\operatorname{Out}\left(F_{n}\right), X=$ free factor complex, free splitting complex (Bestvina-Feighn)

Classification of isometries of hyperbolic spaces

If g is an isometry of X, then either:

Classification of isometries of hyperbolic spaces

If g is an isometry of X, then either:

- g is elliptic (it has a bounded orbit)

Classification of isometries of hyperbolic spaces

If g is an isometry of X, then either:

- g is elliptic (it has a bounded orbit)
- g is parabolic (it fixes one point in ∂X)

Classification of isometries of hyperbolic spaces

If g is an isometry of X, then either:

- g is elliptic (it has a bounded orbit)
- g is parabolic (it fixes one point in ∂X)
- g is loxodromic (it fixes two points in ∂X)

Classification of isometries of hyperbolic spaces

If g is an isometry of X, then either:

- g is elliptic (it has a bounded orbit)
- g is parabolic (it fixes one point in ∂X)
- g is loxodromic (it fixes two points in ∂X)

The translation length is defined as

$$
\tau(g):=\lim _{n \rightarrow \infty} \frac{d\left(g^{n} x, x\right)}{n}
$$

Classification of isometries of hyperbolic spaces

If g is an isometry of X, then either:

- g is elliptic (it has a bounded orbit)
- g is parabolic (it fixes one point in ∂X)
- g is loxodromic (it fixes two points in ∂X)

The translation length is defined as

$$
\tau(g):=\lim _{n \rightarrow \infty} \frac{d\left(g^{n} x, x\right)}{n}
$$

Then

$$
\tau(g)>0 \Leftrightarrow g \text { is loxodromic }
$$

Genericity for random walks

A (semi)group $G<\operatorname{Isom}(X)$ is nonelementary if it contains two independent loxodromics.

Genericity for random walks

A (semi)group $G<\operatorname{Isom}(X)$ is nonelementary if it contains two independent loxodromics. A probability measure μ is nonelementary if the semigroup generated by the support of μ is nonelementary.

Genericity for random walks

A (semi)group $G<\operatorname{Isom}(X)$ is nonelementary if it contains two independent loxodromics. A probability measure μ is nonelementary if the semigroup generated by the support of μ is nonelementary.

Theorem (Maher-T 2015)

For any nonelementary measure μ on G, if

$$
w_{n}=g_{1} \ldots g_{n}
$$

Genericity for random walks

A (semi)group $G<\operatorname{Isom}(X)$ is nonelementary if it contains two independent loxodromics. A probability measure μ is nonelementary if the semigroup generated by the support of μ is nonelementary.
Theorem (Maher-T 2015)
For any nonelementary measure μ on G, if

$$
w_{n}=g_{1} \ldots g_{n}
$$

where g_{i} are i.i.d. with distribution μ,

Genericity for random walks

A (semi)group $G<\operatorname{Isom}(X)$ is nonelementary if it contains two independent loxodromics. A probability measure μ is nonelementary if the semigroup generated by the support of μ is nonelementary.
Theorem (Maher-T 2015)
For any nonelementary measure μ on G, if

$$
w_{n}=g_{1} \ldots g_{n}
$$

where g_{i} are i.i.d. with distribution μ, one has
$\mathbb{P}\left(w_{n}\right.$ is loxodromic on $\left.X\right) \rightarrow 1$

Genericity for random walks

A (semi)group $G<\operatorname{Isom}(X)$ is nonelementary if it contains two independent loxodromics. A probability measure μ is nonelementary if the semigroup generated by the support of μ is nonelementary.
Theorem (Maher-T 2015)
For any nonelementary measure μ on G, if

$$
w_{n}=g_{1} \ldots g_{n}
$$

where g_{i} are i.i.d. with distribution μ, one has
$\mathbb{P}\left(w_{n}\right.$ is loxodromic on $\left.X\right) \rightarrow 1$

Recall:
mapping class is pAnosov \Leftrightarrow loxodromic on $X=$ curve complex

Genericity in general is false

Let $G=F_{2} \times F_{3}$,

Genericity in general is false

Let $G=F_{2} \times F_{3}$, and $X=F_{2}$.

Genericity in general is false

Let $G=F_{2} \times F_{3}$, and $X=F_{2}$. Then F_{3} acts trivially (hence not loxodromically)

Genericity in general is false

Let $G=F_{2} \times F_{3}$, and $X=F_{2}$. Then F_{3} acts trivially (hence not loxodromically) and in fact

$$
\lim _{n \rightarrow \infty} \frac{\#\left\{S_{n} \cap L O X\right\}}{\# S_{n}}=\frac{2}{3}
$$

Genericity in general is false

Let $G=F_{2} \times F_{3}$, and $X=F_{2}$. Then F_{3} acts trivially (hence not loxodromically) and in fact

$$
\lim _{n \rightarrow \infty} \frac{\#\left\{S_{n} \cap L O X\right\}}{\# S_{n}}=\frac{2}{3}
$$

so loxodromics are not generic!

Counting for hyperbolic groups

Theorem (Gekhtman-Taylor-T 2016)
Let G be a hyperbolic group, and S be any generating set.

Counting for hyperbolic groups

Theorem (Gekhtman-Taylor-T 2016)
Let G be a hyperbolic group, and S be any generating set. Then for any nonelementary action $G \curvearrowright X$ on a separable hyperbolic space X,

Counting for hyperbolic groups

Theorem (Gekhtman-Taylor-T 2016)
Let G be a hyperbolic group, and S be any generating set. Then for any nonelementary action $G \curvearrowright X$ on a separable hyperbolic space X, the set of loxodromics is generic:

Counting for hyperbolic groups

Theorem (Gekhtman-Taylor-T 2016)
Let G be a hyperbolic group, and S be any generating set. Then for any nonelementary action $G \curvearrowright X$ on a separable hyperbolic space X, the set of loxodromics is generic:

$$
\frac{\{g \in G:|g| s=n \text { and } g \text { is } X \text { - loxodromic }\}}{\left\{g \in G:|g|_{S}=n\right\}} \longrightarrow 1,
$$

as $n \rightarrow \infty$.

Counting for hyperbolic groups

Theorem (Gekhtman-Taylor-T 2016)
Let G be a hyperbolic group, and S be any generating set. Then for any nonelementary action $G \curvearrowright X$ on a separable hyperbolic space X, the set of loxodromics is generic:

$$
\frac{\left\{g \in G:|g|_{s}=n \text { and } g \text { is } X \text { - loxodromic }\right\}}{\left\{g \in G:|g|_{S}=n\right\}} \longrightarrow 1,
$$

as $n \rightarrow \infty$.
Nice little corollary: the set of filling curves is generic in $\pi_{1}(S)$.

Counting for hyperbolic groups

Theorem (Gekhtman-Taylor-T 2016)
Let G be a hyperbolic group, and S be any generating set. Then for any nonelementary action $G \curvearrowright X$ on a separable hyperbolic space X, the set of loxodromics is generic:

$$
\frac{\left\{g \in G:|g|_{S}=n \text { and } g \text { is } X \text { - loxodromic }\right\}}{\left\{g \in G:|g|_{S}=n\right\}} \longrightarrow 1,
$$

as $n \rightarrow \infty$.
Nice little corollary: the set of filling curves is generic in $\pi_{1}(S)$.
Question: Can we generalize this result? How far?

Graph structures

We will consider G a countable group of isometries of a δ-hyperbolic metric space X.

Graph structures

We will consider G a countable group of isometries of a δ-hyperbolic metric space X. Note: X is not assumed to be proper or locally compact.

Graph structures

We will consider G a countable group of isometries of a δ-hyperbolic metric space X. Note: X is not assumed to be proper or locally compact.
A graph structure for G is a finite, directed graph Γ such that edges of Γ are labeled by elements of G,

Graph structures

We will consider G a countable group of isometries of a δ-hyperbolic metric space X. Note: X is not assumed to be proper or locally compact.
A graph structure for G is a finite, directed graph Γ such that edges of Γ are labeled by elements of G, where one vertex v_{0} is labeled as the initial vertex.

Graph structures

We will consider G a countable group of isometries of a δ-hyperbolic metric space X. Note: X is not assumed to be proper or locally compact.
A graph structure for G is a finite, directed graph Γ such that edges of Γ are labeled by elements of G, where one vertex v_{0} is labeled as the initial vertex. We count paths in the graph starting from the initial vertex:

$$
S_{n}:=\left\{g \in \Omega_{0}:|g|=n\right\}
$$

Graph structures

We will consider G a countable group of isometries of a δ-hyperbolic metric space X. Note: X is not assumed to be proper or locally compact.
A graph structure for G is a finite, directed graph Γ such that edges of Γ are labeled by elements of G, where one vertex v_{0} is labeled as the initial vertex. We count paths in the graph starting from the initial vertex:

$$
S_{n}:=\left\{g \in \Omega_{0}:|g|=n\right\}
$$

The group is geodesically automatic if paths in the graph project to geodesics in G, and the evaluation map ev : $\Omega_{0} \rightarrow G$ is bijective.

Graph structures

We will consider G a countable group of isometries of a δ-hyperbolic metric space X. Note: X is not assumed to be proper or locally compact.
A graph structure for G is a finite, directed graph Γ such that edges of Γ are labeled by elements of G, where one vertex v_{0} is labeled as the initial vertex. We count paths in the graph starting from the initial vertex:

$$
S_{n}:=\left\{g \in \Omega_{0}:|g|=n\right\}
$$

The group is geodesically automatic if paths in the graph project to geodesics in G, and the evaluation map ev : $\Omega_{0} \rightarrow G$ is bijective.
The graph structure is almost semisimple if there exists $c>0, \lambda>1$ such that

$$
c^{-1} \lambda^{n} \leq \# S_{n} \leq c \lambda^{n}
$$

Growth quasitightness

A path $\gamma \underline{C \text {-almost contains } w}$ if there exists a subpath γ^{\prime} of γ and two words a, b with $|a|,|b| \leq C$ such that

$$
\operatorname{ev}\left(\gamma^{\prime}\right)=a w b
$$

Growth quasitightness

A path $\gamma \underline{C \text {-almost contains } w}$ if there exists a subpath γ^{\prime} of γ and two words a, b with $|a|,|b| \leq C$ such that

$$
\operatorname{ev}\left(\gamma^{\prime}\right)=a w b
$$

Given $w \in G$, the set $Y_{w, C}$ is the set of paths in Γ which does not C-almost contain w.

Growth quasitightness

 and two words a, b with $|a|,|b| \leq C$ such that

$$
\operatorname{ev}\left(\gamma^{\prime}\right)=a w b
$$

Given $w \in G$, the set $Y_{w, C}$ is the set of paths in Γ which does not C-almost contain w.

Definition
The graph structure is growth quasitight relative to H if for every $w \in H$, the set $Y_{w, c}$ has zero density:

$$
P^{n}\left(Y_{w, c}\right) \rightarrow 0
$$

Growth quasitightness

 and two words a, b with $|a|,|b| \leq C$ such that

$$
\operatorname{ev}\left(\gamma^{\prime}\right)=a w b
$$

Given $w \in G$, the set $Y_{w, C}$ is the set of paths in Γ which does not C-almost contain w.

Definition
The graph structure is growth quasitight relative to H if for every $w \in H$, the set $Y_{w, c}$ has zero density:

$$
P^{n}\left(Y_{w, c}\right) \rightarrow 0
$$

Intuitively: "generic paths fellow travel win G"

Growth quasitightness

 and two words a, b with $|a|,|b| \leq C$ such that

$$
\operatorname{ev}\left(\gamma^{\prime}\right)=a w b
$$

Given $w \in G$, the set $Y_{w, C}$ is the set of paths in Γ which does not C-almost contain w.

Definition
The graph structure is growth quasitight relative to H if for every $w \in H$, the set $Y_{w, c}$ has zero density:

$$
P^{n}\left(Y_{w, c}\right) \rightarrow 0
$$

Intuitively: "generic paths fellow travel win G" Important case: if there is a unique non-trivial component

The main theorem: counting loxodromics

Theorem (GTT 2017)
Let (G, Γ) be an almost semisimple graph structure for G.

The main theorem: counting loxodromics

 Theorem (GTT 2017)Let (G, Γ) be an almost semisimple graph structure for G. If there exists a nonelementary subgroup H such that (G, Γ) is growth quasitight with respect to H ,

The main theorem: counting loxodromics

Theorem (GTT 2017)
Let (G, Γ) be an almost semisimple graph structure for G. If there exists a nonelementary subgroup H such that (G, Γ) is growth quasitight with respect to H , then loxodromic elements are generic:

The main theorem: counting loxodromics

Theorem (GTT 2017)

Let (G, Γ) be an almost semisimple graph structure for G. If there exists a nonelementary subgroup H such that $(G, \Gamma$) is growth quasitight with respect to H , then loxodromic elements are generic:

$$
\frac{\#\left\{g \in S_{n}: g \text { is loxodromic on } X\right\}}{\# S_{n}} \rightarrow 1 .
$$

The main theorem: counting loxodromics

Theorem (GTT 2017)

Let (G, Γ) be an almost semisimple graph structure for G. If there exists a nonelementary subgroup H such that (G, Γ) is growth quasitight with respect to H, then loxodromic elements are generic:

$$
\frac{\#\left\{g \in S_{n}: g \text { is loxodromic on } X\right\}}{\# S_{n}} \rightarrow 1
$$

Moreover, there exists $L>0$ such that

$$
\frac{\#\left\{g \in S_{n}: \tau(g) \geq n L\right\}}{\# S_{n}} \rightarrow 1
$$

The main theorem: counting loxodromics

Theorem (GTT 2017)

Let (G, Γ) be an almost semisimple graph structure for G. If there exists a nonelementary subgroup H such that (G, Γ) is growth quasitight with respect to H , then loxodromic elements are generic:

$$
\frac{\#\left\{g \in S_{n}: g \text { is loxodromic on } X\right\}}{\# S_{n}} \rightarrow 1
$$

Moreover, there exists $L>0$ such that

$$
\frac{\#\left\{g \in S_{n}: \tau(g) \geq n L\right\}}{\# S_{n}} \rightarrow 1 .
$$

Finally, if $\mathrm{H}<\mathrm{G}$ a subgroup of infinite index, then

The main theorem: counting loxodromics

Theorem (GTT 2017)

Let (G, Γ) be an almost semisimple graph structure for G. If there exists a nonelementary subgroup H such that (G, Γ) is growth quasitight with respect to H, then loxodromic elements are generic:

$$
\frac{\#\left\{g \in S_{n}: g \text { is loxodromic on } X\right\}}{\# S_{n}} \rightarrow 1
$$

Moreover, there exists $L>0$ such that

$$
\frac{\#\left\{g \in S_{n}: \tau(g) \geq n L\right\}}{\# S_{n}} \rightarrow 1 .
$$

Finally, if $\mathrm{H}<\mathrm{G}$ a subgroup of infinite index, then

$$
\lim _{n \rightarrow \infty} \frac{\# S_{n} \cap H}{\# S_{n}}=0 .
$$

Application to relatively hyperbolic groups

Theorem (GTT 2017)
Let G be a relatively hyperbolic group, and suppose that:

Application to relatively hyperbolic groups

Theorem (GTT 2017)
Let G be a relatively hyperbolic group, and suppose that:

1. parabolic subgroups are geodesically automatic (for instance, if they are virtually abelian);

Application to relatively hyperbolic groups

Theorem (GTT 2017)
Let G be a relatively hyperbolic group, and suppose that:

1. parabolic subgroups are geodesically automatic (for instance, if they are virtually abelian);
2. the action of $G \curvearrowright \partial G \times \partial G$ is ergodic;

Application to relatively hyperbolic groups

Theorem (GTT 2017)

Let G be a relatively hyperbolic group, and suppose that:

1. parabolic subgroups are geodesically automatic (for instance, if they are virtually abelian);
2. the action of $G \curvearrowright \partial G \times \partial G$ is ergodic;

Then for any nonelementary action of G on a δ-hyperbolic space X :

$$
\frac{\#\left\{g \in S_{n}: g \text { is loxodromic on } X\right\}}{\# S_{n}} \rightarrow 1
$$

Application to relatively hyperbolic groups

Theorem (GTT 2017)

Let G be a relatively hyperbolic group, and suppose that:

1. parabolic subgroups are geodesically automatic (for instance, if they are virtually abelian);
2. the action of $G \curvearrowright \partial G \times \partial G$ is ergodic;

Then for any nonelementary action of G on a δ-hyperbolic space X :

$$
\frac{\#\left\{g \in S_{n}: g \text { is loxodromic on } X\right\}}{\# S_{n}} \rightarrow 1
$$

Corollary
Suppose that $G<\operatorname{Isom}\left(\mathbb{H}^{n}\right)$ is geometrically finite. Then for any action $G \curvearrowright X$, loxodromic elements are generic.

Application to right-angled Artin/Coxeter groups Let Λ be a finite, undirected graph.

$$
\begin{aligned}
& V(\Lambda)=\text { vertices } \\
& E(\Lambda)=\text { edges }
\end{aligned}
$$

Application to right-angled Artin/Coxeter groups Let \wedge be a finite, undirected graph.

$$
\begin{aligned}
& V(\Lambda)=\text { vertices } \\
& E(\Lambda)=\text { edges }
\end{aligned}
$$

Define the right-angled Artin group (RAAG)

Application to right-angled Artin/Coxeter groups Let Λ be a finite, undirected graph.

$$
\begin{aligned}
& V(\Lambda)=\text { vertices } \\
& E(\Lambda)=\text { edges }
\end{aligned}
$$

Define the right-angled Artin group (RAAG)

$$
A(\Lambda):=\langle v \in V(\Lambda) \mid[u, v]=1 \Leftrightarrow(u, v) \in E(\Lambda)\rangle
$$

Examples:

Application to right-angled Artin/Coxeter groups Let Λ be a finite, undirected graph.

$$
\begin{aligned}
& V(\Lambda)=\text { vertices } \\
& E(\Lambda)=\text { edges }
\end{aligned}
$$

Define the right-angled Artin group (RAAG)

$$
A(\Lambda):=\langle v \in V(\Lambda) \mid[u, v]=1 \Leftrightarrow(u, v) \in E(\Lambda)\rangle
$$

Examples:

- Λ totally disconnected: free groups

Application to right-angled Artin/Coxeter groups

 Let Λ be a finite, undirected graph.$$
\begin{aligned}
& V(\Lambda)=\text { vertices } \\
& E(\Lambda)=\text { edges }
\end{aligned}
$$

Define the right-angled Artin group (RAAG)

$$
A(\Lambda):=\langle v \in V(\Lambda) \mid[u, v]=1 \Leftrightarrow(u, v) \in E(\Lambda)\rangle
$$

Examples:

- Λ totally disconnected: free groups
- Λ a clique: abelian groups

Application to right-angled Artin/Coxeter groups

 Let Λ be a finite, undirected graph.$$
\begin{aligned}
& V(\Lambda)=\text { vertices } \\
& E(\Lambda)=\text { edges }
\end{aligned}
$$

Define the right-angled Artin group (RAAG)

$$
A(\Lambda):=\langle v \in V(\Lambda) \mid[u, v]=1 \Leftrightarrow(u, v) \in E(\Lambda)\rangle
$$

Examples:

- Λ totally disconnected: free groups
- Λ a clique: abelian groups
- "intermediate" cases

Application to right-angled Artin/Coxeter groups

 Let Λ be a finite, undirected graph.$$
\begin{aligned}
& V(\Lambda)=\text { vertices } \\
& E(\Lambda)=\text { edges }
\end{aligned}
$$

Define the right-angled Artin group (RAAG)

$$
A(\Lambda):=\langle v \in V(\Lambda) \mid[u, v]=1 \Leftrightarrow(u, v) \in E(\Lambda)\rangle
$$

Examples:

- Λ totally disconnected: free groups
- Λ a clique: abelian groups
- "intermediate" cases

Note that $A(\Lambda)$ is a direct product of smaller RAAGs if $\Lambda^{O D}$ is disconnected.

Application to right-angled Artin/Coxeter groups

Let Λ be a finite, undirected graph.

$$
\begin{aligned}
& V(\Lambda)=\text { vertices } \\
& E(\Lambda)=\text { edges }
\end{aligned}
$$

Define the right-angled Artin group (RAAG)

$$
A(\Lambda):=\langle v \in V(\Lambda) \mid[u, v]=1 \Leftrightarrow(u, v) \in E(\Lambda)\rangle
$$

Examples:

- Λ totally disconnected: free groups
- Λ a clique: abelian groups
- "intermediate" cases

Note that $A(\Lambda)$ is a direct product of smaller RAAGs if $\Lambda^{O D}$ is disconnected. If $\Lambda^{O p}=\Lambda_{1} \sqcup \Lambda_{2}$, then

$$
A(\Lambda)=A\left(\Lambda_{1}^{o p}\right) \times A\left(\Lambda_{2}^{o p}\right)
$$

Application to right-angled Artin/Coxeter groups

Theorem (GTT 2017)
Let G be a right-angled Artin or Coxeter group

Application to right-angled Artin/Coxeter groups

Theorem (GTT 2017)
Let G be a right-angled Artin or Coxeter group which is not virtually cyclic and not trivially a product,

Application to right-angled Artin/Coxeter groups

Theorem (GTT 2017)
Let G be a right-angled Artin or Coxeter group which is not virtually cyclic and not trivially a product, and let S be its set of vertex generators.

Application to right-angled Artin/Coxeter groups

Theorem (GTT 2017)
Let G be a right-angled Artin or Coxeter group which is not virtually cyclic and not trivially a product, and let S be its set of vertex generators. Then for any nonelementary action $G \curvearrowright X$ on a separable hyperbolic space X,

Application to right-angled Artin/Coxeter groups

Theorem (GTT 2017)
Let G be a right-angled Artin or Coxeter group which is not virtually cyclic and not trivially a product, and let S be its set of vertex generators. Then for any nonelementary action $G \curvearrowright X$ on a separable hyperbolic space X, the set of loxodromics is generic:

Application to right-angled Artin/Coxeter groups

Theorem (GTT 2017)
Let G be a right-angled Artin or Coxeter group which is not virtually cyclic and not trivially a product, and let S be its set of vertex generators. Then for any nonelementary action $G \curvearrowright X$ on a separable hyperbolic space X, the set of loxodromics is generic:

$$
\frac{\#\left\{g \in S_{n}: g \text { is } X-\text { loxodromic }\right\}}{\# S_{n}} \longrightarrow 1
$$

as $n \rightarrow \infty$.

Application to right-angled Artin/Coxeter groups

Theorem (GTT 2017)
Let G be a right-angled Artin or Coxeter group which is not virtually cyclic and not trivially a product, and let S be its set of vertex generators. Then for any nonelementary action $G \curvearrowright X$ on a separable hyperbolic space X, the set of loxodromics is generic:

$$
\frac{\#\left\{g \in S_{n}: g \text { is } X-\text { loxodromic }\right\}}{\# S_{n}} \longrightarrow 1,
$$

as $n \rightarrow \infty$. Moreover, there exists $L>0$ such that

$$
\frac{\#\left\{g \in S_{n}: \tau(g) \geq L n\right\}}{\# S_{n}} \longrightarrow 1
$$

Application to right-angled Artin/Coxeter groups

Theorem (GTT 2017)
Let G be a right-angled Artin or Coxeter group which is not virtually cyclic and not trivially a product, and let S be its set of vertex generators. Then for any nonelementary action $G \curvearrowright X$ on a separable hyperbolic space X, the set of loxodromics is generic:

$$
\frac{\#\left\{g \in S_{n}: g \text { is } X-\text { loxodromic }\right\}}{\# S_{n}} \longrightarrow 1,
$$

as $n \rightarrow \infty$. Moreover, there exists $L>0$ such that

$$
\frac{\#\left\{g \in S_{n}: \tau(g) \geq L n\right\}}{\# S_{n}} \longrightarrow 1
$$

Moreover, if $\mathrm{H}<\mathrm{G}$ is a subgroup of infinite index, then

Application to right-angled Artin/Coxeter groups

Theorem (GTT 2017)
Let G be a right-angled Artin or Coxeter group which is not virtually cyclic and not trivially a product, and let S be its set of vertex generators. Then for any nonelementary action $G \curvearrowright X$ on a separable hyperbolic space X, the set of loxodromics is generic:

$$
\frac{\#\left\{g \in S_{n}: g \text { is } X-\text { loxodromic }\right\}}{\# S_{n}} \longrightarrow 1,
$$

as $n \rightarrow \infty$. Moreover, there exists $L>0$ such that

$$
\frac{\#\left\{g \in S_{n}: \tau(g) \geq L n\right\}}{\# S_{n}} \longrightarrow 1
$$

Moreover, if $\mathrm{H}<\mathrm{G}$ is a subgroup of infinite index, then

$$
\lim _{n \rightarrow \infty} \frac{\# S_{n} \cap H}{\# S_{n}}=0 .
$$

Scheme of proof for RAAGs

- Modifying Hermiller-Meier, find graph which parameterizes all geodesics in G for the vertex generating set;
- If $\Lambda^{o p}$ is connected, then this graph has a unique recurrent component!
- This immediately implies that the graph structure is growth quasitight
- Moreover, you also get exact exponential growth:

Theorem
There exists $C>0, \lambda>1$ such that

$$
\lim _{n \rightarrow \infty} \frac{\# S_{n}}{\lambda^{n}}=C
$$

The graph structure for RAAGs and RACGs

Let us order the vertices (denoted by $A<B<\ldots<Z$) such that B, A are not adjacent;

The graph structure for RAAGs and RACGs

Let us order the vertices (denoted by $A<B<\ldots<Z$) such that B, A are not adjacent;

Definition
A pair (I, J) is admissible if $I>J$ with (I, J) not adjacent.

The graph structure for RAAGs and RACGs

Let us order the vertices (denoted by $A<B<\ldots<Z$) such that B, A are not adjacent;

Definition
A pair (I, J) is admissible if $I>J$ with (I, J) not adjacent. Then a (I, J)-admissible word is

$$
\left(I, J, K_{1}, K_{2}, \ldots, K_{r}\right)
$$

The graph structure for RAAGs and RACGs

Let us order the vertices (denoted by $A<B<\ldots<Z$) such that B, A are not adjacent;

Definition
A pair (I, J) is admissible if $I>J$ with (I, J) not adjacent. Then a (I, J)-admissible word is

$$
\left(I, J, K_{1}, K_{2}, \ldots, K_{r}\right)
$$

such that:
1.

$$
J<K_{1}<K_{2}<\cdots<K_{r}
$$

The graph structure for RAAGs and RACGs

Let us order the vertices (denoted by $A<B<\ldots<Z$) such that B, A are not adjacent;
Definition
A pair (I, J) is admissible if $I>J$ with (I, J) not adjacent. Then a (I, J)-admissible word is

$$
\left(I, J, K_{1}, K_{2}, \ldots, K_{r}\right)
$$

such that:
1.

$$
J<K_{1}<K_{2}<\cdots<K_{r}
$$

2. If $K_{i} \leq I$, then K_{i} is not adjacent to at least one of $I, J, K_{1}, \ldots, K_{i-1}$

The graph structure for RAAGs and RACGs

Let us order the vertices (denoted by $A<B<\ldots<Z$) such that B, A are not adjacent;
Definition
A pair (I, J) is admissible if $I>J$ with (I, J) not adjacent. Then a (I, J)-admissible word is

$$
\left(I, J, K_{1}, K_{2}, \ldots, K_{r}\right)
$$

such that:
1.

$$
J<K_{1}<K_{2}<\cdots<K_{r}
$$

2. If $K_{i} \leq I$, then K_{i} is not adjacent to at least one of $I, J, K_{1}, \ldots, K_{i-1}$

The graph structure for RAAGs and RACGs (II)

1. For each (I, J) as above, construct the tree of (I, J)-admissible words;

The graph structure for RAAGs and RACGs (II)

1. For each (I, J) as above, construct the tree of (I, J)-admissible words;
2. "cut head" of trees, and connect every l-vertex with J-vertex of (I, J)-tree;

The graph structure for RAAGs and RACGs (II)

1. For each (I, J) as above, construct the tree of (I, J)-admissible words;
2. "cut head" of trees, and connect every l-vertex with J-vertex of (I, J)-tree;
3. add initial vertex \emptyset and connect it to vertex in the (B, A) tree.

The graph structure for RAAGs and RACGs (II)

1. For each (I, J) as above, construct the tree of (I, J)-admissible words;
2. "cut head" of trees, and connect every l-vertex with J-vertex of (I, J)-tree;
3. add initial vertex \emptyset and connect it to vertex in the (B, A) tree.
4. This creates geodesic graph structure for Coxeter group;

The graph structure for RAAGs and RACGs (II)

1. For each (I, J) as above, construct the tree of (I, J)-admissible words;
2. "cut head" of trees, and connect every l-vertex with J-vertex of (I, J)-tree;
3. add initial vertex \emptyset and connect it to vertex in the (B, A) tree.
4. This creates geodesic graph structure for Coxeter group;
5. to make it into graph structure for Artin group, "double" each vertex

Example

$$
G=\mathbb{Z} \star \mathbb{Z}^{2}
$$

Example

$$
G=\mathbb{Z} \star \mathbb{Z}^{2}=\langle B\rangle \star\langle A, C\rangle
$$

Example

$$
G=\mathbb{Z} \star \mathbb{Z}^{2}=\langle B\rangle \star\langle A, C\rangle
$$

Admissible pairs: (B, A) and (C, B)

Example

$$
G=\mathbb{Z} \star \mathbb{Z}^{2}=\langle B\rangle \star\langle A, C\rangle
$$

Admissible pairs: (B, A) and (C, B)
Admissible words:

Example

$$
G=\mathbb{Z} \star \mathbb{Z}^{2}=\langle B\rangle \star\langle A, C\rangle
$$

Admissible pairs: (B, A) and (C, B)
Admissible words:

- BA, BAB, BABC, BAC

Example

$$
G=\mathbb{Z} \star \mathbb{Z}^{2}=\langle B\rangle \star\langle A, C\rangle
$$

Admissible pairs: (B, A) and (C, B)
Admissible words:

- BA, BAB, BABC, BAC
- CB, CBC

Example

$$
G=\mathbb{Z} \star \mathbb{Z}^{2}=\langle B\rangle \star\langle A, C\rangle
$$

Admissible pairs: (B, A) and (C, B)
Admissible words:

- BA, BAB, BABC, BAC
- CB, CBC

Take leading eigenvalue of matrix:

Example

$$
G=\mathbb{Z} \star \mathbb{Z}^{2}=\langle B\rangle \star\langle A, C\rangle
$$

Admissible pairs: (B, A) and (C, B)
Admissible words:

- BA, BAB, BABC, BAC
- CB, CBC

Take leading eigenvalue of matrix:

$$
\lambda\left(\mathbb{Z}_{2} \star\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)\right)=\frac{3+\sqrt{5}}{2} \cong 2.618 \ldots
$$

Example

$$
G=\mathbb{Z} \star \mathbb{Z}^{2}=\langle B\rangle \star\langle A, C\rangle
$$

Admissible pairs: (B, A) and (C, B)
Admissible words:

- BA, BAB, BABC, BAC
- CB, CBC

Take leading eigenvalue of matrix:

$$
\begin{gathered}
\lambda\left(\mathbb{Z}_{2} \star\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)\right)=\frac{3+\sqrt{5}}{2} \cong 2.618 \ldots \\
\lambda\left(\mathbb{Z} \star \mathbb{Z}^{2}\right)=2+\sqrt{5} \cong 4.236 \ldots
\end{gathered}
$$

Scheme of proof for relatively hyperbolic groups

- Let w be K - bounded if

Scheme of proof for relatively hyperbolic groups

- Let w be K - bounded if

$$
\ell_{w}=\bigcup_{i \in \mathbb{Z}} w^{i}[1, w]
$$

Scheme of proof for relatively hyperbolic groups

- Let w be K - bounded if

$$
\ell_{w}=\bigcup_{i \in \mathbb{Z}} w^{i}[1, w]
$$

projects to a K-quasigeodesic in the coned-off space

Scheme of proof for relatively hyperbolic groups

- Let w be K - bounded if

$$
\ell_{w}=\bigcup_{i \in \mathbb{Z}} w^{i}[1, w]
$$

projects to a K-quasigeodesic in the coned-off space

- Double ergodicity of $\partial G \Rightarrow$ growth quasitightness: there exists $C>0$ such that for each $K-$ bounded w,

$$
P^{n}\left(Y_{w, c}\right) \rightarrow 0
$$

Scheme of proof for relatively hyperbolic groups

- Let w be K - bounded if

$$
\ell_{w}=\bigcup_{i \in \mathbb{Z}} w^{i}[1, w]
$$

projects to a K-quasigeodesic in the coned-off space

- Double ergodicity of $\partial G \Rightarrow$ growth quasitightness: there exists $C>0$ such that for each K - bounded w,

$$
P^{n}\left(Y_{w, c}\right) \rightarrow 0
$$

- By ping-pong lemma, there exists a free group with nonelementary action on X consisting entirely of K-bounded elements

Scheme of proof for relatively hyperbolic groups

- Let w be K - bounded if

$$
\ell_{w}=\bigcup_{i \in \mathbb{Z}} w^{i}[1, w]
$$

projects to a K-quasigeodesic in the coned-off space

- Double ergodicity of $\partial G \Rightarrow$ growth quasitightness: there exists $C>0$ such that for each $K-$ bounded w,

$$
P^{n}\left(Y_{w, C}\right) \rightarrow 0
$$

- By ping-pong lemma, there exists a free group with nonelementary action on X consisting entirely of K-bounded elements
- By Antolin-Ciobanu, if parabolics P have geodesic graph structure, the whole group G has geodesic graph structure

Ingredients of the proof I: the horofunction boundary

Existence of stationary measure on ∂X : we construct the horofunction boundary, which is always compact metrizable.

Ingredients of the proof I: the horofunction boundary

Existence of stationary measure on ∂X : we construct the horofunction boundary, which is always compact metrizable.
Fix $x_{0} \in X$, and consider

$$
\rho: X \rightarrow C(X)
$$

Ingredients of the proof I : the horofunction boundary

Existence of stationary measure on ∂X : we construct the horofunction boundary, which is always compact metrizable.
Fix $x_{0} \in X$, and consider

$$
\rho: X \rightarrow C(X)
$$

$$
\rho_{x}(y):=d(x, y)-d\left(x, x_{0}\right)
$$

Ingredients of the proof I : the horofunction boundary

Existence of stationary measure on ∂X : we construct the horofunction boundary, which is always compact metrizable.
Fix $x_{0} \in X$, and consider

$$
\rho: X \rightarrow C(X)
$$

$$
\rho_{x}(y):=d(x, y)-d\left(x, x_{0}\right)
$$

so that $\rho_{X}\left(x_{0}\right)=0$.

Ingredients of the proof I : the horofunction boundary

Existence of stationary measure on ∂X : we construct the horofunction boundary, which is always compact metrizable.
Fix $x_{0} \in X$, and consider

$$
\rho: X \rightarrow C(X)
$$

$$
\rho_{x}(y):=d(x, y)-d\left(x, x_{0}\right)
$$

so that $\rho_{x}\left(x_{0}\right)=0$. Then, define

$$
X^{h}:=\overline{\rho(X)}
$$

in the topology of pointwise convergence

Ingredients of the proof I : the horofunction boundary

Existence of stationary measure on ∂X : we construct the horofunction boundary, which is always compact metrizable.
Fix $x_{0} \in X$, and consider

$$
\rho: X \rightarrow C(X)
$$

$$
\rho_{x}(y):=d(x, y)-d\left(x, x_{0}\right)
$$

so that $\rho_{x}\left(x_{0}\right)=0$. Then, define

$$
X^{h}:=\overline{\rho(X)}
$$

in the topology of pointwise convergence (quite weak!)

Ingredients of the proof I : the horofunction boundary

Existence of stationary measure on ∂X : we construct the horofunction boundary, which is always compact metrizable.
Fix $x_{0} \in X$, and consider

$$
\rho: X \rightarrow C(X)
$$

$$
\rho_{x}(y):=d(x, y)-d\left(x, x_{0}\right)
$$

so that $\rho_{x}\left(x_{0}\right)=0$. Then, define

$$
X^{h}:=\overline{\rho(X)}
$$

in the topology of pointwise convergence (quite weak!) Then there is a local minimum map

$$
\varphi: X^{h} \rightarrow X \cup \partial X
$$

Ingredients of the proof I: the horofunction boundary

Existence of stationary measure on ∂X : we construct the horofunction boundary, which is always compact metrizable.
Fix $x_{0} \in X$, and consider

$$
\rho: X \rightarrow C(X)
$$

$$
\rho_{x}(y):=d(x, y)-d\left(x, x_{0}\right)
$$

so that $\rho_{x}\left(x_{0}\right)=0$. Then, define

$$
X^{h}:=\overline{\rho(X)}
$$

in the topology of pointwise convergence (quite weak!) Then there is a local minimum map

$$
\varphi: X^{h} \rightarrow X \cup \partial X
$$

Hence, by compactness there is a stationary measure on X^{h} and one can push it forward to a stationary measure on ∂X. This implies convergence to the boundary á la
Furstenberg-Margulis.

Ingredients of the proof II: computing $\tau\left(w_{n}\right)$

- Formula for translation length:

Ingredients of the proof II: computing $\tau\left(w_{n}\right)$

- Formula for translation length:

$$
\tau(g)=d(x, g x)-2\left(g x, g^{-1} x\right)_{x}+O(\delta)
$$

Ingredients of the proof II: computing $\tau\left(w_{n}\right)$

- Formula for translation length:

$$
\tau(g)=d(x, g x)-2\left(g x, g^{-1} x\right)_{x}+O(\delta)
$$

- Existence of stationary measure

Ingredients of the proof II: computing $\tau\left(w_{n}\right)$

- Formula for translation length:

$$
\tau(g)=d(x, g x)-2\left(g x, g^{-1} x\right)_{x}+O(\delta)
$$

- Existence of stationary measure \Rightarrow convergence to ∂X

Ingredients of the proof II: computing $\tau\left(w_{n}\right)$

- Formula for translation length:

$$
\tau(g)=d(x, g x)-2\left(g x, g^{-1} x\right)_{x}+O(\delta)
$$

- Existence of stationary measure \Rightarrow convergence to $\partial X \Rightarrow$ (+ δ-hyperbolicity) \rightarrow positivity of drift:

$$
\lim _{n \rightarrow \infty} \frac{d\left(w_{n} x, x\right)}{n}=L>0
$$

- In the above formula, we need to prove that the second term (Gromov product) is small

Ingredients of the proof II: computing $\tau\left(w_{n}\right)$

- Formula for translation length:

$$
\tau(g)=d(x, g x)-2\left(g x, g^{-1} x\right)_{x}+O(\delta)
$$

- Existence of stationary measure \Rightarrow convergence to $\partial X \Rightarrow$ (+ δ-hyperbolicity) \rightarrow positivity of drift:

$$
\lim _{n \rightarrow \infty} \frac{d\left(w_{n} x, x\right)}{n}=L>0
$$

- In the above formula, we need to prove that the second term (Gromov product) is small

Ingredients of the proof III: the Gromov product is small

- First half, second half trick: Let

$$
w_{2 n}=\left(g_{1} \ldots g_{n}\right)\left(g_{n+1} \ldots g_{2 n}\right)
$$

Ingredients of the proof III: the Gromov product is small

- First half, second half trick: Let

$$
w_{2 n}=\left(g_{1} \ldots g_{n}\right)\left(g_{n+1} \ldots g_{2 n}\right)
$$

SO

$$
w_{2 n}=w_{n} u_{n}
$$

Then u_{n}, w_{n} are independent.

Ingredients of the proof III: the Gromov product is small

- First half, second half trick: Let

$$
w_{2 n}=\left(g_{1} \ldots g_{n}\right)\left(g_{n+1} \ldots g_{2 n}\right)
$$

so

$$
w_{2 n}=w_{n} u_{n}
$$

Then u_{n}, w_{n} are independent. Hence

$$
\lim _{n \rightarrow \infty}\left(w_{n}, u_{n}^{-1}\right)_{x}
$$

exists and is finite almost surely.

Ingredients of the proof III: the Gromov product is small

- First half, second half trick: Let

$$
w_{2 n}=\left(g_{1} \ldots g_{n}\right)\left(g_{n+1} \ldots g_{2 n}\right)
$$

so

$$
w_{2 n}=w_{n} u_{n}
$$

Then u_{n}, w_{n} are independent. Hence

$$
\lim _{n \rightarrow \infty}\left(w_{n}, u_{n}^{-1}\right)_{x}
$$

exists and is finite almost surely. But $w_{2 n}^{-1}=u_{n}^{-1} w_{n}^{-1}$ hence

Ingredients of the proof III: the Gromov product is small

- First half, second half trick: Let

$$
w_{2 n}=\left(g_{1} \ldots g_{n}\right)\left(g_{n+1} \ldots g_{2 n}\right)
$$

so

$$
w_{2 n}=w_{n} u_{n}
$$

Then u_{n}, w_{n} are independent. Hence

$$
\lim _{n \rightarrow \infty}\left(w_{n}, u_{n}^{-1}\right)_{x}
$$

exists and is finite almost surely. But $w_{2 n}^{-1}=u_{n}^{-1} w_{n}^{-1}$ hence

$$
\left(w_{2 n}, w_{2 n}^{-1}\right)_{x} \cong\left(w_{n}, u_{n}^{-1}\right)_{x}
$$

stays bounded!

The end

Thank you!!!

The end

Thank you!!!

