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Counting

Let G be a finitely generated group, and S a generating set.

Define Sn := {g ∈ G : |g|S = n}. Count: For A ⊆ G, define

Pn(A) :=
#A ∩ Sn

Sn

the counting measure. The set A is generic if

Pn(A)→ 1 as n→∞
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Genericity of pseudo-Anosov mapping classes

Question [Thurston?]: Are pseudo-Anosov mapping classes
generic in Mod(S)?

This conjecture is open!

A positive proportion of mapping classes are pseudo-Anosov
[Cumplido-Wiest]
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Theorem (Maher, Rivin 2008)
For any (nice) measure µ on Mod(S), if

wn = g1 . . . gn

where gi are i.i.d. with distribution µ, one has

P(wn is pseudo-Anosov)→ 1
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Boundary measures

In general: if you have a boundary for G, for a random walk,
you get a hitting measure on ∂G as

ν(A) := P( lim
n→∞

wnx ∈ A)

and also a Patterson-Sullivan measure as

λ := lim
n→∞

1
#Sn

∑
g∈Sn

δg

Question: Is there a random walk whose hitting measure is the
Patterson-Sullivan measure?

I Main ingredient for Furstenberg’s rigidity theorem for
lattices in Lie groups;

I Connell-Muchnik for hyperbolic groups
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General setup: isometry groups of δ-hyperbolic spaces

Let G be a countable group of isometries of a δ-hyperbolic
metric space X .

Note: X need not be proper, or locally compact.
Example: locally infinite graph, vertices of countable degree

I for G = Mod(S), X = C(S) the curve complex
(Harvey, Masur-Minsky);

I for G relatively hyperbolic, X = coned-off space
(Farb, Bowditch, ...)

I for G a right-angled Artin group, X = extension graph
(Kim-Koberda)

I for G = Out(Fn), X = free factor complex, free splitting
complex (Bestvina-Feighn)
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Classification of isometries of hyperbolic spaces

If g is an isometry of X , then either:

I g is elliptic (it has a bounded orbit)
I g is parabolic (it fixes one point in ∂X )
I g is loxodromic (it fixes two points in ∂X )

The translation length is defined as

τ(g) := lim
n→∞

d(gnx , x)

n

Then
τ(g) > 0⇔ g is loxodromic
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Genericity for random walks

A (semi)group G < Isom(X ) is nonelementary if it contains two
independent loxodromics.

A probability measure µ is
nonelementary if the semigroup generated by the support of µ
is nonelementary.

Theorem (Maher-T 2015)
For any nonelementary measure µ on G, if

wn = g1 . . . gn

where gi are i.i.d. with distribution µ, one has

P(wn is loxodromic on X )→ 1

Recall:
mapping class is pAnosov⇔ loxodromic on X = curve complex
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Genericity in general is false

Let G = F2 × F3,

and X = F2. Then F3 acts trivially (hence not
loxodromically) and in fact

lim
n→∞

#{Sn ∩ LOX}
#Sn

=
2
3

so loxodromics are not generic!
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Counting for hyperbolic groups

Theorem (Gekhtman-Taylor-T 2016)
Let G be a hyperbolic group, and S be any generating set.

Then for any nonelementary action G y X on a separable
hyperbolic space X, the set of loxodromics is generic:

{g ∈ G : |g|S = n and g is X − loxodromic}
{g ∈ G : |g|S = n}

−→ 1,

as n→∞.
Nice little corollary: the set of filling curves is generic in π1(S).

Question: Can we generalize this result? How far?
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Graph structures
We will consider G a countable group of isometries of a
δ-hyperbolic metric space X .

Note: X is not assumed to be
proper or locally compact.
A graph structure for G is a finite, directed graph Γ such that
edges of Γ are labeled by elements of G, where one vertex v0 is
labeled as the initial vertex. We count paths in the graph
starting from the initial vertex:

Sn := {g ∈ Ω0 : |g| = n}

The group is geodesically automatic if paths in the graph
project to geodesics in G, and the evaluation map ev : Ω0 → G
is bijective.
The graph structure is almost semisimple if there exists
c > 0, λ > 1 such that

c−1λn ≤ #Sn ≤ cλn
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Growth quasitightness

A path γ C-almost contains w if there exists a subpath γ′ of γ
and two words a,b with |a|, |b| ≤ C such that

ev(γ′) = awb

Given w ∈ G, the set Yw ,C is the set of paths in Γ which does
not C-almost contain w .

Definition
The graph structure is growth quasitight relative to H if for every
w ∈ H, the set Yw ,C has zero density:

Pn(Yw ,C)→ 0

Intuitively: “generic paths fellow travel w in G”
Important case: if there is a unique non-trivial component
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The main theorem: counting loxodromics
Theorem (GTT 2017)
Let (G, Γ) be an almost semisimple graph structure for G.

If
there exists a nonelementary subgroup H such that (G, Γ) is
growth quasitight with respect to H, then loxodromic elements
are generic:

#{g ∈ Sn : g is loxodromic on X}
#Sn

→ 1.

Moreover, there exists L > 0 such that

#{g ∈ Sn : τ(g) ≥ nL}
#Sn

→ 1.

Finally, if H < G a subgroup of infinite index, then

lim
n→∞

#Sn ∩ H
#Sn

= 0.
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Application to relatively hyperbolic groups

Theorem (GTT 2017)
Let G be a relatively hyperbolic group, and suppose that:

1. parabolic subgroups are geodesically automatic (for
instance, if they are virtually abelian);

2. the action of G y ∂G × ∂G is ergodic;
Then for any nonelementary action of G on a δ-hyperbolic
space X:

#{g ∈ Sn : g is loxodromic on X}
#Sn

→ 1

Corollary
Suppose that G < Isom(Hn) is geometrically finite. Then for
any action G y X, loxodromic elements are generic.
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Application to right-angled Artin/Coxeter groups
Let Λ be a finite, undirected graph.

V (Λ) = vertices

E(Λ) = edges

Define the right-angled Artin group (RAAG)

A(Λ) := 〈v ∈ V (Λ) | [u, v ] = 1⇔ (u, v) ∈ E(Λ)〉

Examples:
I Λ totally disconnected: free groups
I Λ a clique: abelian groups
I “intermediate” cases

Note that A(Λ) is a direct product of smaller RAAGs if Λop is
disconnected. If Λop = Λ1 t Λ2, then

A(Λ) = A(Λop
1 )× A(Λop

2 )
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Application to right-angled Artin/Coxeter groups
Theorem (GTT 2017)
Let G be a right-angled Artin or Coxeter group

which is not
virtually cyclic and not trivially a product, and let S be its set of
vertex generators. Then for any nonelementary action G y X
on a separable hyperbolic space X, the set of loxodromics is
generic:

#{g ∈ Sn : g is X − loxodromic}
#Sn

−→ 1,

as n→∞. Moreover, there exists L > 0 such that

#{g ∈ Sn : τ(g) ≥ Ln}
#Sn

−→ 1.

Moreover, if H < G is a subgroup of infinite index, then

lim
n→∞

#Sn ∩ H
#Sn

= 0.
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Scheme of proof for RAAGs

I Modifying Hermiller-Meier, find graph which parameterizes
all geodesics in G for the vertex generating set;

I If Λop is connected, then this graph has a unique recurrent
component!

I This immediately implies that the graph structure is growth
quasitight

I Moreover, you also get exact exponential growth:

Theorem
There exists C > 0, λ > 1 such that

lim
n→∞

#Sn

λn = C



The graph structure for RAAGs and RACGs

Let us order the vertices (denoted by A < B < ... < Z ) such
that B, A are not adjacent;

Definition
A pair (I, J) is admissible if I > J with (I, J) not adjacent. Then
a (I, J)-admissible word is

(I, J,K1,K2, . . . ,Kr )

such that:
1.

J < K1 < K2 < · · · < Kr

2. If Ki ≤ I, then Ki is not adjacent to at least one of
I, J,K1, . . . ,Ki−1
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The graph structure for RAAGs and RACGs (II)

1. For each (I, J) as above, construct the tree of
(I, J)-admissible words;

2. “cut head” of trees, and connect every I-vertex with
J-vertex of (I, J)-tree;

3. add initial vertex ∅ and connect it to vertex in the (B,A)
tree.

4. This creates geodesic graph structure for Coxeter group;
5. to make it into graph structure for Artin group, “double”

each vertex
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Example

G = Z ? Z2

= 〈B〉 ? 〈A,C〉

Admissible pairs: (B,A) and (C,B)
Admissible words:

I BA, BAB, BABC, BAC
I CB, CBC

Take leading eigenvalue of matrix:

λ(Z2 ? (Z2 × Z2)) =
3 +
√

5
2

∼= 2.618...

λ(Z ? Z2) = 2 +
√

5 ∼= 4.236...
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Scheme of proof for relatively hyperbolic groups
I Let w be K − bounded if

`w =
⋃
i∈Z

w i [1,w ]

projects to a K -quasigeodesic in the coned-off space
I Double ergodicity of ∂G⇒ growth quasitightness: there

exists C > 0 such that for each K − bounded w ,

Pn(Yw ,C)→ 0

I By ping-pong lemma, there exists a free group with
nonelementary action on X consisting entirely of
K -bounded elements

I By Antolin-Ciobanu, if parabolics P have geodesic graph
structure, the whole group G has geodesic graph structure
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Ingredients of the proof I: the horofunction boundary
Existence of stationary measure on ∂X : we construct the
horofunction boundary, which is always compact metrizable.

Fix x0 ∈ X , and consider

ρ : X → C(X )

ρx (y) := d(x , y)− d(x , x0)

so that ρx (x0) = 0. Then, define

X h := ρ(X )

in the topology of pointwise convergence (quite weak!) Then
there is a local minimum map

ϕ : X h → X ∪ ∂X

Hence, by compactness there is a stationary measure on X h

and one can push it forward to a stationary measure on ∂X .
This implies convergence to the boundary á la
Furstenberg-Margulis.
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Ingredients of the proof II: computing τ(wn)

I Formula for translation length:

τ(g) = d(x ,gx)− 2(gx ,g−1x)x + O(δ)

I Existence of stationary measure⇒ convergence to ∂X ⇒
(+ δ-hyperbolicity)→ positivity of drift:

lim
n→∞

d(wnx , x)

n
= L > 0

I In the above formula, we need to prove that the second
term (Gromov product) is small
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Ingredients of the proof III: the Gromov product is
small

I First half, second half trick: Let

w2n = (g1 . . . gn)(gn+1 . . . g2n)

so
w2n = wnun

Then un, wn are independent. Hence

lim
n→∞

(wn,u−1
n )x

exists and is finite almost surely. But w−1
2n = u−1

n w−1
n hence

(w2n,w−1
2n )x ∼= (wn,u−1

n )x

stays bounded!
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