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Abstract. The core entropy of polynomials, recently introduced by W.
Thurston, is a dynamical invariant which can be defined purely in com-
binatorial terms, and provides a useful tool to study parameter spaces
of polynomials. The theory of core entropy extends the entropy theory
for real unimodal maps to complex polynomials: the real segment is
replaced by an invariant tree, known as the Hubbard tree, which lives
inside the filled Julia set. We prove that the core entropy of quadratic
polynomials varies continuously as a function of the external angle in
parameter space, answering a question of Thurston.

1. Introduction

A polynomial f : C → C is postcritically finite if the forward orbit of
every critical point of f is finite. Then the filled Julia set of f contains a
forward invariant, finite topological tree, called the Hubbard tree [DH].

Definition 1.1. The core entropy of f is the topological entropy of the
restriction of f to its Hubbard tree.

We shall restrict ourselves to quadratic polynomials. Given θ ∈ Q/Z,
the external ray at angle θ determines a postcritically finite parameter cθ in
the Mandelbrot set [DH]. We define h(θ) to be the core entropy of fθ(z) :=
z2 + cθ. The main goal of this paper is to prove the following result:

Theorem 1.2. The core entropy function h : Q/Z → R extends to a con-
tinuous function R/Z→ R.

The theorem answers a question of W. Thurston, who first introduced
and explored the core entropy of polynomials. As Thurston showed, the
core entropy function can be defined purely combinatorially, but it displays
a rich fractal structure (Figure 1), which reflects the underlying geometry
of the Mandelbrot set.

The concept of core entropy generalizes the entropy theory of real qua-
dratic maps, whose monotonicity and continuity go back to Milnor and
Thurston [MT], to complex polynomials: indeed, the invariant real segment
is replaced by an invariant tree, which captures all the essential dynam-
ics. On the topological side, Hubbard trees have been introduced to classify
postcritically finite maps [DH], [Po], and their entropy provides a new tool
to study the parameter space of polynomials: for instance, the restriction
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Figure 1. The core entropy h(θ) of quadratic polynomials
as a function of the external angle θ (by W. Thurston).

of h(θ) to non-real veins of the Mandelbrot set is also monotone [Li], which
implies that the lamination for the Mandelbrot set can be reconstructed by
looking at level sets of h. Note by comparison that the entropy of fθ on
its Julia set is equal to log 2, independently of θ, hence it does not give
information on the parameter.

Furthermore, the value h(θ) equals, up to a constant factor, the Hausdorff
dimension of the set of biaccessible angles for fθ ([BS], [Ti]). For dendritic
Julia sets, the core entropy is also equal to the asymptotic stretch factor of
fθ as a rational map [Th1].

1.1. Strategy of proof. A rational external angle θ determines a postcrit-
ically finite map fθ, which has a finite Hubbard tree Tθ. The simplest way
to compute the entropy of fθ : Tθ → Tθ is to compute the Markov transition
matrix for the map fθ acting on Tθ, and take (the logarithm of) its leading
eigenvalue: however, this requires knowledge of the topology of Tθ, which
changes wildly after small perturbations of θ.

In this paper, we shall avoid this issue by using an algorithm, devised by
Thurston, which considers instead a larger matrix, whose entries are pairs
of postcritical angles (see Section 3); no knowledge of the topology of the
Hubbard tree is required. In order to construct an extension of h, we develop
an infinite version of such algorithm, which is defined for any angle θ ∈ R/Z.
In particular, instead of taking the leading eigenvalue of a transition matrix,
we shall encode the possible transitions in a directed graph, which will now
have countably many vertices.

1.2. Growth rate of graphs with bounded cycles. Before delving into
the details of the construction, we shall develop a few general combinatorial
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tools to deal with growth rates of countable graphs, which may be of inde-
pendent interest. We define a countable graph Γ with bounded (outgoing)
degree to have bounded cycles if it has finitely many closed paths of any
given length. In this case, we define the growth rate of Γ as the growth rate
with n of the number of closed paths of length n (see Definition 4.2); as it
turns out (Theorem 4.3), the inverse of the growth rate equals the smallest
zero of the following function P (t), constructed by counting the multi-cycles
in the graph:

P (t) :=
∑

γ multi-cycle

(−1)C(γ) t`(γ),

where C(γ) is the number of components of the multi-cycle γ, and `(γ) is its
length. The power series P (t) is called the spectral determinant of Γ. (For
the definition of multi-cycle, see Section 4; note that our graphs have finite
outgoing degree but possibly infinite ingoing degree, hence the adjacency
operator has infinite `2-norm and the usual spectral theory (see e.g. [MW])
does not apply).

1.3. Application to core entropy. We shall then apply these combina-
torial techniques to the core entropy (Section 8); in particular, we associate
to any external angle θ an infinite graph Γθ as follows.

Let θ ∈ R/Z, and for each i ≥ 1, let xi(θ) := 2i−1θ mod 1. The vertex
set of Γθ is the set Σ of pairs of integers

Σ := {(i, j) ∈ N2, 1 ≤ i < j}.

We think of each pair (i, j) as representing an arc in the Hubbard tree be-

tween the two postcritical points f iθ(0) and f jθ (0). The pair (i, j) is called
separated if the points xi(θ) and xj(θ) in S1 lie in opposite connected com-

ponents of S1 \ { θ2 ,
θ+1

2 }, and non-separated otherwise. The reason for this
terminology is that, if the Julia set is path connected, a pair is separated if
and only if the corresponding arc contains the critical point in its interior.

We then define the edges of Γθ as follows. If the pair (i, j) is non-
separated, then there is an outgoing edge (i, j) → (i + 1, j + 1); if (i, j) is
separated, then there are two edges (i, j)→ (1, i+ 1) and (i, j)→ (1, j+ 1).
The reason for this construction is that it represents the action of the map
fθ on the space of arcs between postcritical points (see Section 3). Finally,
we define the extension of the core entropy as

h(θ) := log rθ

where rθ is the growth rate of Γθ. We then verify that:

(1) the growth rate of Γθ varies continuously as a function of θ (Theorem
8.2);

(2) the (logarithm of the) growth rate of Γθ coincides with the core
entropy for rational angles (Theorem 8.4).



4 GIULIO TIOZZO

To prove (1), we show that the spectral determinant Pθ(t) of the graph
Γθ converges in the unit disk, and that its “smallest zero” s(θ) is related to
the core entropy by

h(θ) = − log s(θ).

We then show that essentially the coefficients of the Taylor expansion of
Pθ(t) vary continuously with θ: the result follows by Rouché’s theorem.

As a corollary of our method, we shall prove that the entropy function
is actually Hölder continuous at rational angles θ such that h(θ) > 0; using
renormalization, we prove that h is not Hölder continuous where h(θ) = 0
(see Section 8.3).

Let us remark that, as a consequence of monotonicity along veins and
Theorem 1.2, the continuous extension we define also coincides with the
core entropy for parameters which are not necessarily postcritically finite,
but for which the Julia set is locally connected and the Hubbard tree is
topologically finite.

1.4. Remarks. The core entropy of polynomials was introduced by W.
Thurston around 2011 (even though there are earlier related results, e.g.
[Pe], [AF], [Li]) but most of the theory is yet unpublished (with the excep-
tion of Section 6 in [Th3]). Several people are now collecting his writings
and correspondence into a foundational paper [TBGHKTT]. In particular,
the validity of Thurston’s algorithm has been proven by Tan L., Gao Y.,
and W. Jung (see [Ga], [Ju]). Continuity of the core entropy along principal
veins in the Mandelbrot set is proven by the author in [Ti], and along all
veins by W. Jung [Ju]. Note that the previous methods used for veins do not
easily generalize, since the topology of the tree is constant along veins but
not globally. After [MT], alternative proofs of monotonicity and continuity
of entropy for real maps are given in [Do2], [Ts]; the present proof indepen-
dently yields continuity. Biaccessible external angles and their dimension
have been discussed in [Za], [Zd], [Sm], [BS], [MS].

The method we use to count closed paths in the graph bears many simi-
larities with the theory of dynamical zeta functions [AM], and several forms
of the spectral determinant are used in thermodynamic formalism (see e.g.
[Ru], [PP]). Moreover, the spectral determinant P (t) we use is an infinite
version of the clique polynomial used in [Mc] to study finite directed graphs
with small entropy.

Recently, an independent argument for continuity was presented in the
preprint [DS]. There, an extension of the core entropy is defined as the
growth rate of the number of precritical points on the arc [−α, α] in the
Hubbard tree. This approach generalizes the lap counting technique for
multimodal interval maps, and a priori it is not obvious that their extension
coincides with ours: however, the two functions must be a posteriori the
same as they both extend continuously the core entropy defined for rational
angles.
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Even though in this paper we focus on quadratic polynomials, the core
entropy is defined similarly for postcritically finite polynomials of any de-
gree. Moreover, our methods appear to generalize to this case; indeed, by
recording which pairs of postcritical angles are separated, it is possible to
define in general an infinite graph whose growth rate is related to the core
entropy. The main difference is that one has to introduce more labels to
keep track of the several critical orbits, so the combinatorics of the transi-
tion rules becomes more involved. Note that in the higher degree case one
may, at least in principle, use the level sets of the entropy function to define
a notion of wakes, which could be useful as, differently from the quadratic
case, the vein structure of the parameter space is still not well understood. A
detailed study of the higher degree case will appear in a forthcoming paper.

1.5. Acknowledgments. I wish to thank C. T. McMullen for useful con-
versations, and W. Jung, D. Thurston, and the referee for helpful comments
on the manuscript. I am especially grateful to Tan Lei, in particular for
explaining to me W. Thurston’s work.

2. Preliminaries

We consider the family of quadratic polynomials

fc(z) := z2 + c, c ∈ C.
Let us now recall a few basic facts about their dynamics: see [DH] for details.
Each map fc(z) has a unique critical point z = 0. The filled Julia set K(fc)
of fc is the set of points z ∈ C which have bounded forward orbit under fc.
The Julia set of fc is the boundary of K(fc), and the connected components
of the interior of K(fc) are called bounded Fatou components. The parameter
c is called postcritically finite if the forward orbit of the critical point is
finite; in particular, c is called a Misiurewicz parameter if the critical point
of fc is strictly preperiodic, and superattracting if the critical point is purely
periodic. The Mandelbrot set M is the set of parameters c ∈ C such that
the Julia set of fc is connected (equivalently, such that the forward orbit of
the critical point is bounded).

2.1. Hyperbolic components. A periodic cycle for a quadratic polyno-
mial fc is a finite set z1, . . . , zp such that fc(zk) = zk+1 for each k = 1, . . . , p,
and zp+1 = z1. The multiplier of the cycle is λ := (fpc )′(z1), and the periodic
cycle is called attracting if |λ| < 1.

A quadratic polynomial is called hyperbolic if its critical point tends to
an attracting periodic cycle under forward iteration. The set of parameters
c ∈ C such that fc is hyperbolic is open, and each connected component
is called a hyperbolic component. Each hyperbolic component W has an
associated multiplier map λW : W → D which sends each parameter c ∈W
to the multiplier of the unique attracting cycle of fc. The multiplier map
is a conformal isomorphism between W and the unit disk D, and extends
to a continuous map λW : W → D. We define the center of W to be the
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parameter c(W ) := λ−1
W (0) (the unique superattracting parameter in W ),

and the root of W as r(W ) := λW
−1

(1).

2.2. External rays. Following Douady and Hubbard, we consider the unique
Riemann map Φ : C\D→ C\M with Φ(∞) =∞ and Φ′(∞) > 0. For each
θ ∈ R/Z, the set RM (θ) := Φ({ρe2πi, ρ > 0}) is called the external ray at
angle θ. An external ray RM (θ) is said to land at x if limρ→1+ Φ(ρe2πiθ) = x.

It is known that whenever θ is rational, the angle RM (θ) lands, and we use
this fact to associate to each rational angle θ ∈ Q/Z a postcritically finite
quadratic polynomial fθ. Let θ = p

q be a rational number, with (p, q) =

1. If the denominator q is even, then the external ray RM (θ) lands at a
Misiurewicz parameter cθ, and we define fθ = fcθ to be the corresponding
quadratic polynomial. If q is odd, then the ray RM (θ) lands at the root of a
hyperbolic componentWθ; in this case, we define fθ to be the superattracting
quadratic polynomial corresponding to the center of Wθ. It is conjectured
that all external rays land, and that M is locally connected.

2.3. Regulated arcs and Hubbard trees. If f is postcritically finite,
then its filled Julia set K(f) is connected and locally connected, hence path-
connected. If f is Misiurewicz, then the interior of K(f) is empty, and
there exists a unique arc inside K(f) between any two points of K(f). If
f is superattracting, each bounded Fatou component U is biholomorphic
to a disk and contains exactly one point p in the backward orbit of the
critical point; thus, there exists, up to rotation, a unique biholomorphism
φU : U → D such that φU (p) = 0. A radial arc in U is a set of the form
{φU (re2πit), 0 ≤ r ≤ a} for a fixed angle t; it is well-defined as φU is unique
up to rotation. An arc I inside K is regulated if for each bounded Fatou
component U , the intersection I ∩ U is either empty, a point, or a union
of radial arcs. Given any two points x, y ∈ K(f), there exists a unique
regulated arc inside the filled Julia set with endpoints x and y. Such an arc
will be denoted as [x, y].

Definition 2.1. Let f be a quadratic polynomial whose Julia set is connected
and locally connected, and let c0 be its critical point. The Hubbard tree of
f is the union of the regulated arcs [f i(c0), f j(c0)] for all i, j ≥ 0.

If f is postcritically finite, then the Hubbard tree is a finite topological
tree (see Figure 2), and it is forward invariant under f .

2.4. The abstract Mandelbrot set. Let us define the equivalence relation
∼ on Q/Z by declaring that s ∼ t if the rays RM (s) and RM (t) land at the
same point. Each equivalence class is finite, and by identifying the angle
θ with the point e2πiθ on the boundary of D, the Poincaré convex hull of
each equivalence class is an ideal polygon in the unit disk (it may be a
single point or a single geodesic, if the equivalence class contains at most
two points). The closure of the union of the boundaries of all these polygons
is a lamination in D, and it induces an equivalence relation on the closed
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disk D. The quotient Mabs := D/ ∼ is a compact, locally connected space,
known as the abstract Mandelbrot set, and it is conjecturally homeomorphic
to M . For more details, see [Th2].

Note that, as two rational rays landing at the same parameter determine
the same core entropy, and as a consequence of our main continuity result,
the core entropy function h descends to a continuous function Mabs → R.

3. Thurston’s algorithm

The motivation for our combinatorial construction is Thurston’s algo-
rithm to compute the core entropy for rational angles, which we shall now
describe.

Let θ ∈ Q/Z be a rational number. Then the external ray at angle θ in
the Mandelbrot set lands at a Misiurewicz parameter, or at the root of a
hyperbolic component: let f = fθ denote the corresponding postcritically
finite quadratic map, as defined in Section 2.2 (in this section, everything
depends on θ, but we omit the subscripts to make notation lighter). We
shall call c0 the critical point of f , and for each i ≥ 1, ci := f i(c0) the ith

iterate of the critical point.
It is possible to compute the core entropy of f by writing the Markov

transition matrix for the action of f on the Hubbard tree, and take the
logarithm of its leading eigenvalue. However, given the external angle θ it
is quite complicated to figure out the topology of the tree: the following
algorithm circumvents this issue by looking at pairs of external angles.

In order to explain the algorithm in more detail, let us remark that a
rational angle θ is eventually periodic under the doubling map g(x) := 2x
mod 1; that is, there exist integers p ≥ 1 and q ≥ 0 such that the elements of
the set O := {θ, 2θ, . . . , 2p+q−1θ} are all distinct modulo 1, and 2p+qθ ≡ 2qθ
mod 1. The elements of O will be called postcritical angles; the number p
is called the period of θ, and q is the pre-period. If q = 0, we shall call θ
purely periodic. Denote by Pθ the partition of the circle S1 = R/Z in the
two intervals

S1 =

[
θ

2
,
θ + 1

2

)
∪
[
θ + 1

2
,
θ

2

)
.

Moreover, for each i let us denote xi(θ) := 2i−1θ mod 1, which we consider
as a point in S1.

Let us now construct a matrix Mθ which will be used to compute the core
entropy. Denote VO the set of unordered pairs of (distinct) elements of O:
this is a finite set, an element of which will be denoted by {xi, xj}. We now
define a linear map Mθ : RVO → RVO by defining it on basis vectors in the
following way:

• if xi and xj belong to the same element of the partition Pθ, or at
least one of them lies on the boundary, we shall say that the pair
{xi, xj} is non-separated, and define

Mθ({xi, xj}) := {xi+1, xj+1};
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Figure 2. The Hubbard tree for the postcritically finite qua-
dratic polynomial with characteristic angle θ = 1/5. In this
case, the critical point has period 4, and the tree is a tripod
which is the union of the two regulated arcs [c1, c3] and
[c2, c3].

• if xi and xj belong to the interiors of two different elements of Pθ,
then we say that {xi, xj} is separated, and define

Mθ({xi, xj}) := {x1, xi+1}+ {x1, xj+1}
(in order to define the formulas in all cases, we shall set {x, y} = 0
whenever x = y).

By abuse of notation, we shall also denote Mθ the matrix representing the
linear map Mθ in the standard basis. Since Mθ has non-negative entries, it
has a real leading eigenvalue. As suggested by Thurston in his correspon-
dence, the leading eigenvalue of Mθ gives the core entropy:

Theorem 3.1 (Thurston; Tan-Gao; Jung). Let θ be a rational angle. Then
the core entropy h(θ) of the quadratic polynomial of external angle θ is related
to the largest real eigenvalue λ of the matrix Mθ by the formula

h(θ) = log λ.
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Figure 3. The graph G used to compute the entropy, for
θ = 1/5. The vertices of G are the blue points, which cor-
respond to postcritical angles, and the edges of G are the
black chords. The dashed red line connects θ/2 to (θ + 1)/2
and determines the partition Pθ: pairs of postcritical angles
are separated if and only if the chord joining them crosses
the dashed line. For instance, the chord {1/5, 2/5} is non-
separated, and its image is the chord {2/5, 4/5}. On the
other hand, the chord {1/5, 4/5} is separated, hence its im-
age is the union of {2/5, 1/5} and {1/5, 3/5}.

The explanation of this algorithm is the following. Let G be a complete
graph whose vertices are labeled by elements of O, and which we shall con-
sider as a topological space. (More concretely, we can take the unit disk and
draw segments between all possible pairs of postcritical angles on the unit
circle: the union of all such segments is a model for G (see Figure 3)).

Let us denote by T the Hubbard tree of f . We define a continuous map
Φ : G → T which sends the edge with vertices xi, xj homeomorphically to
the regulated arc [ci, cj ] in T (except in the case ci = cj , where we map the
entire edge to a single point). Finally, we lift the dynamics f : T → T to a
map L : G→ G such that Φ ◦ L = f ◦ Φ. In order to do so, note that:

• if the pair of angles {xi, xj} is non-separated, then f maps the arc
[ci, cj ] homeomorphically onto [ci+1, cj+1]; hence to define L we have
to lift f so that it maps the edge [xi, xj ] homeomorphically onto
[xi+1, xj+1];
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• if instead {xi, xj} is separated, then the critical point c0 lies on
the regulated arc [ci, cj ] in the Hubbard tree; thus, f maps the arc
[ci, cj ] = [ci, c0] ∪ [c0, cj ] onto [ci+1, c1] ∪ [c1, cj+1]; so we define L
by lifting f so that it maps [xi, xj ] continuously onto the union
[xi+1, x1] ∪ [x1, xj+1].

The map L is a Markov map of a topological graph, hence its entropy is
the logarithm of the leading eigenvalue of its transition matrix, which is by
construction the matrix Mθ. In the case where θ is purely periodic, one can
prove that the map Φ is surjective and finite-to-one, and semiconjugates the
dynamics L on G to the dynamics f on T , hence

h(f, T ) = h(L,G) = log λ.

More care is needed in the pre-periodic case, since Φ can collapse arcs to
points (for details, see [Ga], [Ju], or [TBGHKTT]).

Note that the matrix Mθ and the original transition matrix of the action
of f on the tree are related as follows. Let I := {I1, . . . , Ik} denote the
subdivision of the tree Tθ in intervals which have disjoint interiors, and whose
endpoints are either points in the postcritical orbit or branch points. Then
there is a linear map Nθ : RI → RI which represents the transitions with
respect to this partition. Given a pair of postcritical angles, we consider the
arc between the two landing points, and decompose it as the sum of elements
of I. This defines a projection map π : RVO → RI , which by construction
intertwines the two linear maps: π ◦Mθ = Nθ ◦ π. Since π is surjective,
elementary linear algebra shows that the characteristic polynomial of Nθ

divides the characteristic polynomial of Mθ, and similarly the two minimal
polynomials divide each other.

In general, none of these polynomials are irreducible: in fact, renormal-
izable maps always produce reducible polynomials, but there are also non-
renormalizable examples where the characteristic and minimal polynomials
of Nθ are reducible (e.g. θ = 53/127, see [Ti2], Section 7.3).

4. Graphs

In the following, by graph we mean a directed graph Γ, i.e. a set V of
vertices (which will be finite or countable) and a set E of edges, such that
each edge e has a well-defined source s(e) ∈ V and a target t(e) ∈ V (thus,
we allow edges between a vertex and itself, and multiple edges between two
vertices). Given a vertex v, the set Out(v) of its outgoing edges is the set of
edges with source v. The outgoing degree of v is the cardinality of Out(v);
a graph is locally finite if the outgoing degree of all its vertices is finite, and
has bounded outgoing degree if there is a uniform upper bound d < ∞ on
the outgoing degree of all its vertices. Note that we do not require that
the ingoing degree is finite, and indeed in our application we will encounter
graphs with vertices having countably many ingoing edges.
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We denote as V (Γ) the set of vertices of Γ, and as E(Γ) its set of edges.
Moreover, we denote as #(v → w) the number of edges from vertex v to
vertex w.

A path in the graph based at a vertex v is a sequence (e1, . . . , en) of edges
such that s(e1) = v, and t(ei) = s(ei+1) for 1 ≤ i ≤ n− 1. The length of the
path is the number n of edges, and the set of vertices {s(e1), . . . , s(en)} ∪
{t(en)} visited by the path is called its vertex-support, or just support for
simplicity. Similarly, a closed path based at v is a path (e1, . . . , en) such that
t(en) = s(e1) = v. Note that in this definition a closed path can intersect
itself, i.e. two of the sources of the ei can be the same (s(ei) = s(ej));
moreover, closed paths with different starting vertices will be considered to
be different.

On the other hand, a simple cycle is a closed path which does not self-
intersect, modulo cyclical equivalence: that is, a simple cycle is a closed
path (e1, . . . , en) such that s(ei) 6= s(ej) for i 6= j, and two such paths are
considered the same simple cycle if the edges are cyclically permuted, i.e.
(e1, . . . , en) and (ek+1, . . . , en, e1, . . . , ek) designate the same simple cycle.
Finally, a multi-cycle is the union of finitely many simple cycles with pairwise
disjoint (vertex-)supports. The length of a multi-cycle is the sum of the
lengths of its components.

Given a countable graph with bounded outgoing degree, we define the
adjacency operator A : `1(V )→ `1(V ) on the space of summable sequences
indexed by the vertex set V . In fact, for each vertex i ∈ V we consider the
sequence gi ∈ `1(V ) which is 1 at position i and 0 otherwise, and define for
each j ∈ V the jth component of the vector Agi to be

(Agi)j := #(i→ j)

equal to the number of edges from i to j. Since the graph has bounded
outgoing degree, the above definition can actually be extended to all `1(V ),
and the operator norm of A induced by the `1-norm is bounded above by
the outgoing degree d of the graph. Moreover note that for each pair i, j of
vertices and each n, the coefficient (Angi)j equals the number of paths of
length n from i to j.

Definition 4.1. We say a countable graph Γ has bounded cycles if it has
bounded outgoing degree and for each positive integer n, Γ has finitely many
simple cycles of length n.

Note that, if Γ has bounded cycles, then for each n it has also a finite
number of closed paths of length n, since the support of any closed path
of length n is contained in the union of the supports of simple cycles with
length ≤ n. Thus, for such graphs we shall denote the number of closed
paths of length n as

C(Γ, n).

Note that in this case the trace Tr(An) is also well-defined for each n, and
equal to C(Γ, n).
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Definition 4.2. If Γ is a graph with bounded cycles, we define the growth
rate r = r(Γ) as the exponential growth rate of the number of its closed
paths: that is,

r := lim sup
n

n
√
C(Γ, n).

4.1. The spectral determinant. If Γ is a finite graph with adjacency
matrix A, then its characteristic polynomial is Q(t) := det(tI − A), and its
roots are the eigenvalues of A. In what follows, we work with the related
polynomial

P (t) := det(I − tA)

which we call the spectral determinant of Γ. We shall now extend the theory
to countable graphs with bounded cycles.

It is known that the spectral determinant P (t) of a finite graph Γ is related
to its multi-cycles by the following formula (see e.g. [CDS]):

(1) P (t) =
∑

γ multi-cycle

(−1)C(γ) t`(γ)

where `(γ) denotes the length of the multi-cycle γ, while C(γ) is the number
of connected components of γ.

If Γ is now a graph with countably many vertices and bounded cycles, then
the number of multi-cycles of any given length is finite, hence the formula
(1) above is still defined as a formal power series. Note that we include also
the empty cycle, which has zero components and zero length, hence P (t)
begins with the constant term 1.

Now, let K(Γ, n) denote the number of multi-cycles of length n in Γ, and
let us define

σ := lim sup
n

n
√
K(Γ, n)

its growth rate. Then the main result of this section is the following:

Theorem 4.3. Let Γ be a graph with countably many vertices and bounded
cycles, let r be the growth rate of Γ, and let σ be the growth rate of the
number of its multi-cycles. Suppose we have σ ≤ 1; then the formula (1)
defines a holomorphic function P (z) in the unit disk |z| < 1. Moreover,
the function P (z) is non-zero in the disk |z| < r−1; if r > 1, we also have
P (r−1) = 0.

The proof uses in a crucial way the following combinatorial statement.

Lemma 4.4. Let Γ be a countable graph with bounded cycles, and A its
adjacency operator. Then we have the equalities of formal power series

1

P (t)
= exp

( ∞∑
m=1

Tr(Am)

m
tm

)
=

∑
N∈N

(m1,...,mN )∈(N+)N

Tr(Am1) · · ·Tr(AmN )

m1 · · ·mNN !
tm1+···+mN

where P (t) is the spectral determinant.
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Proof. Note that, since P (t) is a power series with non-zero constant term,
then 1/P (t) is indeed a well-defined power series. The second equality is
just obtained by expanding the exponential function in a power series. To
prove the first equality, let us first suppose Γ is a finite graph with n vertices,
and let λ1, . . . , λn be the eigenvalues of its adjacency matrix (counted with
algebraic multiplicity). Then P (t) =

∏n
i=1(1− λit) hence

log(1/P (t)) =

n∑
i=1

− log(1− λit) =

n∑
i=1

∞∑
m=1

λmi t
m

m
=

∞∑
m=1

tm(
∑n

i=1 λ
m
i )

m

hence the claim follows since
∑n

i=1 λ
m
i = Tr(Am).

Now, let Γ be infinite with bounded cycles, and let M ≥ 1. Note that
both sides of the equation depend, modulo tM+1, only on multi-cycles of
length ≤M , which by the bounded cycle condition are supported on a finite
subgraph ΓM . Thus by applying the previous proof to ΓM we obtain equality
modulo tM+1, and since this holds for any M the claim is proven. �

Proof of Theorem 4.3. By the root test, the radius of convergence of φ(t) :=∑ Tr(Am)
m tm is r−1. Thus, since the exponential function has infinite radius

of convergence, the radius of convergence of exp(φ(t)) is at least r−1, and
since exp(t) = 1 + t+ψ(t) where ψ(t) has positive coefficients, the radius of
convergence of exp(φ(t)) is exactly equal to r−1.

Hence, by Lemma 4.4, the radius of convergence of 1/P (t) around t = 0
is also r−1. On the other hand, since σ ≤ 1, then by the root test the
power series P (t) converges inside the unit disk, and defines a holomorphic
function; thus, 1/P (t) is meromorphic for |t| < 1, and holomorphic for
|t| < r−1, hence P (t) 6= 0 if |t| < r−1. Moreover, if r > 1, then the radius of
convergence of 1/P (t) is equal to the smallest modulus of one of its poles,
hence r−1 is the smallest modulus of a zero of P (t). Finally, since 1/P (t)
has all its Taylor coefficients real and nonnegative, the smallest modulus of
its poles must also be a pole, so P (r−1) = 0. �

Lemma 4.5. If Γ is a finite graph, then its growth rate equals the largest
real eigenvalue of its adjacency matrix.

Proof. Note that, by the Perron-Frobenius theorem, since the adjacency
matrix is non-negative, it has at least one real eigenvalue whose modulus
is at least as large as the modulus of any other eigenvalue. Moreover, if λ
is the largest real eigenvalue, then λ−1 is the smallest root of the spectral
determinant P (t), hence the claim follows from Theorem 4.3. �

5. Weak covers of graphs

Let Γ1,Γ2 be two (locally finite) graphs. A graph map from Γ1 to Γ2 is a
map π : V (Γ1)→ V (Γ2) on the vertex sets and a map on edges π : E(Γ1)→
E(Γ2) which is compatible, in the sense that if the edge e connects v to w in
Γ1, then the edge π(e) connects π(v) to π(w) in Γ2. We shall usually denote
such a map as π : Γ1 → Γ2.
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A weak cover of graphs is a graph map π : Γ1 → Γ2 such that:

• the map π : V (Γ1)→ V (Γ2) between the vertex sets is surjective;
• the induced map π : Out(v)→ Out(π(v)) between outgoing edges is

a bijection for each v ∈ V (Γ1).

Note that the map between outgoing edges is defined because π is a graph
map, and π also induces a map from paths in Γ1 to paths in Γ2. As a
consequence of the definition of weak cover, we have the following unique
path lifting property:

Lemma 5.1. Let π : Γ1 → Γ2 be a weak cover of graphs. Then given
v ∈ V (Γ1) and w = π(v) ∈ V (Γ2), for every path γ in Γ2 based at w there
is a unique path γ̃ in Γ1 based at v such that π(γ̃) = γ.

Proof. Let γ = (e1, . . . , en) be a path in Γ2 based at w. Since the map
Out(v) → Out(w) is a bijection, there exists exactly one edge f1 ∈ Out(v)
such that π(f1) = e1. By compatibility, the target u of f1 projects to the
target of e1, hence we can apply the same reasoning and lift the second edge
e2 uniquely starting from u, and so on. �

An immediate consequence of the property is the following

Lemma 5.2. Each graph map π : Γ1 → Γ2 induces a map

Πn,v :

{
closed paths in Γ1 of
length n based at v

}
→
{

closed paths in Γ2 of
length n based at π(v)

}
for each v ∈ V (Γ1) and each n ≥ 1. Moreover, if π is a weak cover, then
Πn,v is injective.

5.1. Quotient graphs. A general way to construct weak covers of graphs
is the following. Let ∼ be an equivalence relation on the vertex set V of
a locally finite graph, and denote by V the set of equivalence classes of
vertices. Such an equivalence relation is called edge-compatible if whenever
v1 ∼ v2, for any vertex w the total number of edges from v1 to the members
of the equivalence class of w equals the total number of edges from v2 to the
members of the equivalence class of w. When we have such an equivalence
relation, we can define a quotient graph Γ with vertex set V . Namely, we
denote for each v, w ∈ V the respective equivalence classes as [v] and [w],
and define the number of edges from [v] to [w] in the quotient graph to be

#([v]→ [w]) :=
∑
u∈[w]

#(v → u).

By definition of edge-compatibility, the above sum does not depend on the
representative v chosen inside the class [v]. Moreover, it is easy to see that
the quotient map

π : Γ→ Γ

is a weak cover of graphs.
Let us now relate the growth of a graph to the growth of its weak covers.
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Lemma 5.3. Let π : Γ1 → Γ2 be a weak cover of graphs with bounded cycles,
and S 6= ∅ a finite set of vertices of Γ1.

(1) Suppose that every closed path in Γ1 passes through S. Then for each
n we have the estimate

C(Γ1, n) ≤ n ·#S · C(Γ2, n)

which implies
r(Γ1) ≤ r(Γ2).

(2) Suppose that G is a set of closed paths in Γ2 such that each γ ∈ G
crosses at least one vertex w with the property that: the set Sw :=
π−1(w) ∩ S is non-empty, and any lift of γ from an element of Sw
ends in Sw. Then there exists L ≥ 0, which depends on S, such that
for each n we have

#{γ ∈ G : length(γ) = n} ≤ n
L∑
k=0

C(Γ1, n+ k).

Proof. (1) Let γ be a closed path in Γ1 of length n, based at v. Let now v0

be the first vertex of γ which belongs to S (by hypothesis, there is one). If
we call γ0 the cyclical permutation of γ based at v0, the projection of γ0 to
Γ2 now yields a closed path γ′ in Γ2 which is based at v′ = π(v0) ∈ π(S).
Now note that for each such pair (γ′, v′), there are at most #S possible
choices for v0 ∈ π−1(v′) ∈ S; then, given v0 there is a unique lift of γ′ from
v0, and n possible choices for the vertex v on that lift, giving the estimate.

(2) Recall first that in every directed graph Γ we can define a preorder
relation on the set of vertices by declaring that v ≤Γ w if there exists a path
(possibly of length zero if v = w) from w to v.

Now, let us consider a pair (v1, v2) of elements of S. Either there is no
path from v1 to v2, or v2 ≤Γ1 v1; in the second case, we choose some path
(possibly of length zero) from v1 to v2 and denote it as γ(v1, v2). Then the
set P := {γ(v1, v2) : v1, v2 ∈ S, v2 ≤Γ1 v1} of such paths is finite, and let L
be the maximum length of an element of P.

Let now γ ∈ G be a closed path in Γ2 (based at some vertex w0). By
hypothesis, γ passes through some vertex w such that Sw = π−1(w)∩S 6= ∅,
and each lift of γ from an element of Sw ends in Sw. Let us now pick a
vertex v in Sw which is minimal for the preorder ≤Γ1 among the elements
of Sw (it exists since Sw is finite).

Let us lift the path γ to a path γ̃ in Γ1 based at v, and let u be the
endpoint of γ̃. By hypothesis, u must also lie in Sw, hence u ≤Γ1 v. Thus,
by minimality of v we must also have v ≤Γ1 u, hence there exists a path
from u to v, in particular the path γ(u, v) ∈ P previously chosen. Now, the
concatenation γ′ = γ̃∪γ(u, v) is a closed path in Γ1 based at v and of length
between n and n+ L. Thus we have a map{

closed paths of G
of length n

}
→
{

closed paths in Γ1

of length ∈ {n, . . . , n+ L}

}
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given by (γ,w0) 7→ (γ′, v). We claim that the fibers of this map have car-
dinality at most n, which proves the lemma. Indeed, v determines w as
w = π(v), and γ′ determines γ, since γ is the path given by the first n edges
of π(γ′) starting at w. Finally, there are at most n choices for the starting
point w0 on γ, completing the proof of the claim. �

An immediate corollary of the Lemma is the following, when Γ1 and Γ2

are both finite.

Lemma 5.4. Let Γ1,Γ2 be finite graphs, and π : Γ1 → Γ2 a weak cover.
Then the growth rate of Γ1 equals the growth rate of Γ2.

Proof. Apply the lemma with S = V (Γ1), and G equal to the set of all closed
paths in Γ2. �

6. Wedges

Let us consider the set Σ := {(i, j) ∈ N2 : 1 ≤ i < j} of pairs of distinct
positive integers. The set Σ will be sometimes called the wedge and, given an
element v = (i, j) ∈ Σ, the coordinate i will be called the height of v, while
the coordinate j will be called the width of v. The terminology becomes
more clear by looking at Figure 4.

· · ·

(4, 5) · · ·

(3, 4) (3, 5) · · ·

(2, 3) (2, 4) (2, 5) · · ·

(1, 2) (1, 3) (1, 4) (1, 5) · · ·

Figure 4. The wedge Σ.

Definition 6.1. We call a labeled wedge an assignment Φ : Σ → {N,S}
of a label N (which stands for non-separated) or S (which stands for sepa-
rated) to each element of Σ.

Now, to each labeled wedgeW we assign a graph ΓW in the following way.
The vertex set of ΓW is the wedge Σ, while the edges of ΓW are labeled by
the set {U,B, F} and determined according to the following rules:
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· · ·

(4, 5) · · ·

(3, 4) (3, 5) · · ·

(2, 3) (2,4) (2, 5) · · ·

(1,2) (1, 3) (1,4) (1, 5) · · ·

Figure 5. An example of a labeled wedge W. The boxed
pairs are separated.

(1) if (i, j) ∈ Σ is non-separated, then (i, j) has as its (unique) successor
the vertex (i + 1, j + 1); we say that the edge (i, j) → (i + 1, j + 1)
is an upward edge and we label it with U ;

(2) if (i, j) is separated, then (i, j) has two successors:
(i) first, we add the edge (i, j)→ (1, j + 1), which we call forward

edge and label it with F .
(ii) second, we add the edge (i, j) → (1, i+ 1), which we call back-

ward edge and label it with B.

In order to explain the names, note that following an upward or forward
edge increases the width by 1, while following a backward edge (weakly)
decreases it. Moreover, following an upward edge increases the height by 1,
while the targets of both backward and forward edges have height 1.

Proposition 6.2. Let ΓW the graph associated to the labeled wedge W.
Then the following are true:

(1) each vertex of a closed path of length n has height at most n;
(2) the support of each closed path of length n intersects the set {(1, k) :

2 ≤ k ≤ n+ 1};
(3) each vertex of a closed path of length n has width at most 2n;
(4) for each k ≥ 1, there exists at most one separated vertex in the kth

diagonal

Dk := {(i, j) ∈ Σ : j − i = k}

which is contained in the support of at least one closed path;

(5) there are at most (2n)
√

2n multi-cycles of length n.
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· · ·

(4, 5) · · ·

(3, 4)

U
;;

(3, 5) · · ·

(2, 3)

U
;;

(2,4)

F

##

B

��

(2, 5) · · ·

(1,2)

B

��
F // (1, 3)

U

BB

(1,4)
F //

B

jj (1, 5) · · ·

Figure 6. The graph ΓW associated to the labeled wedge
W of Figure 5.

Note that (1), (2), (3) are sharp, as seen by the simple cycle

(1, 4)
U ,,

(2, 5)
U ,,

(3,6)

B

jj

Proof. (1) Let us first note that every closed path contains at least one
backward edge, since the upward and forward edges always increase the
height. Moreover, the endpoint of a backward edge has always height 1, and
each edge increases the height by at most 1, hence the height of a vertex
along the closed path is at most n.

(2) Since the target of each backward edge is (1, i + 1), where i is the
height of the source of the edge, which is at most n by the previous point,
then the target of each backward edge along the closed path belongs to the
set {(1, k) : 2 ≤ k ≤ n+ 1}.

(3) By the previous point, there is at least a vertex along the closed
path with width at most n + 1. Since every move increases the width by
at most 1, then the largest possible width of a vertex along the path is
(n+ 1) + (n− 1) = 2n.

(4) Let vk = (hk, wk) be the separated vertex in Dk with smallest height,
if there is one. We claim that no vertex (hk + t, wk + t) of Dk with t ≥ 1
belongs to any closed path. Note by looking at the rules that, if a vertex
v = (i, j) of height i > 1 is the target of some edge, then it must be the
target of an upward edge, more precisely an edge from the vertex (i−1, j−1)
immediately to the lower left of v, which then must be non-separated. Thus,
since vk is separated, the vertex (hk+1, wk+1) does not belong to any closed
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path; the claim then follows by induction on t, since, by the same reasoning,
if (hk+t+1, wk+t+1) belongs to some closed path, then also (hk+t, wk+t)
must belong to the same path.

(5) Let e1, . . . , er the backward edges along a multi-cycle γ of length n,
and denote by vi the source of ei, and by hi the height of vi. Note that the
set {v1, . . . vr} determines γ, as we can start from v1, follow the backward
edge, and then follow upward or forward edges until we either close the loop
or encounter another vi, and then continue this way until we walk along
all of γ. Moreover, we know that for each vi there are at most 2n possible
choices, as each vi is separated and by (4) there is at most one for each
diagonal Dk, and by (3) it must lie on some Dk with k ≤ 2n. We now claim
that

r ≤
√

2n

which is then sufficient to complete the proof. Let us now prove the claim.
By definition of multi-cycle, the targets of the ei must be all distinct, and
by rule (2)(ii) (see after Definition 6.1) these targets are precisely (1, hi + 1)
with 1 ≤ i ≤ r, hence all hi must be distinct. Moreover, let us note that
each ei must be preceded along the multi-cycle by a sequence

(1, k)→ (2, k + 1)→ · · · → (hi, hi + k − 1)

of upward edges of length hi − 1, and all such sequences for distinct i must
be disjoint. Hence we have that all hi are distinct and their total sum is at
most the length of the multi-cycle, i.e. n. Thus we have

r2

2
≤ r(r + 1)

2
=

r∑
i=1

i ≤
r∑
i=1

hi ≤ n

which proves the claim. �

Theorem 6.3. Let W be a labeled wedge. Then its associated graph Γ
has bounded cycles, and its spectral determinant P (t) defines a holomorphic
function in the unit disk. Moreover, the growth rate r of the graph Γ equals
the inverse of the smallest real positive root of P (z), in the following sense:
P (z) 6= 0 for |z| < r−1 and, if r > 1, then P (r−1) = 0.

Proof. By construction, the outgoing degree of any vertex of Γ is at most
2. Moreover, by Proposition 6.2 (5) the graph has bounded cycles, and the
growth rate of the number K(Γ, n) of multi-cycles is ≤ 1, since

lim sup
n

n

√
(2n)

√
2n = lim sup

n
e

√
2 log(2n)√

n = 1.

The claim then follows by Theorem 4.3. �

We shall sometimes denote as r(W) the growth rate of the graph associ-
ated to the labeled wedge W. We say that a sequence (Wn)n∈N of labeled
wedges converges to W if for each finite set of vertices S ⊆ Σ = {(i, j) ∈
N2 : 1 ≤ i < j} there exists N such for each n ≥ N the labels of the
elements of S for Wn and W are the same.
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Lemma 6.4. If a sequence of labeled wedges (Wn)n∈N converges to W, then
the growth rate of Wn converges to the growth rate of W.

Proof. Let Pn(t) and P (t) denote respectively the spectral determinants of
Wn and W. Then for each k ≥ 1, the coefficient of tk in Pn(t) converges
to the coefficient of tk in P (t), because by Proposition 6.2 (1) and (3) the
support of any multi-cycle of length k is contained in the finite subgraph
{(i, j) : 1 ≤ i < j ≤ 2k}. Thus, since the modulus of the coefficient of

tk is uniformly bounded above by (2k)
√

2k, then Pn(t)→ P (t) uniformly on
compact subsets of the unit disk. Thus, by Rouché’s theorem, the smallest
real positive zero of Pn(t) converges to the smallest real positive zero of P (t),
hence by Theorem 6.3 we have r(Wn)→ r(W). �

7. Periodic wedges

Given integers p ≥ 1 and q ≥ 0 we define the equivalence relation ≡p,q on
N+ by saying that i ≡p,q j if either:

• min{i, j} ≤ q and i = j; or
• min{i, j} ≥ q + 1 and i ≡ j mod p.

Note that if q = 0 the equivalence relation ≡p,q is simply the congruence
modulo p. A set of representatives for the equivalence classes of ≡p,q is the
set {1, 2, . . . , p+q}. The equivalence relation induces an equivalence relation
on the set N+×N+ of ordered pairs of integers by (i, j) ≡p,q (k, l) if i ≡p,q k
and k ≡p,q l. Moreover, it also induces an equivalence relation on the set
of unordered pairs of integers by declaring that the unordered pair {i, j} is
equivalent to {k, l} if either (i, j) ≡p,q (k, l) or (i, j) ≡p,q (l, k).

Definition 7.1. A labeled wedge is periodic of period p and pre-period q if
the following two conditions hold:

• any two pairs (i, j) and (k, l) such that {i, j} ≡p,q {k, l} have the
same label;
• if i ≡p,q j, then the pair (i, j) is non-separated.

If q = 0, the labeled wedge will be called purely periodic.

A pair (i, j) with i ≡p,q j will be called diagonal ; hence the second point
in the definition can be rephrased as “every diagonal pair is non-separated”.

7.1. The finite model. Given a periodic wedge W of period p and pre-
period q, with associated (infinite) graph Γ, we shall now construct a finite
graph ΓF which captures the essential features of the infinite graph Γ, in
particular its growth rate.

The set of vertices of ΓF is the set of ≡p,q-equivalence classes of non-
diagonal, unordered pairs of integers. A set of representatives of V (ΓF ) is
the set

Σp,q := {{i, j} : 1 ≤ i < j ≤ p+ q}.
The edges of ΓF are induced by the edges of Γ, that is are determined by
the following rules: if the unordered pair {i, j} is non-separated, then {i, j}
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. . .

(4, 5)

;;

. . .

(3, 4)

;;

(3, 5)

<<

. . .

(2,3)

�� ##

(2,4)

{{ ##

(2, 5)

uu ""

. . .

(1, 2)

;;

(1,3) //oo (1, 4) // (1, 5) // . . .

Figure 7. A periodic labeled wedge, of period p = 1 and
pre-period q = 2, and its infinite graph. Note that the vertex
(1, 3) has infinitely many incoming edges.

(2,3)

����
(1, 2)

;;

(1,3)oo
ee

Figure 8. The finite model of the infinite graph associated
to the labeled wedge of Figure 7, of period p = 1 and pre-
period q = 2.

has one outgoing edge, namely {i, j} → {i + 1, j + 1}; while if {i, j} is
separated, then {i, j} has the two outgoing edges {i, j} → {1, i + 1}, and
{i, j} → {1, j + 1}.

The main result of this section is the following.

Proposition 7.2. Let W be a periodic labeled wedge, with associated (infi-
nite) graph Γ. Then the growth rate of Γ equals the growth rate of its finite
model ΓF .

In order to prove the Proposition, we shall also introduce an intermediate
finite graph, which we call the finite 2-cover of ΓF , and denote Γ(2).

The set of vertices of Γ(2) is the set of ≡p,q-equivalence classes of non-
diagonal, ordered pairs of integers, and the edges are induced by the edges
of Γ in the usual way. The reason to introduce the intermediate graph Γ(2)

is that ΓF does not inherit the labeling of edges from Γ, as backward and
forward edges in Γ may map to the same edge in ΓF , while Γ(2) naturally
inherits the labels.
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Proof of Proposition 7.2. Let Γ be the graph associated to a periodic labeled
wedge.

(1) First, let us observe that no diagonal vertex is contained in the
support of any closed path of Γ: in fact, every diagonal vertex is non-
separated, and its outgoing edge leads to another diagonal vertex
with larger height, hence the path can never close up. Thus, we can
construct the subgraph ΓND by taking as vertices all pairs which
are non-diagonal, and as edges all the edges of Γ which do not have
either as a source or target a diagonal pair. By what has been just
said, the growth rate of Γ and ΓND is the same,

r(ΓND) = r(Γ).

(2) Since the maps

ΓND → Γ(2) → ΓF

are given by quotienting with respect to equivalence relations, they
are both weak covers of graphs. Thus, since both Γ(2) and ΓF are
finite, by Lemma 5.4, the growth rates of Γ(2) and ΓF are the same.

(3) We are now left with proving that the growth rate of ΓND is the same

as the growth rate of Γ(2). Since the cardinality of the fiber of the
projection ΓND → Γ(2) is infinite, the statement is not immediate.
Note that the finite 2-cover Γ(2) is a graph with labeled edges: indeed,
if (i, j) ≡p,q (k, l), then (1, i+ 1) ≡p,q (1, k + 1), and so on, thus the

labeling of Γ(2) inherited from Γ is well-defined, and the graph map
ΓND → Γ(2) preserves the labels.

(4) Let us call backtracking a path in Γ or Γ(2) such that at least one
of its edges is labeled by B (= backward), and non-backtracking
otherwise. Now let us note the following:
(a) Every closed path in Γ is backtracking; in fact, following any

edge which is upward or forward increases the height, thus a
path in Γ made entirely of U and F edges cannot close up.

(b) Every closed path in Γ passes through the finite set

S = {(1, h) : 2 ≤ h ≤ p+ q + 1}.
In order to prove this, we first prove that any element in the
support of any closed path in Γ has height at most p + q. In
order to do so, let us fix a diagonal Dk = {(i, j) : j − i = k}.
By periodicity, either there is a separated pair (i, j) in Dk of
height i ≤ p+ q, or all elements of Dk are non-separated; in the
latter case, no element of Dk is part of any closed path, since
any path based at an element of Dk is non-backtracking. In the
first case, let (i0, j0) be the separated pair with smallest height
in Dk; then, only the elements with height less than i0 can be
part of any closed path, and i0 ≤ i ≤ p + q, so the first claim
is proven. As a consequence, the target of any B-labeled edge
which belongs to some closed path is of type (1, h + 1), where
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h ≤ p + q is the height of the source, hence the target belongs
to S.

(c) Every backtracking closed path in Γ(2) has at least one B-
labeled edge, hence the target of such B-labeled edge lies in
the set π(S), and every lift to Γ starting from an element of S
must end in the target of a B-labeled edge in Γ, hence must end
in S.

(5) Finally, let us note that for each n, the number of non-backtracking

paths of length n in Γ(2) is at most the cardinality of V (Γ(2)); indeed,
from each vertex there is at most one edge labeled U or F , thus for
each vertex of Γ(2) there is at most one non-backtracking path of
length n based at it.

(6) Let us now put together the previous statements. Indeed, by (4)(a)-
(b) every closed path in Γ passes through S, hence we can apply
Lemma 5.3 (1) and get that

r(ΓND) ≤ r(Γ(2)).

To prove the other inequality, let us note that by (4)(b)-(c) we know
that Lemma 5.3 (2) applies with G the set of backtracking closed

paths in Γ(2). Moreover, by point (5) above we have that the number
of non-backtracking paths is bounded independently of n: thus we
can write

C(Γ(2), n) = #

{
backtr. closed
paths of length n

}
+ #

{
non-backtr. closed
paths of length n

}
≤

≤ n
L∑
k=0

C(ΓND, n+ k) + #V (Γ(2))

from which follows

r(Γ(2)) ≤ r(ΓND)

as required.

�

When dealing with purely periodic external angles, we shall also need the
following lemma.

Lemma 7.3. LetW1 andW2 be two labeled wedges which are purely periodic
of period p. Suppose moreover that for every pair (i, j) with i, j 6≡ 0 mod p
the label of (i, j) in W1 equals the label in W2. Then the finite models ΓF1
and ΓF2 are isomorphic graphs. As a consequence, the growth rates of W1

and W2 are equal.

Proof. Let {i, j} ∈ Σp,0 an equivalence class of unordered pairs. If neither i
nor j are divisible by p, then the label of {i, j} is the same in W1 and W2,
hence the outgoing edges from {i, j} are the same in ΓF1 and ΓF2 . Suppose
on the other hand that i ≡ 0 mod p (hence, j 6≡ 0 mod p because the pair
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is non-diagonal). Then, if the pair {p, j} is non-separated, then its only
outgoing edge goes to {p+ 1, j+ 1} = {1, j+ 1} in Σp,0. On the other hand,
if {p, j} is separated, then its two possible outgoing edges are {1, p+ 1} and
{1, j + 1}. However, the pair {1, p + 1} is diagonal, hence no vertex in the
graph has such label. Thus, independently of whether {p, j} is separated, it
has exactly one outgoing edge with target {1, j + 1}, proving the claim. �

8. Application to core entropy

8.1. From external angles to wedges. We shall now apply the theory of
labeled wedges to the core entropy. As we have seen in Section 3, Thurston’s
algorithm allows one to compute the core entropy for periodic angles θ; in
order to interpolate between periodic angles of different periods, we shall
now define for any angle θ ∈ R/Z a labeled wedge Wθ, and thus an infinite
graph Γθ as described in the previous sections.

Recall that for each i ≥ 1 we denote xi(θ) := 2i−1θ mod 1, which we see
as a point in S1. For each pair (i, j) which belongs to Σ, we label (i, j) as
non-separated if xi(θ) and xj(θ) belong to the same element of the partition
Pθ, or at least one of them lies on the boundary of the partition. If instead
xi(θ) and xj(θ) belong to the interiors of two different intervals of Pθ, then
we label the pair (i, j) as separated. The labeled wedge just constructed will
be denoted Wθ, and its associated graph Γθ. The main quantity we will
work with is the following:

Definition 8.1. For each external angle θ ∈ R/Z, we define its growth rate
rθ to be the growth rate of the (infinite) graph Γθ associated to the labeled
wedge Wθ constructed above.

In this section we shall prove the following theorem, which immediately
implies Theorem 1.2:

Theorem 8.2. The function θ → log rθ is continuous, and coincides with
the core entropy h(θ) for rational values of θ.

In order to prove the theorem, we shall first prove that if θ is periodic,
the labeled wedge Wθ is periodic of the same period and pre-period.

Lemma 8.3. If θ is periodic for the doubling map of period p and pre-period
q, then the labeled wedge Wθ is periodic of the same period and pre-period.

Proof. Let θ have period p and pre-period q. By definition of the equivalence
relation ≡p,q, we have i ≡p,q j if and only if 2i−1θ ≡ 2j−1θ mod 1, which
proves the first condition in the definition of periodic wedge. Moreover, if
(i, j) is a diagonal pair, then xi(θ) ≡ xj(θ), hence the pair (i, j) is non-
separated, verifying the second condition. �

Using the results of the previous section, we are now ready to prove that
the logarithm of the growth rate of Γθ coincides with the core entropy for
rational angles, proving the first part of Theorem 8.2.
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Theorem 8.4. Let θ be a rational angle, let Γθ be the infinite graph associ-
ated to the labeled wedge Wθ, and let rθ be the growth rate of Γθ. Then we
have the identity

h(θ) = log rθ.

Proof. Let ΓFθ be the finite model of Γθ as described in Section 7.1. By
unraveling the definitions, the matrix Mθ constructed in section 3 is exactly
the adjacency matrix of the finite model ΓFθ . By Proposition 7.2, the growth

rate of Γθ coincides with the growth rate of its finite model ΓFθ . Moreover, by

Lemma 4.5, the growth rate of ΓFθ coincides with the largest real eigenvalue
of its adjacency matrix, that is the largest real eigenvalue of Mθ. Thus, by
Theorem 3.1 its logarithm is the core entropy h(θ). �

8.2. Continuity of core entropy. We shall now prove the second part of
Theorem 8.2, namely that the function θ 7→ rθ is continuous.

Proposition 8.5. For each angle θ ∈ R/Z, the one-sided limits

r+
θ := lim

θ′→θ+
rθ′ , r−θ := lim

θ′→θ−
rθ′

exist. Moreover, if θ is not purely periodic we have r+
θ = r−θ = rθ .

Proof. As θ′ → θ+, the labeled wedge Wθ′ stabilizes. In fact, for each i
consider the position of xi(θ) := 2i−1θ mod 1 with respect to the partition
Pθ. If xi(θ) 6≡ θ/2, (θ+ 1)/2 mod 1, then, for all θ′ in a neighborhood of θ,
xi(θ

′) lies on the same side of the partition. Otherwise, note that for any
i ∈ {0, 1} and j ≥ 1, the functions ϕi(θ) := θ

2 + i
2 mod 1 and xj(θ) := 2j−1θ

mod 1 are both continuous and orientation preserving but have different
derivative: thus, for all θ′ > θ close enough to θ, the point xi(θ

′) lies on one
side of the partition, and for θ′ < θ close enough to θ lies on the other side.
Thus, the limits

W+
θ := lim

θ′→θ+
Wθ′ , W−θ := lim

θ′→θ−
Wθ′

exist, and are both equal to Wθ if θ is not purely periodic, because then
no xi(θ) with i ≥ 1 lies on the boundary of the partition. The claim then
follows by Lemma 6.4. �

This proves continuity of rθ at all angles which are not purely periodic.
We shall now deal with the purely periodic case, where for the moment we
only know that the left-hand side and right-hand side limits of rθ exist.

Lemma 8.6. Let θ be purely periodic of period p. Then Wθ, W+
θ and W−θ

are purely periodic of period p, and differ only in the labelings of pairs (i, j)
with either i ≡ 0 mod p or j ≡ 0 mod p.

Proof. Let θ be purely periodic of period p. Note that xi(θ) lies on the
boundary of the partition Pθ if and only if i ≡ 0 mod p. Thus, for all the
pairs (i, j) for which neither component is divisible by p, the label of (i, j)
is continuous across θ, proving the second statement. Now we shall show
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that if for all θ′ > θ and close enough to θ one has xp(θ) on one side of
the partition, then also xpk(θ) is on the same side for each k ≥ 1. This

will prove that W+
θ is purely periodic of period p. The proof for W−θ is

symmetric, and Wθ is purely periodic of period p by Lemma 8.3. In order
to prove the remaining claim, let us denote by ϕi(θ) := θ

2 + i
2 , i = 0, 1; since

θ is purely periodic, there exists j ∈ {0, 1} such that xpk(θ) = ϕj(θ) for all
k ≥ 1. Now, note that for each k ≥ 1 the derivatives satisfy the inequality
x′pk(θ) > ϕ′j(θ), thus for each k ≥ 1 there exists ε > 0 such that for each

θ′ ∈ (θ, θ + ε) one has xpk(θ
′) > ϕj(θ

′), hence the points xpk(θ
′) all belong

to the same side of the partition independently of k, as required. �

Proposition 8.7. If θ is purely periodic of period p, then the (infinite)
graphs Γθ, Γ+

θ and Γ−θ , associated respectively to Wθ, W+
θ and W−θ have the

same growth rate, i.e. we have the equality

rθ = r+
θ = r−θ .

Proof. By Lemma 8.6 and Lemma 7.3, the graphs Γθ, Γ+
θ and Γ−θ have the

same finite form, hence by Proposition 7.2 they have the same growth rate,
proving the claim. �

The Proposition thus completes the proofs of Theorem 8.2 and Theorem
1.2.

8.3. Hölder continuity. By making the previous continuity arguments
quantitative, we get the following

Proposition 8.8. Let θ ∈ Q/Z such that h(θ) > 0. Then there exists a
neighbourhood U of θ, and positive constants C,α such that

|h(θ)− h(θ1)| ≤ C|θ − θ1|α

for any θ1 ∈ U .

Proof. Let θ ∈ Q/Z, and denote by s = e−h(θ) the smallest real zero of Pθ(t).
The proof is a simple quantitative version of Rouché’s theorem. Let C0 be
the minimum distance, in S1, between distinct elements xi(θ) of the forward

orbit of θ. Given another angle θ1, denote s1 = e−h(θ1) the smallest real zero
of Pθ1(t), and choose n such that

(2) 2−2n−2C0 ≤ |θ1 − θ| ≤ 2−2nC0.

Then, by looking at how xi(θ) moves with respect to the partition Pθ, we
realize that, for i, j ∈ {1, . . . , 2n}, the pair (i, j) is separated for θ if and
only if it is separated for θ1. By construction, the nth coefficient of Pθ(t)
depends only on multi-cycles of total length n, and by Proposition 6.2 (3)
all such multi-cycles live on the subgraph {(i, j) : 1 ≤ i < j ≤ 2n}, hence
the first n coefficients of Pθ(t) and Pθ1(t) coincide. Thus we can write

(3) Pθ1(s1)− Pθ(s1) =
∞∑
k=n

cks
k
1 ≤ C1(s′)n
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for some C1 > 0 and s′ ∈ (s1, 1), where we used that |ck| ≤ 2(2k)
√

2k by
Proposition 6.2 (5). Now, using Pθ(s) = Pθ1(s1) = 0 we have

(4) Pθ1(s1)− Pθ(s1) = Pθ(s)− Pθ(s1) = (s− s1)kf(s1)

where k ≥ 1 is the order of the zero of Pθ at s and f(z) is a holomorphic
function, with f(s) 6= 0. By combining (3), (4) and (2), we get

|s− s1| ≤ C2(s′)n/k ≤ C3|θ − θ1|α

with α = − log s′

2k log 2 , which implies the claim as h(θ) = − log s. �

We shall now prove that h is not Hölder continuous at points where h(θ) =
0. This is related to the presence of small copies of the Mandelbrot set
everywhere near the boundary of M : in fact, one can control the rescaling
of entropy at the small copies quite explicitly, yielding the following result.

Proposition 8.9. Let θ ∈ R/Z such that h(θ) = 0. Then h is not Hölder
continuous at θ.

Proof. Let θ ∈ R/Z such that h(θ) = 0, and fix n a prime number. Then θ
lies within distance at most 1

2n−1 of a purely periodic parameter ϕn for the
doubling map of period n. The external ray of angle ϕn lands at the root of
a hyperbolic component of period n, and there is a corresponding small copy
of the Mandelbrot set with this root. Thus, there is an angle θn whose ray
lands at the tip of this small Mandelbrot set, such that |θn−ϕn| ≤ 2−n (see
[Do1]). The map fθn is a tuning of the superattracting map fϕn and the map
f1/2 at the real tip of the Mandelbrot set, which has entropy h(1/2) = log 2.
Hence we have the formula (see [Ti], Proposition 9.3).

h(θn) = max

{
h(ϕn),

log 2

n

}
≥ log 2

n
.

Using that h(θ) = 0, we have the inequality

|h(θ)− h(θn)| = h(θn) ≥ log 2

n
,

which combined with |θ−θn| ≤ 3 ·2−n shows that h is not Hölder continuous
at θ. �
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