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The function c → htop(fc ,R):

I is monotone decreasing (Milnor- Thurston ’77).
I is continuous (Douady).
I 0 ≤ htop(fc ,R) ≤ log 2.

Remark. If we consider fc : Ĉ→ Ĉ entropy is constant
htop(fc , Ĉ) = log 2.



Mandelbrot set

The Mandelbrot setM is the connectedness locus of the
quadratic family

M = {c ∈ C : f n
c (0) 9∞}
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Since Ĉ \M is simply-connected, it can be uniformized by the
exterior of the unit disk
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probability that a random ray lands on A:
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I The entropy of the induced action on the Hubbard tree Hc

(minimal forward-invariant set containing the critical orbit),
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Ideas of proof
1. The rays landing on parameter space land also on the real

section of the Julia set:

Pc ⊆ Bc

2. In order to prove the reverse inequality, one would like to
embed the rays landing on the Hubbard tree in parameter
space. This cannot be done in the renormalized copies.

3. However, it can be done for dominant parameters
(introduced in previous work with C. Carminati):

Proposition
If c is a dominant parameter, then for each c′ > c, Pc contains
a diffeomorphic copy of Hc′ .

4. We prove dominant parameters are dense in the set of
non-renormalizable parameters.

5. By renormalization, the same holds for all parameters
which are not infinitely renormalizable.

6. By density of such parameters, the result holds.
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A vein is an embedded arc in the Mandelbrot set.

Given a parameter c along a vein, we can look at the set Pc of
parameter rays which land on the vein below c.
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Complex version
Let γ be the principal vein in the p/q-limb of the Mandelbrot
set, and let c ∈ γ. Then

htop(fc ,Hc)

log 2
= H.dim Pc



The end

Thank you!



A unified approach

The dictionary yields a unified proof of the following results:

1. The set of matching intervals for α-continued fractions has
zero measure and full Hausdorff dimension
(Nakada-Natsui conjecture, CT 2010)

2. The real part of the boundary of the Mandelbrot set has
Hausdorff dimension 1

H.dim(∂M∩ R) = 1

(Zakeri, 2000)
3. The set of univoque numbers has zero measure and full

Hausdorff dimension (Erdős-Horváth-Joó, Daróczy-Kátai,
Komornik-Loreti)



From Farey to the tent map, via ?

Minkowski’s question-mark function conjugates the Farey map
with the tent map

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Continued fractions ⇔ Binary expansions


	Introduction

