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Summary

1. Thurston maps, expanding or not
2. Coarse expanding systems

3. Examples of expanding systems
4. Thermodynamic formalism
5. Statement of results
6. Question time
7. Proof: the case without periodic critical points
8. Proof: how to deal with periodic critical points

joint with T. Das, F. Przytycki, M. Urbański, A. Zdunik
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Thurston maps
A Thurston map is a postcritically finite branched cover

f : S2 → S2 of the 2-sphere.
Recall

P(f ) :=
⋃
n≥1

f n(Crit f )

and f is postcritically finite if #P(f ) < +∞.

Thurston’s theorem: combinatorial characterization of Thurston
maps which are “equivalent” to rational maps.
Examples

I f (z) := p(z)
q(z) a postcritically finite rational map.

I A Lattés map g(z) = 2z as g : C/Z→ C/Z and z ∼ −z

C/Λ
g //

��

C/Λ

��

Ĉ f // Ĉ
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Thurston maps
A Thurston map is a postcritically finite branched cover
f : S2 → S2 of the 2-sphere.
Recall

P(f ) :=
⋃
n≥1

f n(Crit f )

and f is postcritically finite if #P(f ) < +∞.

Thurston’s theorem: combinatorial characterization of Thurston
maps which are “equivalent” to rational maps.

Examples
I f (z) := p(z)

q(z) a postcritically finite rational map.
I A Lattés map g(z) = 2z as g : C/Z→ C/Z and z ∼ −z

C/Λ
g //

��

C/Λ

��
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Lattés maps

g(z) = 4
z(1− z2)

(1 + z2)2



Pillow maps with flaps

Modification of Lattés maps: add a “flap”
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Pillows with flaps

Visual metric on the sphere:

diam(piece of depth n) ∼= λ−n
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History

I Bonk-Meyer: Expanding Thurston maps.

Rigidity for
measure of maximal entropy.

I Haı̈ssinsky-Pilgrim: coarse expanding conformal (cxc)
systems. General axioms in metric space, not postcritically
finite. Existence and uniqueness of measure of maximal
entropy.

I Przytycki, Urbański: ergodic theory of rational maps for
hyperbolic potentials

I Rivera-Letelier, Inoquio-Renteria: ergodic theory of
Collet-Eckmann rational maps

I Z. Li: ergodic theory of expanding Thurston maps.
Existence and uniqueness of equilibrium measures.
Note: he works directly on the sphere, estimating the PF
operator.
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Finite branched coverings

Let f : Y → Z be a continuous map of loc. connected spaces.

The degree of f is defined as

deg(f ) := sup{#f−1(z) : z ∈ Z}.

Given a point y ∈ Y , the local degree of f at y is

deg(f ; y) := inf
U

sup #{f−1(z) ∩ U : z ∈ f (U)}

where U ranges over all open neighborhoods of y .
A point y is critical if deg(f ; y) > 1.
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Finite branched coverings

Definition
The map f : Y → Z is a finite branched cover of degree d

if
deg(f ) = d <∞ and

1. for any z ∈ Z , ∑
y∈f−1(z)

deg(f ; y) = deg(f )

2. for any y0 ∈ Y there are compact neighborhoods U,V of y0
and f (y0) such that∑

y∈U,f (y)=z

deg(f ; y) = deg(f ; y0)

for all z ∈ V .

We define the branch set as Bf := {y ∈ Y : deg(f ; y) > 1}
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The setting
Let f : W1 →W0 be a finite branched covering.

Definition
The repellor is

X :=
⋂
n≥0

f−n(W1)

If U is a cover of W1, then

Un := {connected components of f−n(U)}
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Coarse expanding conformal (cxc) systems
Haı̈ssinsky-Pilgrim axioms

A finite branched cover f : W1 →W0 which satisfies:
I [Expanding]: There exists a cover U of W1 such that

“diam(Un)→ 0”

Formally: For any other cover V there exists N such that
for any n ≥ N, every element of Un is contained in some
element of V.
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I [Finiteness]: Bf is finite

Note: If W1 ⊆ S2, then [Finiteness] is automatic (Whyburn).
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From topological to metric

Definition
A metric ρ on X is exponentially contracting if ∃C, α > 0 such
that

diamρ(U) ≤ Ce−αn

for any U ∈ Un.

Lemma
For any weakly coarse expanding system f : W1 →W0, there
exists an exponentially contracting metric ρ on the repellor X .

Definition
A metric ρ on X is a visual metric if ∃C1,C2, α > 0 such that

C1e−αn ≤ diamρ(U) ≤ C2e−αn

for any U ∈ Un.
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Examples of weakly coarse expanding systems
I Expanding Thurston maps

I Subhyperbolic rational maps: the critical points either
converge to attracting cycles, or eventually map to a
repelling periodic cycle. These are also cxc.

I Collet-Eckmann rational maps:

|(f n)′(f (c))| ≥ Cλn

for λ > 1 if c does not map to another critical point, and
there are no parabolic cycles

I Topological Collet-Eckmann rational maps: there exist
M ≥ 0,P ≥ 1, r > 0 such that for every x ∈ X there exists
a sequence nj with nj ≤ P · j and for each j

#{0 ≤ i < nj : Compf i (x)f
−(nj−i)B(f nj (x), r)∩Crit f 6= ∅} ≤ M

These are wcx but not cxc.
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Examples of weakly coarse expanding systems - II

I Polymodials (Blokh-Cleveland-Misiurewicz)

f (z) = λ
z2

|z|
+ 1

with |λ| > 1.
I Semigroups of rational maps (Atnip-Sumi-Urbański)

Let f1, . . . , fd be rational maps.

F : {1, . . . ,d}N × Ĉ→ {1, . . . ,d}N × Ĉ

F (ω, z) := (σ(ω), fω0(z))

Finiteness holds under certain conditions: e.g. if

f1(z) = z2 + 2, f2(z) = z2 − 2
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Thermodynamic formalism
Let f : X → X the dynamics, and ϕ : (X , ρ)→ R be Hölder
function

called a potential.
If µ is an f -invariant measure on X , its pressure is

Pµ(ϕ) := hµ(f ) +

∫
ϕ dµ

and the topological pressure is

Ptop(ϕ) = sup
µ∈M(f )

Pµ(ϕ)

Definition
A measure µ which achieves the sup is called an equilibrium
state.

I ϕ = 0: Ptop(ϕ) is top. entropy, µ is measure of maximal
entropy

I ϕ = −s log |f ′|: µ is a conformal measure of dimension s ⇒
compute Hausdorff dimension of X
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Statement of results

Theorem
Let f : W1 →W0 be a wcx system with W1 ⊆ S2,

let X be its repellor,
ρ an exp. contr. metric on X, and let ϕ : (X , ρ)→ R be Hölder. Then:

1. there exists a unique equilibrium state µϕ for ϕ on X.

Let ψ : (X , ρ)→ R be a Hölder continuous observable, and
denote

Snψ(x) :=
n−1∑
k=0

ψ(f k (x)).

Then there exists the finite limit

σ2 := lim
n→∞

1
n

∫
X

(
Snψ(x)− n

∫
ψ dµϕ

)2

dµϕ ≥ 0
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Statement of results - II
Theorem

1. (Central Limit Theorem, CLT) For any a < b ,

µϕ

({
x ∈ X :

Snψ(x)− n
∫

X ψ dµϕ√
n

∈ [a,b]

})
−→

∫ b
a e−t2/2σ2

dt
√

2πσ2

If σ = 0, it converges to a δ-mass at 0.
2. (Law of Iterated Logarithm, LIL) For µϕ-a.e. x ∈ X,

lim sup
n→∞

Snψ(x)− n
∫

X ψ dµϕ√
n log log n

=
√

2σ2.

3. (Exponential Decay of Correlations, EDC) For any χ ∈ L1(X , µϕ)
there exist α > 0,C ≥ 0 such that∣∣∣∣∫

X
ψ · (χ ◦ f n) dµϕ −

∫
X
ψ dµϕ ·

∫
X
χ dµϕ

∣∣∣∣ ≤ Ce−nα.
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Statement of results - III
Theorem

1. (Large Deviations, LD)

For every t ∈ R,

lim
n→∞

1
n

logµϕ
{

x ∈ X : sgn(t)Snψ(x) ≥ sgn(t)n
∫

X
ψ dµϕ+tψ

}
=

= −t
∫

X
ψ dµϕ+tψ + Ptop(ϕ+ tψ)− Ptop(ϕ).

2. σ = 0 if and only if there exists a continuous u : X → R such that

ψ −
∫

X
ψ dµϕ = u ◦ f − u.

3. µϕ1 = µϕ2 if and only if there exists K ∈ R and a continuous
u : X → R such that

ϕ1 − ϕ2 = u ◦ f − u + K .

In (2) and (3), u is Hölder continuous w.r.t. the visual metric.
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Statement of results - IV

Theorem
Let f : W1 →W0 be a wcx system with no periodic critical points,

let
X be its repellor, ρ an exp. contr. metric on X, and let ϕ : (X , ρ)→ R
be Hölder. Then we have:

1. there exists a unique equilibrium state µϕ for ϕ on X.

2. Central limit theorem

3. Law of Iterated Logarithm

4. Exponential Decay of Correlations

5. Large Deviations



Statement of results - IV

Theorem
Let f : W1 →W0 be a wcx system with no periodic critical points, let
X be its repellor, ρ an exp. contr. metric on X,

and let ϕ : (X , ρ)→ R
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Proof: the geometric coding
Let f : W1 →W0 be wcx of degree d .

Let Σ = {1, . . . ,d}N and
σ : Σ→ Σ the shift. Then there exists a semiconjugacy

π : Σ→ X

such that
π ◦ σ = f ◦ π

Idea: geometric coding



Proof: the geometric coding
Let f : W1 →W0 be wcx of degree d . Let Σ = {1, . . . ,d}N and
σ : Σ→ Σ the shift.

Then there exists a semiconjugacy

π : Σ→ X

such that
π ◦ σ = f ◦ π

Idea: geometric coding



Proof: the geometric coding
Let f : W1 →W0 be wcx of degree d . Let Σ = {1, . . . ,d}N and
σ : Σ→ Σ the shift. Then there exists a semiconjugacy

π : Σ→ X

such that
π ◦ σ = f ◦ π

Idea: geometric coding



Proof: the geometric coding
Let f : W1 →W0 be wcx of degree d . Let Σ = {1, . . . ,d}N and
σ : Σ→ Σ the shift. Then there exists a semiconjugacy

π : Σ→ X

such that
π ◦ σ = f ◦ π

Idea: geometric coding



Proof: the geometric coding
Let f : W1 →W0 be wcx of degree d . Let Σ = {1, . . . ,d}N and
σ : Σ→ Σ the shift. Then there exists a semiconjugacy

π : Σ→ X

such that
π ◦ σ = f ◦ π

Idea: geometric coding



Proof: the geometric coding
Let f : W1 →W0 be wcx of degree d . Let Σ = {1, . . . ,d}N and
σ : Σ→ Σ the shift. Then there exists a semiconjugacy

π : Σ→ X

such that
π ◦ σ = f ◦ π

Idea: geometric coding



Proof: the geometric coding
Let f : W1 →W0 be wcx of degree d . Let Σ = {1, . . . ,d}N and
σ : Σ→ Σ the shift. Then there exists a semiconjugacy

π : Σ→ X

such that
π ◦ σ = f ◦ π

Idea: geometric coding



Proof: the geometric coding
Let f : W1 →W0 be wcx of degree d . Let Σ = {1, . . . ,d}N and
σ : Σ→ Σ the shift. Then there exists a semiconjugacy

π : Σ→ X

such that
π ◦ σ = f ◦ π

Idea: geometric coding



Proof: the geometric coding
Let f : W1 →W0 be wcx of degree d . Let Σ = {1, . . . ,d}N and
σ : Σ→ Σ the shift. Then there exists a semiconjugacy

π : Σ→ X

such that
π ◦ σ = f ◦ π

Idea: geometric coding



Proof: no periodic critical points→ no entropy drop
Lemma (No entropy drop)
For any invariant measure µ, we have

hµ(σ) = hσ∗µ(f )

For a finite orbit (xi), we call an ε-singular time an index i s.t.
exists y with f (xi) = f (y) and d(xi , y) < ε.

Lemma
For any 0 < ζ < 1 there exists ε s.t.

#{i ≤ n : xi is ε− singular } ≤ ζn

Lemma⇒ Sn,x := #{n-cylinders intersecting π−1(x)}

lim
n→∞

1
n

log Sn,x = 0

“fiber is subexponentially small”→ no entropy drop
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Periodic critical points

Warning: for periodic critical points entropy may drop for some
measure µ.
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The blowup procedure
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The end

Thank you!


