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The Poisson representation formula

Theorem
Given an integrable function f : S1 → R,

the function u : D→ R

u(reiθ) =
1

2π

∫ π

−π
Pr (θ − t)f (eit ) dt

is harmonic on D, i.e. ∆u = 0. Here,

Pr (θ) :=
1− r2

1 + r2 − 2r cos θ

is the Poisson kernel.
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The Poisson representation formula - III

Recall PSL(2,R) = Isom+(H).

Given a = reiθ ∈ D, consider

ga(z) :=
z − a
1− az

so that ga(a) = 0, hence

g′a(z) :=
1− |a|2

(1− az)2

and setting z = eit we obtain

dgaλ

dλ
(t) =

∣∣∣g′a(eit )
∣∣∣ =

1− r2

|1− rei(t−θ)|2
= Pr (θ − t)

RN derivative of boundary action = Poisson kernel
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Let G be a (lcsc) group, µ a probability measure on G.

Definition
A function u : G→ R is µ-harmonic if

u(g) =

∫
G

u(gh) dµ(h)

for all g ∈ G.
Let B be a space on which G acts (measurably). A measure ν
on B is µ-stationary if

ν =

∫
G

gν dµ(g).
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Random walks and µ-boundaries

Let µ be a prob. measure on G.

Consider the random walk

wn := g1g2 . . . gn

where (gi) are i.i.d. with distribution µ.

We denote Ω := (wn) the space of sample paths, and
T ((wn)) := (wn+1) is the shift on Ω.

Definition
A space (B, ν) is a µ-boundary if there exists a measurable map

bnd : Ω→ B

such that bnd = bnd ◦ T .
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Boundary convergence
Suppose that G < Isom(X ,d) a metric space, and that X has a
“bordification” X = X ∪ ∂X .

Let o ∈ X a base point.

o
w1o w2o

ξ

In most situations,
lim

n→∞
wno ∈ ∂X

exists a.s.
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Then we define the hitting measure

ν(A) := P( lim
n→∞

wno ∈ A)

which is µ-stationary.
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Moreover, (∂X , ν) is a µ-boundary, given by the map

Ω 3 bnd(ω) := lim
n→∞

wno ∈ ∂X
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General Poisson representation - II (Furstenberg)
Let G be a (lcsc) group, µ a probability measure on G, let (B, ν)
be a µ-boundary.

The Poisson transform Φ : L∞(B, ν)→ H∞(G, µ) is

Φf (g) :=

∫
B

f dgν

Definition
A µ-boundary (B, ν) is the Poisson boundary if Φ is an
isomorphism

L∞(B, ν)→ H∞(G, µ)

Corollary
Poisson boundary is trivial (= 1 point)⇔ bounded harmonic
functions are constant
Examples. Abelian groups; nilpotent groups
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Identification of the Poisson boundary

Let G < Isom(X ,d) be a group, µ a measure on G, ν the hitting
measure on ∂X .

Question. Is (∂X , ν) the Poisson boundary for (G, µ)?

(Some) History.

I Furstenberg ’63: semisimple Lie groups
I Kaimanovich ’94: hyperbolic groups
I Karlsson-Margulis ’99: isometries of CAT(0) spaces
I Kaimanovich-Masur ’99: mapping class group
I Bader-Shalom ’06: isometries of affine buildings
I Gautero-Mathèus ’12: relatively hyperbolic groups
I Horbez ’16 : Out(Fn)
I Maher-T. ’18: Cremona group
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Ray approximation

Let G be a countable group and µ a measure on G.

A metric d
on G is temperate if ∃C s.t.

#{g ∈ G : d(o,go) ≤ R} ≤ CeCR

The measure has finite first moment if
∫

G d(o,go) dµ(g) < +∞.

Theorem (Kaimanovich ∼ ’94)
Let d be a temperate metric on G, suppose that µ has finite first
moment w.r.t. d, and let (B, λ) be a µ–boundary. If there are
measurable functions πn : B → G such that

d(wn, πn(bnd(ω)))

n
→ 0

in probability, then (B, λ) is the Poisson boundary.
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Theorem (Kaimanovich ∼ ’94)
If there exists a sequence πn : B → G such that
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n
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in probability,

then (B, λ) is the Poisson boundary.

Corollary
If random walk tracks geodesics sublinearly→ geometric
boundary is Poisson boundary.
Pick πn(ω) := γω(`n).
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Ray approximation

Theorem (Kaimanovich ∼ ’94)
Let d be a temperate metric on G, suppose that µ has finite first
moment w.r.t. d, and let (B, λ) be a µ–boundary. If there are
measurable functions πn : B → G such that

d(wn, πn(bnd(ω)))

n
→ 0

in probability, then (B, λ) is the Poisson boundary.

Question. (Kaimanovich ∼ ’96) Does the same criterion work
for locally compact groups?
(Kaimanovich-Woess ’02) Ray criterion for invariant Markov
operators (intermediate between discrete and lcsc groups)
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Ray approximation for locally compact groups

Let G be a locally compact, second countable group,

and µ a
measure on G. Let m be Haar measure, and ρ := dµ

dm .
A metric d on G is temperate if ∃C s.t.

m({g ∈ G : d(o,go) ≤ R}) ≤ CeCR

Theorem (Forghani-T. ’19)
Let d be a temperate metric on G, suppose that µ has finite first
moment w.r.t. d, and let (B, λ) be a µ–boundary. If there are
measurable functions πn : B → G such that

d(wn, πn(bnd(ω)))

n
→ 0

in probability, then (B, λ) is the Poisson boundary.
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Applications - Isometries of hyperbolic spaces

Recall the drift
` := lim

n→∞

d(o,wno)

n

Theorem (Forghani-T. ’19)
Let X be a proper δ-hyperbolic space and G < Isom(X ) be a
closed subgroup with bounded exponential growth. Let µ be a
(spread-out) measure on G with finite first moment. Then:

I if ` = 0, then the Poisson boundary of (G, µ) is trivial;
I if ` > 0, then the Poisson boundary of (G, µ) is (∂X , ν),

where ∂X is the Gromov boundary.

I For countable G: [Kaimanovich ’94] .
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Applications - Diestel-Leader graphs

Consider the Diestel-Leader graph

DLq,r := {(o1,o2) ∈ Tq × Tr : h1(o1) + h2(o2) = 0}.

and edges (z1, z2) ∼ (y1, y2) if z1 ∼ y1 and z2 ∼ y2.
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3. if V > 0, then the Poisson boundary of (G, µ) is {ω1} × ∂Tr

with the hitting measure.
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The Shannon-McMillan-Breiman theorem
The (Avez) entropy is

H(µ) := −
∑

g

µ(g) logµ(g)

h := lim
n→∞

H(µn)

n
where µn(g) := P(wn = g).

Theorem (Kaimanovich-Vershik ∼ ’83, Derriennic ∼ ’85)
Let G be a countable group and µ a measure on G, with finite
entropy h. Then almost surely

lim
n→∞

(
−1

n
logµn(wn)

)
= h.

Proof. Using subadditivity:

µn+m(wn+m) ≥ µn(wn)µm(w−1
n wn+m)
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The Shannon-McMillan-Breiman theorem

Theorem (Kaimanovich-Vershik ’83, Derriennic ’81)
Let G be a countable group and µ a measure on G, with finite
entropy h. Then almost surely

lim
n→∞

(
−1

n
logµn(wn)

)
= h.

Proof. Using subadditivity:

− logµn+m(wn+m) ≤ − logµn(wn)− logµm(w−1
n wn+m)

and by Kingman’s theorem.

Question. (Derriennic) Can we generalize to locally compact
groups?
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Entropies

Let µ be a measure on G, abs. cont. w.r.t. the Haar measure m

and let ρ := dµ
dm .

The differential entropy is

hdiff (µ) := −
∫

G
ρ(g) log ρ(g)dm(g)

Note: it can be negative!
The Furstenberg entropy of the µ–boundary (B, λ) is

h(λ) :=

∫
G×B

log
dgλ
dλ

(γ) dgλ(γ)dµ(g)
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Poisson boundary

Let (∂G, ν) be the Poisson boundary of (G, µ).

Theorem (Derriennic)
For any µ-boundary (B, λ), we have

h(λ) ≤ h(ν).

If h(ν) is finite, then

h(ν) = h(λ)⇔ (B, λ) is the Poisson boundary
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The Shannon-McMillan-Breiman theorem - locally
compact case

Let G be a lcsc group,

µ a prob. measure on G, µ� m,
ρ := dµ

dm .

Theorem (Forghani-T. ’19)
Let (∂G, ν) be the Poisson boundary of (G, µ). If ρ is bounded
and the differential entropy Hn <∞ for any n, then

lim inf
n→∞

(
−1

n
log

dµn

dm
(wn)

)
= h(ν)

almost surely.
Recall h(ν) = Furstenberg entropy.
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Proof of Shannon theorem

Let (B, λ) be a µ–boundary.

Suppose ρ ≤ C.
Let ρn := dµn

dm , w∞ := bnd(ω).

1. By the ergodic theorem, for P–almost every ω = (wn)

lim
n

1
n

log
dwnλ

dλ
(w∞) = h(λ).

2. Let fn : (M, κ)→ R≥0 with
∫

fn dκ ≤ C. Then

lim inf
n

(
−1

n
log fn(x)

)
≥ 0 κ-a.e.

3. Check ∫
Ω

dwn−1λ

dλ
(w∞)ρn(wn) dP ≤ C.
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Proof of Shannon theorem - II
4. Hence

lim inf
n

(
−1

n
log ρn(wn)− 1

n
log

dwnλ

dλ
(w∞)

)
≥ 0.

lim inf
n

(
−1

n
log ρn(wn)

)
≥ h(λ)

5. (Derriennic)

lim
n→∞

∫
Ω

−1
n

log ρn(wn) dP = h(ν)

6. By Fatou’s lemma

h(λ) ≤
∫

Ω

lim inf
n

(
−1

n
log ρn(wn)

)
dP ≤ lim

n

∫
Ω

(
−1

n
log ρn(wn)

)
dP = h(ν)

7. Thus setting λ = ν, a.s.

lim inf
n

(
−1

n
log ρn(wn)

)
= h(ν)

QED



Proof of Shannon theorem - II
4. Hence

lim inf
n

(
−1

n
log ρn(wn)− 1

n
log

dwnλ

dλ
(w∞)

)
≥ 0.

lim inf
n

(
−1

n
log ρn(wn)

)
≥ h(λ)

5. (Derriennic)

lim
n→∞

∫
Ω

−1
n

log ρn(wn) dP = h(ν)

6. By Fatou’s lemma

h(λ) ≤
∫

Ω

lim inf
n

(
−1

n
log ρn(wn)

)
dP ≤ lim

n

∫
Ω

(
−1

n
log ρn(wn)

)
dP = h(ν)

7. Thus setting λ = ν, a.s.

lim inf
n

(
−1

n
log ρn(wn)

)
= h(ν)

QED



Proof of Shannon theorem - II
4. Hence

lim inf
n

(
−1

n
log ρn(wn)− 1

n
log

dwnλ

dλ
(w∞)

)
≥ 0.

lim inf
n

(
−1

n
log ρn(wn)

)
≥ h(λ)

5. (Derriennic)

lim
n→∞

∫
Ω

−1
n

log ρn(wn) dP = h(ν)

6. By Fatou’s lemma

h(λ) ≤
∫

Ω

lim inf
n

(
−1

n
log ρn(wn)

)
dP ≤ lim

n

∫
Ω

(
−1

n
log ρn(wn)

)
dP = h(ν)

7. Thus setting λ = ν, a.s.

lim inf
n

(
−1

n
log ρn(wn)

)
= h(ν)

QED



Proof of Shannon theorem - II
4. Hence

lim inf
n

(
−1

n
log ρn(wn)− 1

n
log

dwnλ

dλ
(w∞)

)
≥ 0.

lim inf
n

(
−1

n
log ρn(wn)

)
≥ h(λ)

5. (Derriennic)

lim
n→∞

∫
Ω

−1
n

log ρn(wn) dP = h(ν)

6. By Fatou’s lemma

h(λ) ≤
∫

Ω

lim inf
n

(
−1

n
log ρn(wn)

)
dP ≤ lim

n

∫
Ω

(
−1

n
log ρn(wn)

)
dP = h(ν)

7. Thus setting λ = ν, a.s.

lim inf
n

(
−1

n
log ρn(wn)

)
= h(ν)

QED



Proof of Shannon theorem - II
4. Hence

lim inf
n

(
−1

n
log ρn(wn)− 1

n
log

dwnλ

dλ
(w∞)

)
≥ 0.

lim inf
n

(
−1

n
log ρn(wn)

)
≥ h(λ)

5. (Derriennic)

lim
n→∞

∫
Ω

−1
n

log ρn(wn) dP = h(ν)

6. By Fatou’s lemma

h(λ) ≤
∫

Ω

lim inf
n

(
−1

n
log ρn(wn)

)
dP ≤ lim

n

∫
Ω

(
−1

n
log ρn(wn)

)
dP = h(ν)

7. Thus setting λ = ν,

a.s.

lim inf
n

(
−1

n
log ρn(wn)

)
= h(ν)

QED



Proof of Shannon theorem - II
4. Hence

lim inf
n

(
−1

n
log ρn(wn)− 1

n
log

dwnλ

dλ
(w∞)

)
≥ 0.

lim inf
n

(
−1

n
log ρn(wn)

)
≥ h(λ)

5. (Derriennic)

lim
n→∞

∫
Ω

−1
n

log ρn(wn) dP = h(ν)

6. By Fatou’s lemma

h(λ) ≤
∫

Ω

lim inf
n

(
−1

n
log ρn(wn)

)
dP ≤ lim

n

∫
Ω

(
−1

n
log ρn(wn)

)
dP = h(ν)

7. Thus setting λ = ν, a.s.

lim inf
n

(
−1

n
log ρn(wn)

)
= h(ν)

QED



Proof of Shannon theorem - II
4. Hence

lim inf
n

(
−1

n
log ρn(wn)− 1

n
log

dwnλ

dλ
(w∞)

)
≥ 0.

lim inf
n

(
−1

n
log ρn(wn)

)
≥ h(λ)

5. (Derriennic)

lim
n→∞

∫
Ω

−1
n

log ρn(wn) dP = h(ν)

6. By Fatou’s lemma

h(λ) ≤
∫

Ω

lim inf
n

(
−1

n
log ρn(wn)

)
dP ≤ lim

n

∫
Ω

(
−1

n
log ρn(wn)

)
dP = h(ν)

7. Thus setting λ = ν, a.s.

lim inf
n

(
−1

n
log ρn(wn)

)
= h(ν)

QED



The end

Thank you!!!
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