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PLAN OF THE TALK

1. Ergodic theorems for (semi)group actions

("quenched and annealed averaging’)
2. lIrregular points
3. Main results and application to linear cocycles

4. Some ideas in the proofs
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ERGODIC THEOREM (N AND Z ACTIONS)

» Birkhoff (1931)
If 2 (X,p) = (X, p) is a measure
preserving map and ¢ € Ll(,u) then

exists for u-a.e. x, and

/@du=/wdu.

If, in addition, p is ergodic then the time
averages converge a.e. to [ ¢ dpu.
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ERGODIC THEOREM (N AND Z ACTIONS)

» Birkhoff (1931)
If 2 (X,p) = (X, p) is a measure
preserving map and ¢ € Ll(,u) then

exists for u-a.e. x, and

/sﬁdu=/s0du.

If, in addition, p is ergodic then the time
averages converge a.e. to [ ¢ dpu.

» Assume f is continuous and X is a
compact metric space. The basin of
attraction of pu € Mer(f)

1 n—1 o
B(u) := {x e X: = j:ZO(Sﬂ-(X) — /,L}

is a full p-measure set.
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ERGODIC THEOREM (N AND Z ACTIONS)

» Birkhoff (1931)
If f: (X, p) — (X, p) is a measure » RMK: The ergodic theorem

preserving map and ¢ € Ll(,u) then holds non-stationary identically
distributed dynamical systems:

exists for u-a.e. x, and

/sﬁdu=/s0du.

If, in addition, p is ergodic then the time
averages converge a.e. to [ ¢ dpu.

» Assume f is continuous and X is a
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ERGODIC THEOREM (N AND Z ACTIONS)

» Birkhoff (1931)

If f: (X, p) — (X, p) is a measure » RMK: The ergodic theorem
preserving map and ¢ € L'(y) then holds non-stationary identically
distributed dynamical systems:

P(x) = nhj;o . th (F(x o if (f;)teT preserve (X, u) and

@ € L*(11) then
exists for u-a.e. x, and

¢ = p(fy, 00 fy0fy)
/@du = /s@du.
are identically distributed r.v.
If, in addition, p is ergodic then the time (depending on t = (t1, t2,...))

averages converge a.e. to [ ¢ dpu.
e if v is a probability measure on T

» Assume f is continuous and X is a then, for 1N ae. t = (t1, b2, ... )
compact metric space. The basin of

attraction of pu € Mer(f) =

lim = E ©5(x) exists p-a.e.
n—oo N =0
=

1 n—1 o
B(u) := {x e X: = j:ZO(Sﬂ-(X) — M}

is a full p-measure set.
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RMK:

e The skew-product
F: TNxX — TN x X
((tl,tg,...),x) — (O’(tl,tz,...),ftl(x))

preserves I/N X

o Take ¢(t,x) = ¢(x). By the ergodic and

Fubini theorems, for vV-a.e. t there exists

X C X of full u-measure so that
1 n—1 1 n—1 )
=D enl) == @(F(t,x)
n“ n“
Jj=0 Jj=0

exists for every x € X.
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NN
X c , X X RMK:
t SKow _r..\,,_{‘ e The skew-product
F: TNxX — TN x X
((th to, ... ),X) — (O’(tl, to,... ), ftl (X))

preserves I/N X

o Take ¢(t,x) = ¢(x). By the ergodic and
Fubini theorems, for vN-a.e. t there exists
X C X of full u-measure so that

1 n—1 1 n—1 )
h =3 b =~ S @(Fi(Ex)
n < n <
Jj=0 Jj=0
1 L I exists for every x € X.
'.é RMK:

(T,l7 o If C is F-invariant and @ € L1(¢) then

.
G~ S'A;F'} o1t ; )
nl_l)moO - Z P(F/(t, x)) exists
j=0
for (m1)«(-a.e. t and for every x € X;,
where X; C X is a full us-measure set
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ERGODIC THEOREMS (MORE GENERAL GROUP ACTIONS)

G finitely generated (semi)group
G ={g1,8,...,8:} generating set (or G1 = {g;/ ", &'",..., 85"}
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ERGODIC THEOREMS (MORE GENERAL GROUP ACTIONS)

Main results Ideas in the proofs

G finitely generated (semi)group
G ={g1,8,...,8:} generating set (or G1 = {g;/ ", &'",..., 85"}
Assume S : G x X — X is a continuous group action:

(i) for every g € G, the map S; := S(g,-) : X = X is continuous,
(i) Shg = Sho Sg for every g, h € G.
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ERGODIC THEOREMS (MORE GENERAL GROUP ACTIONS)

G finitely generated (semi)group
Gi = {g1,8,...,8} generating set (or G = {gt*, gi",...,gF'})
Assume S : G x X — X is a continuous group action:
(i) for every g € G, the map S; := S(g,-) : X = X is continuous,
(i) Shg = Sho Sg for every g, h € G.

» Templeman (1967) Lindenstrauss
(2001)

If G is an amenable group acting by
measure preserving maps, ¢ € L*(p)
and (Fn)n>1 is a tempered Fglner
sequence then

1
nhg;T?nggg,w(g(X))

exists for p-a.e. x
A Fglner sequence is tempered if 3C > 0 s.t.

‘ U FR|<cfl vinen
1<k<n
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ERGODIC THEOREMS (MORE GENERAL GROUP ACTIONS)

G finitely generated (semi)group
G ={g,8,...

8~} generating set  (or G = {g; & ..., 8 })

Assume S : G x X — X is a continuous (semi)group action:
(i) for every g € G, the map S; := S(g,-) : X = X is continuous,

(i) Shg = Sho Sg for every g, h € G.

» Templeman (1967) Lindenstrauss
(2001)

If G is an amenable group acting by
measure preserving maps, ¢ € L*(p)
and (Fn)n>1 is a tempered Fglner
sequence then

1
nufl;Tﬁj[2§;1¢(g(X))

exists for p-a.e. x
A Fglner sequence is tempered if 3C > 0 s.t.

‘ U FR|<cfl vinen
1<k<n

» Guivarch (1969), Nevo & Stein
(1994), Bufetov (2002)

If the free group G = F,; acts by
measure preserving maps and

p € LP(u) (p > 1) then

lim = 3 o(g(x))

n—oo 2k(2Kk — 1)" &

exists for p-a.e. x

Ideas in the proofs
0000000000000
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ERGODIC THEOREMS (MORE GENERAL GROUP ACTIONS)

G finitely generated (semi)group

G ={g1,8,...,8} generating set (or G = {gt*, g",...,gF'})

Assume S : G x X — X is a continuous group action:

(i) for every g € G, the map Sz := S(g,-) : X — X is continuous,
(i) Shg = Sho Sg for every g, h € G.

» Pathwise ergodic theorem Cayley graph g

a, 1?0 ~ ;;Tg‘ T 9 Ta"

L —» 7t
J\:\ 9' e a_‘T (. Ta)
" .'. 0—5‘4..———}. com
(o . z* 8
2 2

Coding of infinite paths:
F. =G (or {1,2,...,8}* = G)

P random walk on F,
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ERGODIC THEOREMS (MORE GENERAL GROUP ACTIONS)
G finitely generated (semi)group
G ={g1,8,...,8} generating set (or G = {gt*, g",...,gF'})
Assume S : G x X — X is a continuous group action:
(i) for every g € G, the map Sz := S(g,-) : X — X is continuous,
(i) Shg = Sho Sg for every g, h € G.

» Pathwise ergodic theorem Cayley graph G
7

£

<<( H
Coding of infinite paths:
F. =G (or {1,2,...,8}* = G)

P random walk on F,
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ERGODIC THEOREMS (MORE GENERAL GROUP ACTIONS)
G finitely generated (semi)group
Gi = {g1,8,...,8} generating set (or G = {gt*, gi",...,gF'})
Assume S : G x X — X is a continuous group action:
(i) for every g € G, the map Sz := S(g,-) : X — X is continuous,
(i) Shg = Sho Sg for every g, h € G.

» Pathwise ergodic theorem
If G acts by measure preserving maps Cayley graph G

and ¢ € L'(p) then 'almost all’ infinite
paths in the Cayley graph G are so that <

- 1 n—1
Jim 3 A8 00 e, ()

exists for p-a.e. x Coding of infinite paths:

F. =G (or {1,2,...,5}* = G)

P random walk on F,
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ERGODIC THEOREMS (MORE GENERAL GROUP ACTIONS)
G finitely generated (semi)group
Gi = {g1,8,...,8} generating set (or G = {gt*, gi",...,gF'})
Assume S : G x X — X is a continuous group action:

(i) for every g € G, the map S; := S(g,-) : X = X is continuous,

(ii) Shg = Sho Sg for every g, h € G.

» Pathwise ergodic theorem

If G acts by measure preserving maps Cayley graph G
and ¢ € L'(p) then 'almost all’ infinite
paths in the Cayley graph G are so that <<

n—1 H

.1
Jim 3 3 g 00 e, ()

exists for pi-a.e. x Coding of infinite paths:

» RMK: Ghys (2001) proved that a F. =G (or {1,2,...,5}* = G)
Baire generic pair (f, g) € Homeo(M)
generates a free group

P random walk on Fy,
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IRREGULAR BEHAVIOR (a.k.a. non-typical or historical behavior)

» x € X is p-irregular if
n—1

1 ; .
nllﬁngo ; Zoga(f (x)) does not exist
=

» I, (f) is the set of y-irregular points

» s is the set of ®-irregular points, for
® = (gn)nz1 € C(X)"
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IRREGULAR BEHAVIOR (a.k.a. non-typical or historical behavior)

» x € X is p-irregular if
n—1

1 ; .
nllﬁngo ; Zoga(f (x)) does not exist
=

» I, (f) is the set of y-irregular points
» s is the set of ®-irregular points, for
¢ = (pn)nz1 € C(X)Y

Examples:

e [, may be empty
(e.g. p=u—uof)
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IRREGULAR BEHAVIOR (a.k.a. non-typical or historical behavior)

» x € X is p-irregular if
n—1

1 ; .
nllﬁngo ; Zoga(f (x)) does not exist
=

» I, (f) is the set of y-irregular points
» s is the set of ®-irregular points, for
® = (gn)nz1 € C(X)"
Examples:

e [, may be empty

(e.g. p=u—uof)

e I, may be empty Yy € C(X)

(e.g. f uniquely ergodic)
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IRREGULAR BEHAVIOR (a.k.a. non-typical or historical behavior)
» x € X is p-irregular if

n—1

1 ; .
nllﬁngo ; Zoga(f (x)) does not exist
=

» I, (f) is the set of y-irregular points
» s is the set of ®-irregular points, for
¢ = (pn)nz1 € C(X)Y
Examples:
e [, may be empty
(e.g. p=u—uof)
e I, may be empty Yy € C(X)

(e.g. f uniquely ergodic)

e |, may contain open sets

Figure: Irregular behavior on Bowen's eye
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IRREGULAR BEHAVIOR (a.k.a. non-typical or historical behavior)

» A dichotomy (Takens 94', 08", Barreira,

» x € X is p-irregular if
Schmeling 00’, Chen, Kiipper, Shu 05’, Li, Wu 13',... )

n—1
lim 1 ng(fj(x)) does not exist If f:S' — S is C**“-expanding map
e s and ¢ : S' — R is Hélder then
> I,(f) is the set of p-irregular points () 1,(f) =0,
» s is the set of ®-irregular points, for or

® = (gn)nz1 € C(X)"
(n)o=1 ) (b) 1,(f) is Baire generic, has full

topological entropy and full

Examples:
Hausdorff dimension

e [, may be empty
(e.g. p=u—uof)
e I, may be empty Yy € C(X)

(e.g. f uniquely ergodic)

e |, may contain open sets

Figure: Irregular behavior on Bowen's eye
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IRREGULAR BEHAVIOR (a.k.a. non-typical or historical behavior)

» A dichotomy (Takens 94', 08", Barreira,

» x € X is p-irregular if
Schmeling 00’, Chen, Kiipper, Shu 05’, Li, Wu 13',... )

n—1

lim 1 ng(fj(x)) does not exist If £:S' — St is C**_expanding map
nree NS and ¢ : S* — R is Holder then

> I,(f) is the set of p-irregular points () 1,(f) =0,

» s is the set of ®-irregular points, for or

¢ = n)n (S C X N
(pn)nzr € €(X) (b) 1,(f) is Baire generic, has full

Examples: topological entropy and full

Hausdorff dimension
e [, may be empty

(e.g. p=u—uof) .
Questions:
e I, may be empty Yy € C(X)

1. Are there simple criteria to detect
(e.g. f uniquely ergodic)

when I, (f) is Baire generic?

e I, may contain open sets 2. Can one expect such dichotomies
in the context of group actions?

3. Can one describe the irregular
sets of typical group actions
(Birkhoff and group averaging)?

Figure: Irregular behavior on Bowen's eye
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MaIN RESULTS (N AND R, CONTINUOUS ACTIONS)
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MAIN RESULTS (N AND R, CONTINUOUS ACTIONS)

e

Theorem 1 (Carvalho, V., 2021")
Let f be a continuous map on a compact metric space X. Given
© € C(X), consider the first integral

n—1
1 .
L =i = @
#(x) i= limsup JZO:@( ()
Assume there exist a, 3 € R and dense sets X,, Xz C X so that
Lo(x) =a < B = Ly(y) for every x € X, and y € Xz. Then I,(f)
is a Baire generic subset of X.
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MAIN RESULTS (N AND R, CONTINUOUS ACTIONS)

-
Theorem 1 (Carvalho, V., 2021")
Let f be a continuous map on a compact metric space X. Given
© € C(X), consider the first integral
1 n—1 )
L =i = i
o(x) Irrjlsolipn;so( (x))
Assume there exist a, 3 € R and dense sets X,, Xz C X so that
Lo(x) =a < B = Ly(y) for every x € X, and y € Xz. Then I,(f)
is a Baire generic subset of X.
G

RMK: The assumptions are verified whenever there exist two distinct ergodic
measures whose basins are dense in X (even if these are not fully supported)

Examples: Hyperbolic sets, continuous maps with specification, homoclinic
classes, minimal non-uniquely ergodic maps, Lorenz attractors, singular
hyperbolic flows, ...
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MAIN RESULTS (GROUP AVERAGING)

e

Theorem 2 (Carvalho, Coelho, Salgado, V., preprint 2021")
Let X be a Baire metric space, ® = (¢n)ns1 € C(X)" and

We(x) = acc(pn(x))n>1
Assume there exist dense subsets Dy, D> C X and € > 0 such that

sup sup la—b| > e.
x€D1,y€Dy a€We(x),bEWo(y)

Then Is(f) is a Baire generic subset of X.
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-
Theorem 2 (Carvalho, Coelho, Salgado, V., preprint 2021")
Let X be a Baire metric space, ® = (¢n)ns1 € C(X)" and
We(x) = acc(pn(x))n>1
Assume there exist dense subsets Dy, D> C X and € > 0 such that
sup sup la—b| > e.
x€D1,y€Dy a€We(x),bEWo(y)
Then Is(f) is a Baire generic subset of X.
\
Example:

81,8 : St — st

g1(x) = 2x(mod 1)

g2(x) = 3x(mod 1)

p, g common periodic points
peC(SY) st [wdup# [dug
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-
Theorem 2 (Carvalho, Coelho, Salgado, V., preprint 2021")
Let X be a Baire metric space, ® = (¢n)ns1 € C(X)" and
We(x) = acc(pn(x))n>1
Assume there exist dense subsets Dy, D> C X and € > 0 such that
sup sup la—b| > e.
x€D1,y€Dy a€We(x),bEWo(y)
Then Is(f) is a Baire generic subset of X.
\
Example:
8,8 St =St

g1(x) = 2x(mod 1)

g2(x) = 3x(mod 1)

p, g common periodic points
peC(SY) st [wdup# [dug
O~ (p) and O~ (q) are dense in S*
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MAIN RESULTS (GROUP AVERAGING)

e

Theorem 2 (Carvalho, Coelho, Salgado, V., preprint 2021")
Let X be a Baire metric space, ® = (¢n)ns1 € C(X)" and

We(x) = acc(pn(x))n>1
Assume there exist dense subsets Dy, D> C X and € > 0 such that

sup sup la—b| > e.
x€D1,y€Dy a€We(x),bEWo(y)

Then Is(f) is a Baire generic subset of X.

.

Example:
81,8 - st st If then

g1(x) = 2x(mod 1) 1 <& o
22(x) = 3x (mod 1) — > ¢leigl()
p, g common periodic points i,j=0

peC(SY) st [dup# [wdug and .,
O~ (p) and O~ (q) are dense in S! 2% o(g(x)) = 2% Z (”'7><p(g{g2nfi( )
lgl=n i=0

converge to [ @ du
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MAIN RESULTS (GROUP AVERAGING)

-
Theorem 2 (Carvalho, Coelho, Salgado, V., Preprint 2021")
Let X be a Baire metric space, ® = (@)1 € C(X)" and
Wa(x) = acc(@n(x))n=1
Assume there exist dense subsets D;, D> C X and € > 0 such that
sup sup la—b| >e.
x€D1,y€Dy a€Wo(x),bEWo(y)
Then Is(f) is a Baire generic subset of X.
G
Example: Corollary: The sets
g, St =& 1 o
g1(x) = 2x (mod 1) {xes' 5> wlelgh(x)) diverges}
n
g2(x) = 3x(mod 1) i,j=0
p, g common periodic points L1 )
p € C(SY) st. [odup# [pdug {X est: o0 Z o(g(x)) dlverges}

lgl=n
are Baire residual subsets of S!.
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MAIN RESULTS (AVERAGING ALONG PATHS)
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MAIN RESULTS (AVERAGING ALONG PATHS)

X compact metric space

G ={id, fi,f,..., .} generators

G (semi)group generated by Gi

S : G x X — X continuous semigroup action

S has frequent hitting times if Ve > 0 3K (¢) >0
so that the following holds:

given Bi, B, C X balls of radius € and

0 < 0 < 3, respectively, there exists
0<p<KE),wex, ={1,2,...,k}" and a
ball B; C B; of radius §/2 so that f2(B1) D B;.

iterates

] 0<p< K(e)

5
ball of radius -
]
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MAIN RESULTS (AVERAGING ALONG PATHS)

X compact metric space

G ={id, fi,f,..., .} generators

G (semi)group generated by Gi

S : G x X — X continuous semigroup action

S has frequent hitting times if Ve > 0 3K (¢) >0
so that the following holds:

given Bi, B, C X balls of radius € and

0 < 0 < 3, respectively, there exists
0<p<KE),wex, ={1,2,...,k}" and a
ball B; C B; of radius §/2 so that f2(B1) D B;.

iterates

] 0<p< K(e)

5
ball of radius =
]

RMKS:
» Every minimal action by isometries has frequent hitting times

» The frequent hitting times condition implies that the sequence of return times to balls of radius € are syndetic
(with uniform constant)
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Theorem 3 (Ferreira, V., 2021")
Let X be a compact metric space and
S : GxX — X be a semigroup action ge-
nerated by bi-Lipschitz homeomorphisms
G = {f,f,...,fx}. If S has frequent
hitting times and ¢ € C(X) is not a co-
boundary for some f; then the set

1 n—1 ; )
I,(S) == {X e X " gcp(gw(x)) diverges

along some infinite path in G}
is Baire generic in X. Moreover:
() h(S, k() = HP™ ()
(ii) H2(S, E(¢)) > h- () — log

L

~

hCtY (S, -) = Ghys-Langevin-Walczak's entropy (1988)
hB(S,-) = Bufetov's entropy (1999)
HPInske () = ¢ if Ve > 0311, o € Merg(F) that

distinguish ¢ and hy,(F | o) > c—¢

hi(p) =cif Ve >0
3pa, p2 € Merg(F) that
distinguish ¢ and
hu,(F)>c—¢
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SOME NOTIONS OF ENTROPY:

X compact metric space

G ={id, g1,8,...,8} continuous, G = Un>1 G, semigroup

® x,y € X are (n,¢)-separated along the path g.,, o -+ 0 gu, o g, if there
exists 1 <j < ns.t. d(gl(x),g,(y)) >¢

® Entropy of infinite path F., = (gZ,); in G (Kolyada-Snoha 96'):
h(F) = lim limsup 1 log s(w, n, €)
e=0 pso00 N

where s(w, n,e) = max. card. of (n,e)-separated points along path

® GLW-entropy of semigroup action (Ghys-Langevin-Walczak 88'):

AY(S) = lim limsup = ! Iogs(G, n,e)

€20 psoo
where s(G, n,e) = max. card. of points separated by G, elements

® B-entropy of free semigroup action (Bufetov 99'):

hB(S) = I|m I|m nsup Iog( 1 Z s(w, n, 5))

gE€Gy
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MAIN RESULTS (AVERAGING ALONG PATHS)

( B

Theorem 4 (Ferreira, V., 2021")

Let X be a compact metric space and
S: GxX — X be a semigroup action ge-
nerated by bi-Lipschitz homeomorphisms
G = {f,h,...,f}. If S has frequent
hitting times, some f; is minimal and
@ € C(X) is not a coboundary for some
f; then

n—1
Lo (@) == {x eX: %Zga(g{d(x)) diverges}
j=0

satisfies:

(i) {w € X.: L,(p)Baire generic in X}
is Baire generic in X,

(if) supues, b, () (Fu) = H™ (1))
(i) {w € St gy (Fu) > HPP(3))
has entropy > HE"Ke"(4))

\ J

Ho(w) =cifVe>03pu1,u € Merg(F) that
distinguish ¢ and hx,u,(0) > c—¢
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MAIN RESULTS (AVERAGING ALONG PATHS)

e ™ %w. Y2 .

Theorem 4 (Ferreira, V., 2021")

Let X be a compact metric space and
S: GxX — X be a semigroup action ge-
nerated by bi-Lipschitz homeomorphisms
G = {f,h,...,f}. If S has frequent
hitting times, some f; is minimal and >
@ € C(X) is not a coboundary for some
f; then

n—1
1 .
Lo (@) == {x eX:— Zg@(gﬁ,(x)) diverges} : .
n “
= wel ‘éjfdc..ﬁ
satisfies:
(i) {w € X.: L,(p)Baire generic in X}
is Baire generic in X,
(if) suPyex,, h(w)(Fo) > H™ ()

(i) {w € Tt hyyp(Fu) > HP™(3)}

i RMK: Item (i) still holds without the
has entropy > HE"ser(q)) ®
minimality assumption. Previous results

L J
Ho () = c if Ve > 03u1, 2 € Merg(F) that
distinguish ¢ and hx, 4 (0) > c—¢

by Nakano (2017) on random circle

expanding maps.
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APPLICATION: LYAPUNOV IRREGULAR BEHAVIOR
Given Ay, Ao, ..., A. € SL(d,R) and
w € X, set A(")(w) = Au, - Ay Auy
» Furstenberg-Kesten (1960) if u = v/*
the top Lyapunov exponent is (u-a.e.)

. 1 n
A(Av) = lim ~log||A”(w)]|

» Furstenberg (1963) if u = 1%, the
semigroup generated by matrices is
non-compact and strongly irreducible
on supp v then A\ (A,v) > 0.
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APPLICATION: LYAPUNOV IRREGULAR BEHAVIOR
Given A1, Az, ..., Ac € SL(d,R) and
w € X, set A(")(w) = Au, - Ay Auy
» Furstenberg-Kesten (1960) if p = v/%
the top Lyapunov exponent is (u-a.e.)

. 1 n
A(Av) = lim ~log||A”(w)]|

» Furstenberg (1963) if u = 1%, the
semigroup generated by matrices is
non-compact and strongly irreducible
on supp v then A\ (A,v) > 0.

» Skew-product

Fa: Yo xR — Y. x R
(x,v) = (f(x),A(x) - v)

» Projective cocycle

Pa: Y. x PR — Y. x PRY

(w, V) = (o(w), ”;“ :; t“)
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APPLICATION: LYAPUNOV IRREGULAR BEHAVIOR

Given A1, Ay, ..., Ax € 5L(d,R) and » Sumi- V.-Yamamoto (2016)

(n) —
w € Xw set A(W) 1= Auy - Auy Ay these skew-products do not satisfy the
» Furstenberg-Kesten (1960) if u = v/* specification property
the top Lyapunov exponent is (u-a.e.)

. 1 n
A(Av) = lim ~log||A”(w)]|

» Furstenberg (1963) if u = 1%, the
semigroup generated by matrices is
non-compact and strongly irreducible
on supp v then A\ (A,v) > 0.

» Skew-product

Fa: Yo xR — Y. x R
(x,v) = (f(x),A(x) - v)

» Projective cocycle

Pa: Y. x PR — Y. x PRY

(w, V) = (o(w), ”;“ :g t“)
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APPLICATION: LYAPUNOV IRREGULAR BEHAVIOR

Gl\éer;:Ahfz)\{r;).(’?ﬁfASL(dJ? a:\d » Sumi- V.-Yamamoto (2016)
“ n S€ W)= Ao Aanflen these skew-products do not satisfy the
» Furstenberg-Kesten (1960) if u = v/* specification property

the top Lyapunov exponent is (p-a.e. . . . .
pLyap P (u ) » In low dimension the linear cocycle is

.1 n 'often’ strongly projectively accessible
Ae(A) = lim ~log | A”(w)] Bly projectively
n—oco N

(i.e. the projective semigroup action on X = PRY has

frequent hitting times)

» Furstenberg (1963) if u = 1%, the
semigroup generated by matrices is
non-compact and strongly irreducible

on suppv then Ay (A,v) > 0. 0<p<Ke)
iterates
» Skew-product
Fa: Yo xR — Y. x R
(x,v) = (F(x),A(x) - v)
» Projective cocycle Example: SO(3,R) matrices (o, 8 ¢ Q)

PA: ZK X PRd — Z,i X PRd ( cos —sina 0 > ( 1 0 0 )

A(w)-v sin cos o 0 0 cosB —sinf
(w,v) = (o(w), TA(w)- V||) 0 0 1 0 sinB  cosp
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APPLICATION (LYAPUNOV IRREGULAR BEHAVIOR)

— € PR fixed
\

{v is Lyapunov irregular direction}

™\ N

-

Theorem 5 (Ferreira, V., 2021") (V/ _

If A1, As,...,As € SL(d,R) generate a non- Baire seneri
compact and strongly projectively accessible g N &

semigroup then: [ -
e for each v € PRY there exists R, C ¥, 5,

Baire generic, with entropy at least h.(pa)
s.t. for every w € R,

liminf 1 log ||A"(w)v|| < limsup E log || A" (w)v||
n—oo n n—oco N

()
o there exists a Baire residual subset R C X
and a dense subset D C PRY so that (x)
holds for every w € R and every v € D.
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APPLICATION (LYAPUNOV IRREGULAR BEHAVIOR)

~ — N PR fixed
Theorem 5 (Ferreira, V., 2021") (V foistan # :I '
If A1, Ay, ..., A, € SL(d,R) generate a non- Baire g
compact and strongly projectively accessible ] T &
semigroup then:
e for each v € PRY there exists R, C ¥,
Baire generic, with entropy at least h.(pa)
s.t. for every w € R,

-

RMK: Previous results on irregular

o1 . 1
liminf — |0g HA"(UJ)VH <lim sup — IOg HA”(UJ)V” behavior for the top Lyapunov exponent
n—oo n n—oco N

(*) of Halder continuous cocycles: Herman
e there exists a Baire residual subset R C X, (1981), Furman (1997), Tian (2015,
and a dense subset D C PRY so that (x) 2017) These rely on very different
holds for every w € R and every v € D. techniques: (i) u.s.c. of

) w— At (A, f, ), (ii) bounded

distortion for linear cocycles by Kalinin

(2011)



Main results
0000000000e

APPLICATION (LYAPUNOV IRREGULAR BEHAVIOR)

e )
Corollary (Ferreira, V., 2021")
Let H C G2.(Xx, SL(3,R)) be the set of hyper-
bolic cocycles. There exist C°-open sets I/, and
U> so that Uy U U, is dense in H and:

1. if B € U; then the set of Lyapunov
irregular points in X, is Baire generic and
has full entropy

2. there exists R C U> C°-Baire residual and
full Haar measure s.t. if B € R then

1 1
liminf — log || B"(w)v|| < limsup — log || B"(w)v]|.
n—oo n n—oo N

for generic w € ¥,; and a dense set of
vectors D, C EJ.
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A BASIC STRATEGY ( = quantitative control on recurrence)
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trol on recurrence)
® take pu1, p2 ergodic so that [¢dus # [ du

® pick x1,% so that 237" F(F(x)) = [¢dui (i=1,2)

® MmMLMmMEMmEmKL . .. (arbitrary choice)

A BASIC STRATEGY ( = quantitative co

® uniform continuity + specification = there exists z, which approximates
well the finite orbits of x; and x alternatively
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trol on recurrence)
® take pu1, p2 ergodic so that [¢dus # [ du

® pick x1,% so that 237" F(F(x)) = [¢dui (i=1,2)

® MmMLMmMEMmEmKL . .. (arbitrary choice)

A BASIC STRATEGY ( = quantitative co

® uniform continuity + specification = there exists z, which approximates
well the finite orbits of x; and x alternatively

00---O%---%111---L%---%x0000---0x*---%...11111---1
—— —— ——— —— — ——— —_—
ny <p n <p n3 <p nk
Zk+1 IS a point that 1/2k-shadows zx and the next finite piece of orbit.

® 7z = limk_—oo Zk is -irregular
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A BASIC STRATEGY ( = quantitative control on recurrence)
® if u1, o ergodic large entropy s.t. [ dps # [ dua
® find many points x; so that %Z}’;OI (F(x)) — [ dui

® uniform continuity + specification = there exist many irregular points
z = lim, z, as before

~ el hiop(f) ~ ™2 hh»];'f) ~ (ru;//y‘,_ (f)

(nq,&) — sep (no, ) — sep (n3,g) — sep
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A BASIC STRATEGY ( = quantitative control on recurrence)
® if u1, o ergodic large entropy s.t. [ dps # [ dua
® find many points x; so that %Zj";ol (F(x)) — [ dui

® uniform continuity + specification = there exist many irregular points
z = lim, z, as before

~ "1 htop(f) ~ N2 /m,],lf) ~ ¢ n3 hiop(f)

(ny,€) — sep (no,g) — sep (n3, ) sep

® Similar reasoning yields a Baire generic set

HOWEVER: This argument requires bounded transitions!
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ToOoy MODEL
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ToOoy MODEL

image of B, (v.ny. )

B, (v, n,¢) has size ~ "¢
image of : : @
B, (v9,ny, |

H
has size ‘;
~ 0~z .
- - d

'
'
'
'
'
'
v

Ve
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ToOoy MODEL

image of transition time
B, (v.ny.€)

image of
B, (vy,ny,¢)

has size

~ 0 Mg

Ve
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ToOoy MODEL

image of transition time
B, (v.ny.€)

image of : : :

B, (v9,ny,

has size
~ 6 Me

'
'
'
'
'
'
v
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ToOoy MODEL

image of transition time B, (v1,ny, €)
B, (v, n,¢) < 1 has ~f0"

~f-me

image of
B, (vy,ny,¢)

~ 0 Me

:

H

- H

has size '
.

0

Ve
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transition time
1
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DEPENDS ON ny




Ergodic theorems & Irregular points Main results Ideas in the proofs
00000000 00000000000 0000000008000

A DIFFERENT APPROACH
® if u1, o ergodic large entropy s.t. [ dps # [ dua
® find many points x; so that %Z}':_Ol V(F(x:)) = [ dpi

® -

° -

[ ]
~ o™ hop(f) ~ "2 htop(f)
(ny,e) — sep (no, ) — sep

variable length < et



Ergodic theorems & Irregular points Main results
00000000 00000000000

A DIFFERENT APPROACH
® if u1, 2 ergodic large entropy s.t. [ dps # [ dua

e find many points x; so that %ZJ’.’:_OI (A (%)) = [ du

n2 hiop(f)

~ e

no, €) — sep

~ o1 htop(f)

(n1,€) —sep

1 ’ ny needs
econst n; to be chosen

a posteriori

points with same transition time

Ideas in the proofs
0000000000800
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A DIFFERENT APPROACH
® if u1, 2 ergodic large entropy s.t. [ dps # [ dua
® find many points x; so that %Z}’;OI Y(F(x)) = [ dui

n1 hiop(f ~ "2 htop(f)

€

(nq,€) — sep (no,€) — sep

1

[ ny needs
emnst ny

to be chosen

points with same transition time | & posteriori

¢ MKLMmLEMmENK ... (properly chosen)

® bridge between linear cocycles and projective dynamics, build Moran sets
with large entropy, ...
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