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Topological entropy of real maps

Let f : I → I, continuous.

htop(f ,R) := lim
n→∞

log #{laps(f n)}
n

Entropy measures the randomness of the dynamics.
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The function c → htop(fc ,R):

I is continuous and monotone (Milnor-Thurston, 1977).
I 0 ≤ htop(fc ,R) ≤ log 2.

Remark. If we consider fc : Ĉ→ Ĉ entropy is constant
htop(fc , Ĉ) = log 2.



Mandelbrot set

The Mandelbrot setM is the connectedness locus of the
quadratic family

M = {c ∈ C : f n
c (0) 9∞}



External rays
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Since Ĉ \M is simply-connected, it can be uniformized by the
exterior of the unit disk

ΦM : Ĉ \ D→ Ĉ \M
The images of radial arcs in the disk are called external rays.
Every angle θ ∈ S1 determines an external ray

R(θ) := ΦM({ρe2πiθ : ρ > 1})
An external ray R(θ) is said to land at x if

lim
ρ→1

ΦM(ρe2πiθ) = x



External rays
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Rays landing on the real slice of the Mandelbrot set



Harmonic measure
Given a subset A of ∂M, the harmonic measure νM is the
probability that a random ray lands on A:

νM(A) := Leb({θ ∈ S1 : R(θ) lands on A})

For instance, take A =M∩R the real section of the Mandelbrot
set. How common is it for a ray to land on the real axis?
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In the dynamical plane

Douady’s principle : “sow in dynamical plane and reap in
parameter space”
Each fc has a Julia set Jc .
Let

Sc := {θ ∈ S1 : R(θ) lands on Jc ∩ R}

the set of rays landing on the real section (spine) of the Julia
set.
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It also equals:
I The entropy of the induced action on the Hubbard tree Tc

(minimal forward-invariant set containing the critical orbit),
divided by log 2.

I The dimension of the set of biaccessible angles (Zakeri,
Smirnov, Zdunik, Bruin-Schleicher ...)

Corollary
The set of biaccessible angles for the Feigenbaum parameter
(limit of period doubling cascades) cFeig has Hausdorff
dimension 0.
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Complex Hubbard trees
The Hubbard tree Tc of a quadratic polynomial is a forward
invariant subset of the filled Julia set which contains the critical
orbit. The map fc acts on it.
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Proposition
If c is biaccessible in parameter space (there are two distinct
rays landing on c), then fc is topologically finite (i.e. on all veins
ofM).
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A vein is an embedded arc in the Mandelbrot set.



The complex case

A vein is an embedded arc in the Mandelbrot set.

Given a parameter c along a vein, we can look at the set Pc of
parameter rays which land on the vein “below” c.



Veins
Existence of veins converging to dyadic angles
[Branner-Douady, Kahn, Riedl].

For each p/q ∈ Q ∩ (0,1), there exists a unique parameter cp/q
for which:

I the rotation number around the α fixed point is p/q;
I the critical point maps to the β fixed point after exactly q

iterates: f q(0) = β.

Definition
The principal vein vp/q in the p/q limb is the vein joining cp/q to
the center of the main cardioid.

I v1/2 = real axis;
I v1/3 = Branner-Douady vein

The Hubbard tree for all parameters along vp/q is a q-pronged
star.

Pc := {θ ∈ S1 : RM(θ) lands on [0, c]}
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Complex version
Theorem
Let vp/q be the principal vein in the p/q-limb of the Mandelbrot
set, and let c ∈ vp/q. Then

htop(fc ,Tc)

log 2
= H.dim Hc = H.dim Pc



Sketch of proof
1. The rays landing on parameter space land also on the real

section of the Julia set:

Pc ⊆ Sc

2. In order to prove the reverse inequality, one would like to
embed the rays landing on the Hubbard tree in parameter
space. This cannot be done in the renormalized copies.

3. However:

Proposition
If c is a non-renormalizable, real parameter, and c′ > c another
real parameter, there exists a non-constant, piecewise linear
map F : R/Z→ R/Z such that

F (Hc′) ⊆ Pc
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Sketch of proof (continues)

Proposition
If c is a non-renormalizable, real parameter, and c′ > c another
real parameter, there exists a non-constant, piecewise linear
map F : R/Z→ R/Z such that

F (Hc′) ⊆ Pc

4. By continuity,
H.dim Hc = H.dim Pc

for non-renormalizable parameters.
5. By renormalization, the same holds for all parameters

which are not infinitely renormalizable.
6. By density of such parameters (in the space of angles), the

result holds.
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Pseudocenters

Definition
The (dyadic) pseudocenter of a real interval [a,b] with
|a− b| < 1 is the unique dyadic rational number with shortest
binary expansion.

E.g., the pseudocenter of the interval [13
15 ,

14
15 ] is 7

8 = 0.111,
since 13

15 = 0.1101 and 14
15 = 0.1110.



Pseudocenters

Definition
The (dyadic) pseudocenter of a real interval [a,b] with
|a− b| < 1 is the unique dyadic rational number with shortest
binary expansion.

E.g., the pseudocenter of the interval [13
15 ,

14
15 ] is 7

8 = 0.111,
since 13

15 = 0.1101 and 14
15 = 0.1110.



Bonus level: a bisection algorithm

Theorem
Let c1 < c2 be two real parameters on the boundary ofM, with
external angles 0 ≤ θ2 < θ1 ≤ 1

2 .

Let θ∗ be the dyadic
pseudocenter of the interval (θ2, θ1), and let

θ∗ = 0.s1s2 . . . sn−1sn

be its binary expansion, with sn = 1. Then the hyperbolic
window of least period in the interval (θ2, θ1) is the interval of
external angles (α2, α1) with

α2 := 0.s1s2 . . . sn−1

α1 := 0.s1s2 . . . sn−1š1š2 . . . šn−1

(where ši := 1− si ). All hyperbolic windows are obtained by
iteration of this algorithm, starting with θ2 = 0, θ1 = 1/2.
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Pseudocenters and maxima of entropy

Definition
The pseudocenter of a real interval [a,b] with |a− b| < 1 is the
unique dyadic rational number with shortest binary expansion.

Conjecture
Let θ1 < θ2 be two external angles whose rays RM(θ1), RM(θ2)
land on the same parameter. Then the maximum of entropy on
the interval [θ1, θ2] is attained at its pseudocenter θ∗:

max
θ∈[θ1,θ2]

h(θ) = h(θ∗)
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Thurston’s entropy plot



Thurston’s quadratic minor lamination



A transverse measure on QML

Let `1 < `2 two leaves, and τ a transverse arc connecting them.

Then we define
µ(τ) := h(Tc2)− h(Tc1)

“Combinatorial bifurcation measure”?
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The end

Thank you!



Coda: from Farey to the tent map, via ?

Minkowski’s question-mark function conjugates the Farey map
with the tent map
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Continued fractions ⇔ Binary expansions



The dictionary

Continued fractions ⇔ Binary expansions

E ←?→ R

α− continued fractions unimodal maps

numbers of generalized external rays
bounded type on Julia sets

cutting sequences for univoque numbers
geodesics on torus
(Cassaigne, 1999)



A unified approach

The dictionary yields a unified proof of the following results:

1. The real part of the boundary of the Mandelbrot set has
Hausdorff dimension 1

H.dim(∂M∩ R) = 1

(Zakeri, 2000)
2. The set of matching intervals for α-continued fractions has

zero measure and full Hausdorff dimension
(Nakada-Natsui conjecture, Carminati-T. 2010)

3. The set of univoque numbers has zero measure and full
Hausdorff dimension (Erdős-Horváth-Joó, Daróczy-Kátai,
Komornik-Loreti)



Entropy of α-continued fractions vs real hyperbolic
components ofM


