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1 Introduction

The Mandelbrot set
M={ceC|f0) Ao},  flz)=z2"+c

has been around for some forty years. The exact date is a bit harder to pinpoint, since it is a topic of
debate who discovered it, see . Already in 1978, Robert Brooks and J. Peter Matelski
made the first picture of the Mandelbrot set, see figure 2l Only two years later, Mandelbrot published
his paper on the set, with much better images of it due to his access to IBM’s infrastructure. However
it may be, Mandelbrot was able to acquire the public eye and made the set, and mathematics along
with it, quite well-known and appreciated. It is mostly due to this that later in 1984, Douady and
Hubbard named the set the Mandelbrot set.

The reason the name stuck, was because the (French) paper
Etude dynamique des polyndmes complezes (1984) by Douady
and Hubbard was the first truly mathematical treatment of the
Mandelbrot set, with actual profound results. In these so-called
Orsay notes, quite a lot of today’s classical work saw the light
of day. And it is here already, in the first mathematical paper
treating the Mandelbrot set, that the topic of this report finds
its roots. These notes were not only written by Douady and
Hubbard; a few people were collaborating on this project and
making contributions to the text. One of these people was Lei
Tan, see figure[I] Among other chapters, she wrote the very last
one of these notes.

Later, these Orsay notes got translated into English. How-
ever, the last chapter is not present there. Tan took a bit longer
and published this chapter as a separate research article, named
Similarity between the Mandelbrot set and Julia sets, see
. This was one of her first published articles.

Diving into the Mandelbrot set M or a Julia set

Figure 1: Tan Lei in 201

J. = {z | z is repelling periodic under f.},

you would probably believe there are a lot of possible patterns in there. A pattern that is actually
there, was looked into by Tan in her paper. Loosely stated, if you were to zoom in on so-called
Misiurewicz points, with the right zoom in each step, you would find that what you are seeing is
changing less and less; the set converges to some limiting set. It is said that around such a point,
these sets are asymptotically self-similar. Maybe even more striking, if you take such a ¢ in M, then
it is automatically in J, as well, and if you zoom in M and J,. at that point, they will also look more
and more similar to each other. It is these results that Tan quantified, formalised, and proved and
that will be discussed in this report.

The structure will be as follows. To quantify that two sets (locally) look similar, the Hausdorff—
Chabauty distance will be introduced in section after which the notion of (asymptotic) similarity
is introduced in section Lastly, the main actors are introduced in section the Misiurewicz
points. Then, in section [3 the result concerning Julia sets is presented and proved. Examples are also
given to clarify the actual meaning of the theorem. Lastly, the Mandelbrot set gets in the picture,
and a more general result is presented without proof. Also here, illustrative examples are provided.

It may be clear already, the result obtained by Tan is quite remarkable and very geometrical in
nature. Moreover, she attained perfect precision in her results, as can be seen in the examples that
follow.

Unfortunately, Tan died five years ago, on April 1, 2016, as young as 53. With this report, we
hope that we can show a small part of her great work in the field of complex dynamics and appreciate
these remarkable results of hers.

! Source of image: math.univ-angers.fr/~tanlei/
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Figure 2: The first picture of the Mandelbrot set, see QBrooks and MatelskiL |1978[)

2 Formalisation

2.1 Hausdorff-Chabauty Distance

In this section, it is made precise what is meant by saying that a set
converges to some kind of limiting set. To do so, we need a measure of
how “far” two sets are from each other. Thinking about convergence,
we need something that can express that a sequence of sets A, comes
closer and closer to a set B. Or, equivalently, that we can take smaller
and smaller neighbourhoods of B in which the A, keep getting into. The
neighbourhoods we are looking for are given by the following definition.

Definition 1. Let A € F :={S C C | # S compact} and r > 0. The
r-hull of A, denoted by H,(A), is given by

H,(A) ={2€C|dg(z,A) <r}, (1)

where dg is the euclidean distance.

In figure [3] we see an example of a r-hull; this is indeed the kind of
neighbourhood we wanted. However, we need something more. We need
to say that two sets A and B are close to each other, while now we can
only say that A is close to B when A is in the r-hull of B for small r.
Hence, we symmetrize this notion and then the definition of the Hausdorff
distance is quite natural.

Definition 2 (Hausdorff Distance). For A, B € F, we call

d(A, B) = inf{r | B ¢ H,(A) and A C H,(B)} (2

~—

the Hausdorff distance of A and B.

While it is not trivial to see with this definition, the Hausdorff distance
makes (F,d) into a complete metric space.

Figure 3: A set A and its
r-hull H,(A) for some r.

Now we only have to do one last thing. Since we want to keep zooming in on a set and find that
that converges to a limiting set, we want to discard parts of the set: we only need small parts of it.
For example, suppose 0 € A. If we want to zoom in at A at 0, we take a little window around 0 and



Figure 4: A set A with the boundary of a disk I, (left) and its r-window (right).

forget everything that is out of that window. Then we can zoom in a bit, and some information goes
out of the scope of the window again, which we thus discard. We can take this window to be the
closed disk D, of radius 7 to perhaps define A N D, to be the window around 0 with radius r. And
indeed, this is almost exactly what we want. However, for technical reasons that we will not discuss
here, this needs a little modification.

Definition 3. For a set A with 0 € A and r > 0, the r-window of A is defined by
(A), = (AND,) UOD,, (3)
where 0D, denotes the boundary of ,..
An example of this can be found in figure [4

Remark 1. Of course, we do not only want to zoom in at zero. Therefore, we take the translation
map 7, defined by
T, : C—>C:z— z+a. (4)

Then, the r-window of A at a would be defined by
(T—ad)r- (5)

With the notion of an r-window, we can now define the distance that we will be concerned with
the most. It is just the Hausdorff distance with a restriction parameter.

Definition 4 (Hausdorff-Chabauty Distance). For A, B € F and r > 0, the Hausdorff-Chabauty
distance is defined by

dr(A, B) = d((A)r, (B)r)- (6)
2.2 Similarity: Definitions and Examples

Now that we can quantify how far two small parts of two images are, we are ready to think about
similarity. The advantage of working with C instead of just the plane is the field structure that is
present. Indeed, we know that multiplying the closed set A with p = |p|e? is just performing a
homothety of A with center 0 and ratio |p| composed with a counter-clockwise rotation of A with 6
radians. Hence, zooming in at 0 € A (with which we mean the usual zooming &nd rotating) is encoded
in the multiplication with the complex number p. Also note that we zoom in if |p| > 1 and we zoom
out if |p| < 1. This leads to the following definition.

Definition 5. Assume p = |p|e??, with |p| > 1 and 6 € [0, 27)

e A closed subset A C C is self-similar about 0 with scale p if there is r > 0 such that

d,(pA, A) = 0. (7)

e A closed subset A C C is asymptotically self-similar about 0 with scale p if there exists 7 > 0
and a closed B C C such that

d, (p"A,B) — 0 as n — oc. (8)

We call B the limit model of A at 0.
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Figure 5: Illustration of asymptotic similarity about 0: multiplying a circle (and the tangent line)
with 3" for some low n. Note how the curve and tangent at 0 are looking more and more similar.

e Two closed sets A, B C C are asymptotically similar about 0 if there is » > 0 such that as
for A = oo in C,
dy(AA,A\B) — 0, (9)

or, equivalently, if
d(p"A,p"B) — 0 as n — oc. (10)

Remark 2. Note that the equivalence stated in the last definition requires some (rather technical)
work to prove. Intuitively though, this is quite clear. Since you multiply both A and B with the same
factor A, they are both zooming in and rotating in exactly the same way. Hence, A and B should
come closer, irrelevant of the rotations, and irrelevant of the magnitude with which you zoom. Thus
replacing A — oo with a specific way of going to infinity, like p™, is justified.

We now give examples to clarify these key concepts.

Example 1. If you have a line £ = {uzo | p € R} in the plane for some zy # 0, we easily see that it
is self-similar about 0 with as scale any p € Ry1. Indeed, for any r > 0, we have

dr(pl,0) = dy(£,0) = 0.

Example 2. If a curve is smooth at a point, the tangent and the curve are asymptotically similar
at that point. This requires some (rather technical) work to prove, but is intuitively clear. See also

figure

2.3 Misiurewicz Points

To apply the ideas of the last sections to the Mandelbrot set M or to a Julia set J. associated to
fo(2) = 22 + ¢, we need one more concept. The parameters ¢ € M that will be the protagonists of this
report are called Misiurewicz points and they are defined as follows.

Definition 6. A point ¢ € M is called a Misiurewicz point if 0 is eventually periodic, but not periodic.
So, there are integers k, £ such that

75 (F10) = ré). (1)
Here, £ is called the pre-period of ¢, and k is the period of f£(c).



Example 3 (Misiurewicz Points). Two simple examples are given by ¢ = —2 and ¢ = i. Indeed

o (o2io=o S 92 oo A wk=10=1,
i e s s e S L sok=20=1

We have the following two classical results about Misiurewicz points.
Proposition 1. The set of Misiurewicz points is a countable and dense subset of the boundary of M.

Proposition 2 (Douady and Hubbard). If ¢ is a Misiurewicz point, then 0 (and thus c¢) is eventually
repelling periodic.

These results tell us that firstly, there are quite a lot of Misiurewicz points and that secondly, a
c € M that is Misiurewicz has the property that c € J..

3 The Julia Set

3.1 Theorem Statement

In this section, we will prove that the Julia set J. is asymptotically self-similar about a Misiurewicz
point ¢. Put more precisely, we will show the following result.

Theorem 1 (Tan). Assume c is Misiurewicz. Let ¢,k € Z be minimal such that
75 (74©) = st
Let a = ff(c) and p = (f¥)'(a). Then

o [p| > 1, (f)(c) #0

e There is a conformal mapping ¢ defined in a neighbourhood of o, with p(a) =0, ¢’'(a) =1 and
po fiop(z)=pz.

e There are r > 0, a neighbourhood V' of a and U of ¢ such that f£(U) =V and as n — oo,

n 1 o l 7T
d, (p (rede)s ey fc(JcﬂU)> =0

This will be a simple corollary of a theorem that we now set out to prove.

3.2 Preliminary Results

We list three lemma’s that will be used in the proof of the theorem. The first is a simple set-theoretical
result.

Lemma 1. Suppose A is a completely invariant subset of f, i.e. f(A) = f~1(A4) = A, then for all
U c C it holds that
fANU)=ANf(U). (12)

Consequently,
FFLANFU))NU=ANU. (13)

We also recall Koenigs’s linearisation theorem.



Theorem 2 (Koenigs). Suppose U,V are neighbourhoods of z in C and g : U — V is a holomorphic
function with g(z) = z and |¢'(z)| # 0,1. If p = ¢/(x), then there is a conformal mapping ¢ defined
in a neighbourhood of z with ¢(z) = 0, ¢’(x) = 1 such that

pogoy (z) = pz.

Moreover, ¢ is explicitly given by

o(z) = lim p" ((g7")"(z) — ),

n—o0

1

where ¢~ is the unique inverse of g in a neighbourhood of x.

Lastly, we remember that we saw that a smooth curve and a tangent were asymptotically similar
at the tangent point. This is easily generalised to mappings between subsets of C. Moreover, if the
image f(A) of A under a conformal mapping is asymptotically self-similar, then we expect that this
structure was transported under f from A itself. This is exactly the content of the next result.

Proposition 3. Suppose that U, V' are two neighbourhoods of 0 in C and let f : U — V be a conformal
map that keeps 0 fixed. If A C U is closed such that f(A) is asymptotically self-similar about 0 with
scale p and limit model B, then A is asymptotically self-similar about 0, with the same scale and limit
model %B.

Proof. We have that f’(0)A is asymptotically similar to f(A) about 0, and by assumption, f(A) is
asymptotically self-similar about 0 with scale p and limit model B. Hence, we can find r > 0 such
that as n — oo,

dr(p"f(A), B) = 0 dr(p" f(A), p" f'(0)A) = 0.
Applying the triangle inequality, we see

d(f'(0)p" A, B) < dr(p" f'(0)A, p" f(A)) + dr(p" f(A), B) = 0.
Since f is conformal, we have f’(0) # 0, whence we can set s = r/|f’(0)| to obtain

n 1

With these results, we can now start with the real work.

3.3 Proof of theorem [

The theorem that will imply theorem [I] is now stated.

Theorem 3. Let f be a rational map and A be a completely invariant closed set under f. Suppose
that = is an eventually repelling periodic point for f, so that

) = f (@)

Then there exists r > 0, and a conformal mapping ¢ defined in a closed neighbourhood U of z, such
that

1 _
d, (p”T_xA, PN U)) 50, where p = (F4Y(f(x)).
So, A is asymptotically self-similar about x with scale p and limit model mcp(/l NU). Moreover,

e if £ = 0: we can choose ¢ such that ¢'(z) = 1.

e if £ > 0 and (f%)’(x) # 0: then the limit models of A at = and at f‘(x) are the same, up to
multiplication by (f)(x).



We only prove this in the case that x is periodic, i.e. £ = 0. The main ideas are then addressed,
and when there are no critical points in the orbit of x, you can immediately apply the periodic case.
If there are critical points, however, it becomes a bit trickier and more technical. Luckily, this is also
the case of this result that we do not need.

Proof in case x is periodic. Suppose x is periodic.

Note that x is a fixed point for f¥. Also, since  is assumed repelling, we have |p| > 1. We can thus
apply Koenigs’s theorem to find neighbourhoods V, and V; of z and 0 respectively, and a conformal
map ¢ : V; — Vp such that ¢(z) =0, ¢'(z) = 1 and

poff=p-op

Now take 7 > 0 such that D, C Vj and let s be such that sr = |p|. We define a neighbourhood
U= o (D) of z and let B = ¢(ANU). By proposition |3, we only have to show that B is
asymptotically self-similar with scale p to find that A (by further restriction of ANU) is asymptotically
self-similar with scale p. We do this by showing that B is actually self-similar with scale p.

Since A is completely invariant under f, it is also completely invariant under f*. Playing a bit
with the information at hand and using lemma [I) we then find that

fFANU)NU=ANU

or that,
FFUANT)NU)NU = (ANT)NU.

We apply ¢ to this and use injectivity of ¢, as well as the conjugation of f¥:
pe(ANT)NU)Np(U) = p(ANT) N p(U).
Per definition of U, we then find
ple(ANT)ND,| NDs = p(ANTU) N Dy,

so that
p[BNDs NDg = BN Ds.

We then move p inside and use that s < r to find
pBND, NDs; = pBNDs = BND;.
By taking a neighbourhood of 0 which is a bit smaller, we can then take the closure of the disk
pB N W/Q =BnN W/%

from which it follows that
(pB)sj2 = (B)s/2-

That is, B is self-similar with scale p. This means that B is certainly asymptotically self-similar with
scale p and limit model B.
Now applying proposition [3| we find what we set out to prove. O

Proof of theorem[1] Since the Julia set J,. is a completely invariant subset of f. and for ¢ Misiurewicz,
c is eventually repelling periodic, the result follows from theorem [3| The only thing we need to show
is that (f£)'(c) # 0. This we see by noting that 0 is the only critical point of f., so that

(fe)(e) =2 foHe) - fe2(e) - fele) - ¢ #0,

since 0 is not periodic under f. for ¢ Misiurewicz. O



3.4 Explorations and Examples

We now give examples to illustrate theorem
As a first example, we take ¢ = ¢ to show the machinery at workﬂ We already saw that k =2,/ =1
for the minimal k, ¢ such that f¥ (f(c)) = ff(c). We can then calculate the multiplier p to find

p= (i) = (> +e)* +d = 4(1 + i) ~ 5.66¢"™/2.
2=c24c=i—1

Hence, we have to zoom with factors 5.66, 5.662, 5.66°, . . . and rotate with 45° each time to converge
to the limiting set. The results can be found in figure |§| on page @ In these figures, the (rescaled)
number of iterations needed to diverge are plotted, with a cut-off of 400 iterations (when this cut-off
is reached, the point under consideration is assumed to be in the Mandelbrot set).

As another example, we take ¢ = —0.6368 — 0.685i. We repeat the process and find k =1,/ =4
and p ~ 3.08¢", § ~ 12.82°. The results are found in figure [7] on page

4 Julia and Mandelbrot

4.1 Statement

The previous section shows that if we zoom in on the Julia set J. at ¢ for ¢ a Misiurewicz point, we
get closer and closer to a limit model, in the sense of the Hausdorff-Chabauty distance. Moreover,
this limit model was in theory locally achievable (via Koenigs’s theorem), and not only by zooming in
indefinitely. This result is quite nice and remarkable, and yet, it can be better. A Misiurewicz point
is a point of the boundary of M, and so we might expect a fractal structure in M around c as well.
The following theorem asserts that this fractal structure around a Misiurewicz point is similar to that
of the Julia set J..

Theorem 4. Let ¢ be a Misiurewicz point. There are p with |[p| > 1, r,7/,;s > 0, a closed set L C C
with pL = L, and A € Cq such that as n — oo,

dy (p" 7o, L) — 0
(P _ oM, AL) =5 0
ds(p"T_cM, p"AT_cJ.) — 0.

Remark 3. Note that, from the previous section, we know what p and L are. Left to say what
A is. Since o = f(c) is a fixed point of f¥, we can apply the implicit function theorem to find a
neighourhood U of ¢ and a mapping & : U — C such that a(c) = a and such that f¥(a(c)) = a(c).
Tan then proves that

(fe)'(c)

dff (k)
dk

K=C

Thus, this theorem tells us that about a Misiurewicz point, the Mandelbrot set is also asymp-
totically self-similar, and with the same scale as J.. Moreover, their limit models are related by one
complex parameter A. Taking this parameter into account, we thus also find that M and J. are
asymptotically similar about c.

The proof of this theorem is quite involved and consists mostly of checking the conditions to apply
a modified version of another proposition. It would bring us too far to discuss the proof here, but we
believe that the key ideas have been discussed in the course of this report. We now give examples that
show this theorem in action.

2This Misiurewicz point is an obvious point to do this, as it has not too many decimals.



Figure 6: Zooming in on the Julia set J; at the point i. The zooming factor is 5.66™ starting from the
picture in the upper left corner. This (rounded) factor is written in each image. The rectangle in each
image shows the part of the image that is detailed more in the next image. The first image shows the
region [—0.3,0.3] x [1 —0.2,140.2]i C C.



-0.685i -0.685i

-0.685i

-0.685i

-0.685i -0.685i

-0.6368

-0.685i -0.685i

-0.6368 -0.6368

Figure 7: Zooming in on the Julia set J. at the point ¢ & —0.6368 — 0.685i. The zooming factor is
3.08™ starting from the picture in the upper left corner. This (rounded) factor is written in each image.
The rectangle in each image shows the part of the image that is detailed more in the next image. The
first image shows the region [—0.6368 — 0.3, —0.6368 + 0.3] x [—0.685 — 0.2, —0.685 4 0.2]i C C.
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4.2 Examples

We consider again the Misiurewicz point ¢ = i. We calculate X of theorem [4] as suggested by remark 3]
We see with ¢ = 1 that

(f2) () = fllc) = 2¢ = 24, (14a)
dft(rk) B d(k? + k) B o
el M el M 2 +1=2i+1. (14b)

Now, observe that @ is a solution of ff(a(c)) = @(c) near a = f¥(c) = a(c¢) = i — 1. That is,
a(c)? + ¢ = alc). Implicitly differentiating this, we obtain

da(k) o —1=2(a(e)?4¢) 2i—1 (15)
ds |._, 4a(c) [a(c)2+c—1 3+4i
Hence, we find
1 .
A=1+gim 11267, 0~ 26.6° (16)

This, together with the information of the examples on page 8] gives us enough information to see the
theorem in action. The results can be found in figure [§ page You can compare the first column
of this figure with figure [6]
We can also do the previous computation of A for other Misiurewicz points. For ¢ ~ —0.6368 —
0.685%, we find
A & 0.9468 — 0.3006¢ ~ 0.9934¢", 0 ~ —17.6140°. (17)

The results for this point are found on page [I3] figure 9] You can again compare to figure [7]

5 Conclusions

The phenomenon of (asymptotic) self-similarity of the Julia set and of the Mandelbrot set was quan-
tified and made precise already four years after the first detailed image of the Mandelbrot set.

In this short timeframe, Tan Lei wrote down the results and proofs that were discussed in this
paper. She showed that the Julia set of f. and the Mandelbrot set are asymptotically self-similar
about any Misiurewicz point ¢. As was noted, these Misiurewicz points were quite abundant in the
boundary of the Mandelbrot set, which means that her results apply to a lot of parameters c.

In proving her results, she could write down the precise details on how to practically see these
results in action. This was gratefully used here to experimentally discuss and verify her results, not
in the least in showing the use of the parameter A.

Another interesting consequence of her results is that when looking at a particular Julia set J,
you can make an educated guess of your c¢. Indeed, you can search in the Mandelbrot set for a shape
roughly similar to your Julia set to find an estimate of your ¢. Also compare to the first row of figures|g]
and [0

In conclusion, Tan lei made precise a geometric and intuitive phenomenon with extreme precision.
In doing so, she made clear another intricate and interesting connection between the Mandelbrot set
and Julia sets of quadratic polynomials. Moreover, she did this in an extremely short timeframe,
which is impressive in its own right already.
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Figure 8: Zooming in at the Julia set J; (left) and the Mandelbrot set (right) at the point i. The
second row is zoomed in with a factor 5.66” compared to the first row, with a rotation of 7-45°. The
images of the first row show the region [—0.3,0.3] x [1 —0.2,1+0.2]i C C. The third row of images is
a repetition of the second row, where the Julia set is multiplied with A =1 + %z ~ 1.12¢". 0 ~ 26.6°.
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Figure 9: Zooming in at the Julia set J. (left) and the Mandelbrot set (right) at the point ¢
—0.6368 — 0.6853. The second row is zoomed in with a factor 3.08” compared to the first row, with
a rotation of 7 -12.82°. The images of the first row show the region [—0.6368 — 0.3, —0.6368 + 0.3] X
[—0.685 — 0.2, —0.685 + 0.2]i C C. The third row of images is a repetition of the second row, where
the Julia set is multiplied with A a2 0.9468 — 0.3006i ~ 0.9934¢%, 0 ~ —17.6140°.
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