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The large of large numbers

Let Xn : Ω→ R a sequence of independent, identically
distributed random variables, and suppose that
E[X1] := ` <∞.

Then for almost every ω ∈ Ω we have

lim
n→∞

X1(ω) + · · ·+ Xn(ω)

n
= `
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Random walks

The LLN can be interepreted as a random walk on the group R
of translations of the real line.

Indeed, at every stage we choose a translation length Xn
independently of the previous choice, and we add it to the
previous translation.

0 + X1 + X2 + · · ·+ Xn

Question: What happens in the long run/on average?
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Random walks on groups: general setup

Let G be a group of isometries of a metric space (X ,d)

and µ a
probability measure on G. At each step, let us pick an element
gi of G according to the distribution µ, and independently of the
previous choice. The random walk is defined as the process

wn := g1g2 · · · gn

If we fix a basepoint x0 ∈ X , we can project the random walk
from G to X :

wnx0 := g1g2 · · · gnx0

The sequence

x0,w1x0,w2x0, . . . ,wnx0, . . .

is called a sample path.
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An example: the free group F2
Let G := Z ? Z.

X := 4-valent tree (Cayley graph).

G := 〈a,b〉 a = up a−1 = down
b = right b−1 = left
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Questions

1. Does a typical sample path escape to infinity?

2. Does it converge to the boundary of X?
3. Does a typical sample path follow a geodesic in X?

E.g., in the case of 4-valent tree:
1. Yes.

Prob(|wn+1| > |wn|) = 3
4

Prob(|wn+1| < |wn|) = 1
4

so the average distance after n steps is n
2 →∞.

2. Yes (∂X is Cantor set).
How about 3. ?
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Sublinear tracking
We say that a random walk on G acting on the geodesic metric
space (X ,d) has the Sublinear Tracking property (ST) if for
almost every sample path wn there exists a geodesic ray
γ : [0,∞)→ X such that

d(γ(An),wnx0)

n
→ 0
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Why do we care?

1. Generalization of LLN to non-abelian setting:

E.g. for
G = R you get
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Why do we care?

1. Generalization of LLN to non-abelian setting: E.g. for
G = R you get

|X1(ω) + · · ·+ Xn(ω)− γ(`n)|
n

→ 0

with γ(t) := t is geodesic in R.
If G = GLn(R), you get Oseledets’ multiplicative ergodic
theorem.

2. Kaimanovich’s criterion: sublinear tracking allows one to
identify the Poisson boundary of the walk

H∞(G, µ) = L∞(∂X , ν)



History

I Symmetric spaces of noncompact type [Kaimanovich, ’87]

I Gromov-hyperbolic groups [Kaimanovich, ’94]
I discrete groups of isometries of CAT(0) spaces

[Karlsson-Margulis, ’99]
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Mapping class groups

Let S be a closed, orientable surface of genus g ≥ 1. The
mapping class group Mod(S) is the group of
self-homeomorphisms of S modulo isotopy:

Mod(S) :=
Homeo+(S)

Homeo+
0 (S)

E.g.: Dehn twist around a curve
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Teichmüller space

The Teichmüller space T (S) is the space of marked complex
structures on S.

The Teichmüller distance dT between X and Y is defined in
terms of the minimal dilatation of a quasiconformal
homeomorphism from X to Y .
T (S) is a geodesic metric space and the quotient

Mg := T (S)/Mod(S)

is the moduli space of Riemann surfaces of genus g.
Thurston compactified T (S) with the space PMF of projective
measured foliations. PMF ∼= S6g−6 and Mod(S) acts on
PMF by homeomorphisms.
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Random walks on mapping class groups

Let µ a prob. measure on G = Mod(S) and fix a basepoint
X ∈ T (S).

Then almost every sample path converges to some foliation on
∂T (S) = PMF . [Kaimanovich-Masur, ’96]

Question [Kaimanovich, ’00]: does the sublinear tracking
property holds for random walks on Mod(S)?
[Duchin, ’05] (ST) with restriction to thick part.
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Main theorem: (ST) in the mapping class group

Theorem
Let µ be a prob. measure on G = Mod(S), such that the group
generated by its support is non-elementary,

and with finite first
moment: ∫

G
dT (x0,gx0) dµ <∞.

Then there exists A > 0 such that for almost every sample path
wn there is a Teichmüller geodesic ray γ : [0,∞)→ T (S) which
tracks the sample path at sublinear distance:

dT (wnx0, γ(An))

n
→ 0.

Corollary
Poisson boundary = Thurston boundary [Kaimanovich-Masur]
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Other groups: stable visibility

Let X ⊆ X = X ∪ ∂X a compactification of X , on which G acts
by homeomorphisms.

The compactification is stably visible if for each sequence
γn := [ηn, ξn] ⊆ X of geodesic segments such that ηn → η,
ξn → ξ there exists a bounded set B which intersects all γn.
E.g.:

I 4-valent tree is stably visible,
I hyperbolic plane H2 is stably visible
I Z2 is NOT stably visible
I A Gromov-hyperbolic group is stably visible
I Note: T (S) is NOT stably visible.
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Sublinear tracking for stably visible spaces
Theorem
Let X admit a stably visible compactification, and µ be a prob.
measure on G, such that the group generated by its support is
non-elementary,

and with finite first moment.
Then there exists A ≥ 0 such that for almost every sample path
wn there is a geodesic ray γ : [0,∞)→ X which tracks the
sample path at sublinear distance:

d(wnx0, γ(An))

n
→ 0.

Corollary
The sublinear tracking property holds for:

I Gromov-hyperbolic groups;
I groups with infinitely many ends;
I relatively hyperbolic groups.
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The end

Thank you!
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