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Consider the Poincaré disk D with the hyperbolic metric.

Its
boundary is ∂D = S1.



Boundary measures
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Consider the Poincaré disk D with the hyperbolic metric. Its
boundary is ∂D = S1. Two types of measures on ∂D:

1. Lebesgue measure λ.

I It is the unique rotationally invariant measure.
I It is also the hitting measure for the Brownian motion.

x



Boundary measures
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Random walks on PSL2(R)
A discrete stochastic process: a random walk.

Consider Γ < PSL2(R) = Isom(H2).(
a b
c d

)
· z 7→ az + b

cz + d

Fix a probability measure µ on Γ, and extract a sequence

(g1,g2, . . . )

of elements, independent, identically distributed with
distribution µ. E.g:

µ :=
1

#S

∑
g∈S

δg

Consider the sample path

wn := g1g2 . . . gn
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Boundary measures

x
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ξ

Lemma (Furstenberg) If the group 〈supp µ〉 is non-elementary,
almost every sample path converges to some ξ ∈ ∂D.

Define the hitting measure (or harmonic measure)
for A ⊆ ∂D

ν(A) := P
(

lim
n→∞

wnx ∈ A
)
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namely, ∑
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random walk
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where (gi) are i.i.d. with distribution µ. Define the hitting
measure (or harmonic measure) for any A ⊆ ∂D

ν(A) := P
(

lim
n→∞

wnx ∈ A
)

Question. Can these two measures be the same, or in the
same measure class?



Boundary measures
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random walk for which the hitting measure is absolutely
continuous w.r.t. Lebesgue.

Generalization to any lattice in
a semisimple Lie group.
Idea: discretization of Brownian motion: measure is very
spread out.

Q: What about for finitely supported measures?

I for Γ < Isom H2 a discrete, non-cocompact subgroup
(e.g: SL2(Z)), for any finitely supported measure on Γ, the
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Numerical invariants
Let M be a manifold of finite volume and pinched negative
curvature, X = M̃

(today, X = D). Let Γ = π1(M) < Isom X .
I The critical exponent (or volume growth) is

v := lim
n→∞

1
n

log #{g : d(x ,gx) ≤ n}

I The entropy of µ is

H(µ) := −
∑

µ(g) logµ(g)

and the asymptotic entropy is

h := lim
n→∞

H(µn)

n

I The drift is

` := lim
n→∞

d(x ,wnx)

n
where the limit exists a.s. and is constant.
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Guivarc’h inequality
Guivarc’h ’80 proved the inequality

(a.k.a. fundamental
inequality - Vershik ’00)

h ≤ `v (1)

Note: h
` is the Hausdorff dimension of the harmonic measure ν

(Tanaka ’19).

Theorem (Blachère-Haı̈ssinsky-Mathieu ’11)
Let Γ be a cocompact group of isometries of hyperbolic space
Hn. Then

h = `v

if and only if the harmonic measure and the Lebesgue measure
are in the same class.

Compare Gouëzël-Mathéus-Maucourant ’18: if we consider `
with respect to the word metric on Γ, then h < `v unless Γ is
virtually free.
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Main theorem

Theorem (Kosenko-T. ’20)
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Then the hitting measure νµ is singular w.r.t. Lebesgue
measure.
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A geometric inequality
Theorem (Kosenko-T. ’20)
Let P be a symmetric hyperbolic polygon with sum of angles
2π, and let Γ be its associated cocompact Fuchsian group.

Let
S := {g1, . . . ,g2m} be the set of hyperbolic translations
identifying opposite sides of P.
Then we have ∑

g∈S

1
1 + e`(g)

< 1.

O
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A geometric inequality

Theorem (Kosenko-T. ’20)
Let P be a hyperelliptic polygon, and let Γ be its associated
cocompact Fuchsian group. Let S := {g1, . . . ,g2m} be the set
of hyperbolic translations identifying opposite sides of P.
Then we have ∑

g∈S

1
1 + e`(g)

< 1.

Compare:

I Culler-Shalen ’92, Anderson-Canary-Culler-Shalen ’96:

free Kleinian groups
I McShane ’98: punctured torus, infinite sum
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The Green metric
The Green metric (Blachère-Brofferio ’07) is

dµ(x , y) := − logP(∃n : wnx = y)

Theorem (BHM ’11, Tanaka ’19)
The following are equivalent:

1. The equality h = `v holds.
2. The Hausdorff dimension of the hitting measure ν on S1 is

equal to 1.
3. The measure ν is equivalent to Lebesgue measure on S1.
4. For any o ∈ H2, there exists a constant C > 0 such that for

any g ∈ Γ we have

|dµ(1,g)− dH(o,go)| ≤ C.
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A criterion for singularity

Lemma
If ν is AC, then `(g) ≤ dµ(1,g) for all g ∈ Γ.

Theorem
If the support of µ is S and µ is symmetric, then if∑

g∈S

1
1 + e`(g)

< 1

then the hitting measure νµ is singular.



A criterion for singularity

Lemma
If ν is AC, then `(g) ≤ dµ(1,g) for all g ∈ Γ.

Theorem
If the support of µ is S and µ is symmetric,

then if∑
g∈S

1
1 + e`(g)

< 1

then the hitting measure νµ is singular.



A criterion for singularity

Lemma
If ν is AC, then `(g) ≤ dµ(1,g) for all g ∈ Γ.

Theorem
If the support of µ is S and µ is symmetric, then if∑

g∈S

1
1 + e`(g)

< 1

then the hitting measure νµ is singular.



A criterion for singularity

Lemma
If ν is AC, then `(g) ≤ dµ(1,g) for all g ∈ Γ.

Theorem
If the support of µ is S and µ is symmetric, then if∑

g∈S

1
1 + e`(g)

< 1

then the hitting measure νµ is singular.



A criterion for singularity - sketch of proof
Theorem
If the support of µ is S and µ is symmetric,

then if∑
g∈S

1
1 + e`(g)

< 1

then the hitting measure νµ is singular.



A criterion for singularity - sketch of proof
Theorem
If the support of µ is S and µ is symmetric, then if∑

g∈S

1
1 + e`(g)

< 1

then the hitting measure νµ is singular.



A criterion for singularity - sketch of proof
Theorem
If the support of µ is S and µ is symmetric, then if∑

g∈S

1
1 + e`(g)

< 1

then the hitting measure νµ is singular.



An optimization problem

If
zi := tanh dH(o,Li)

is the distance from the i th side, we reduce to

Proposition
If 0 ≤ zi ≤ 1 with

∑m
i=1 zi = m − 1, then

m∑
i=1

arccos(zizi+1) ≥ π
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An optimization problem

The graph of f (x) :=
∑3

i=1 arccos((1− xi)(1− xi+1)) subject to
the constraint

∑3
i=1 xi = 1, compared with the constant function

at height π.
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An optimization problem

Setting x = 1− z

and noting that

2
π

arccos(1− x) ∼
√

x

the previous inequality is (almost) equivalent to
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For m ≥ 3, with 0 ≤ xi ≤ 1 and

∑m
i=1 xi = 1, we have

m∑
i=1

√
xi + xi+1 − xixi+1 ≥ 2
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The end

Thank you!
Grazie!
Merci!
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