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Consider the sample path

Wn = g‘lgzgn
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Lemma (Furstenberg) If the group (supp ) is non-elementary,
almost every sample path converges to some £ € 9D.
Define the hitting measure (or harmonic measure)
for A C 0D
V(A) =P ( lim wpx € A)

n—oo
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Boundary measures

Consider the Poincaré disk D with the hyperbolic metric. Its
boundary is 0D = S'. Two types of measures on JD:
1. Lebesgue measure ). It is the unique rotationally
invariant measure.
2. Harmonic measure v. Consider
I < PSLy(R) = Isom(H?). Fix zon T, x € D. Define the
random walk
Wn = g1g2gn
where (g;) are i.i.d. with distribution p. Define the hitting
measure (or harmonic measure) for any A C oD

V(A) =P (nleoo Wax € A)

Question. Can these two measures be the same, or in the
same measure class?
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» Furstenberg '71: for any lattice I < PSL»(R), there exists a
random walk for which the hitting measure is absolutely
continuous w.r.t. Lebesgue. Generalization to any lattice in
a semisimple Lie group.

Idea: discretization of Brownian motion: measure is very
spread out.

Q: What about for finitely supported measures?

» for I < Isom H? a discrete, non-cocompact subgroup
(e.g: SL»(Z)), for any finitely supported measure on ', the
hitting measure is singular
Guivarc’h-Ledan '90, Deroin-Kleptsyn-Navas ’09,
Blachére-Haissinsky-Mathieu '11, Randecker-T. ’19
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Conjecture (Kaimanovich-Le Prince ’11)
Every finitely supported measure on SLy4(R) is singular at
infinity.
» Kaimanovich-Le Prince '11
On any lattice in SL4(R) there exists a finitely supported
measure which is singular at infinity
» Bourgain '12, Barany-Pollicott-Simon 12

There exist finitely supported measure on (non-discrete) '
such that v is absolutely continuous
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History

Conjecture

Every discrete, finitely supported measure on SL,(R) is
singular at infinity.

» Compare Ledrappier '90: for the Brownian motion on a
surface, the hitting measure is absolutely continuous if and
only if the curvature is constant.

» The only remaining case is for I' discrete, cocompact

» Kosenko '19, Carrasco-Lessa-Paquette '17
If the fundamental domain of I is a regular polygon with
n >> 1 sides, the measure is singular at infinity
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Let M be a manifold of finite volume and pinched negative
curvature, X = M (today, X = D). Let I = 71(M) < Isom X.

» The critical exponent (or volume growth) is

1
V= nleoo - log#{g : d(x,gx) < n}

» The entropy of i is

=—> u(9)logu(g

and the asymptotic entropy is

ho= tim 700

n—o0 n

» The drift is
/— lim d(x, wnx)
n—oo

where the limit exists a.s. and is constant.
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Guivarc’h '80 proved the inequality (a.k.a. fundamental
inequality - Vershik "00)
h</tv (1)

Note: % is the Hausdorff dimension of the harmonic measure v
(Tanaka ’19).

Theorem (Blachére-Haissinsky-Mathieu '11)
LetT be a cocompact group of isometries of hyperbolic space
H". Then

h=1tv

if and only if the harmonic measure and the Lebesgue measure
are in the same class.

Compare Gouézél-Mathéus-Maucourant '18: if we consider ¢
with respect to the word metric on I', then h < /v unless I is
virtually free.
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Main theorem

Theorem (Kosenko-T. '20)

Let P be a symmetric hyperbolic polygon with 2m sides, with
sum of angles 2x. Let i be a symmetric prob. measure
supported on the set ()%™, of translations which identify
opposite sides. Then the hitting measure v,, is singular w.r.t.
Lebesgue measure.

Corollary
Then:
» h < ( is strict;
» The Hausdorff dimension satisfies

Hde:Z<L
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Theorem (Kosenko-T. '20)

Let P be a hyperelliptic polygon, and let ' be its associated
cocompact Fuchsian group. Let S := {g1,...,92m} be the set

of hyperbolic translations identifying opposite sides of P.
Then we have

vy
2 e <"
ges

Compare:

» Culler-Shalen 92, Anderson-Canary-Culler-Shalen ’96:
free Kleinian groups

» McShane '98: punctured torus, infinite sum
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The Green metric

The Green metric (Blachere-Brofferio '07) is

du(x,y) == —logP(3n : wpx =Yy)

Theorem (BHM ’11, Tanaka '19)
The following are equivalent:

1.
2.

The equality h = ¢v holds.

The Hausdorff dimension of the hitting measure v on S is
equalto1.

The measure v is equivalent to Lebesgue measure on S'.

For any o € H?, there exists a constant C > 0 such that for
any g € I' we have

1d.(1,9) — du(o,go)| < C.
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Theorem
If the support of v is S and . is symmetric, then if
1
2 e <
gesS

then the hitting measure v,, is singular.
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An optimization problem

The graph of f(x) := 2?21 arccos((1 — x;)(1 — x;1)) subject to
at height .

the constraint 32 . x; = 1, compared with the constant function

[m]

=
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An optimization problem

Setting x = 1 — z and noting that
2
—arccos(1 — x) ~ v/x
T
the previous inequality is (almost) equivalent to

Proposition
Form >3, with0 < x; <1 and Y., x; = 1, we have

m
D VX F Xigt — XiXigq = 2

i=1



The end

Thank you!
Grazie!
Merci!
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