Hitting measures for random walks on Fuchsian groups - The fundamental inequality

> Giulio Tiozzo University of Toronto

Enriques-Lebesgue seminar January 18, 2021

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 1. Boundary measures
- 2. History and questions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 1. Boundary measures
- 2. History and questions
- 3. The fundamental inequality

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- 1. Boundary measures
- 2. History and questions
- 3. The fundamental inequality

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

4. Statement of theorem

- 1. Boundary measures
- 2. History and questions
- 3. The fundamental inequality

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- 4. Statement of theorem
- 5. A geometric inequality

- 1. Boundary measures
- 2. History and questions
- 3. The fundamental inequality

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 4. Statement of theorem
- 5. A geometric inequality
- 6. Sketch of proof

- 1. Boundary measures
- 2. History and questions
- 3. The fundamental inequality

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

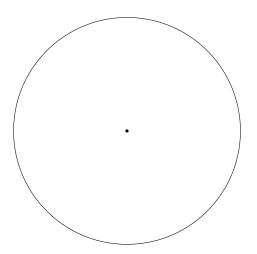
- 4. Statement of theorem
- 5. A geometric inequality
- 6. Sketch of proof

joint with Petr Kosenko

Consider the Poincaré disk \mathbb{D} with the hyperbolic metric.

Consider the Poincaré disk \mathbb{D} with the hyperbolic metric. Its boundary is $\partial \mathbb{D} = S^1$.

Consider the Poincaré disk \mathbb{D} with the hyperbolic metric. Its boundary is $\partial \mathbb{D} = S^1$.



Consider the Poincaré disk \mathbb{D} with the hyperbolic metric. Its boundary is $\partial \mathbb{D} = S^1$. Two types of measures on $\partial \mathbb{D}$:

1. Lebesgue measure λ .

Consider the Poincaré disk \mathbb{D} with the hyperbolic metric. Its boundary is $\partial \mathbb{D} = S^1$. Two types of measures on $\partial \mathbb{D}$:

- 1. Lebesgue measure λ .
 - It is the unique rotationally invariant measure.

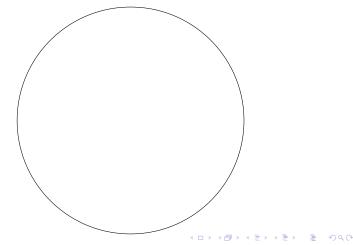
(ロ) (同) (三) (三) (三) (○) (○)

Consider the Poincaré disk \mathbb{D} with the hyperbolic metric. Its boundary is $\partial \mathbb{D} = S^1$. Two types of measures on $\partial \mathbb{D}$:

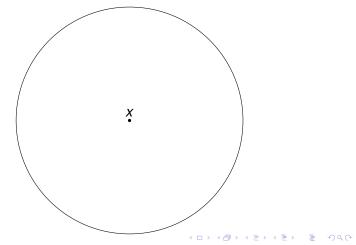
- 1. Lebesgue measure λ .
 - It is the unique rotationally invariant measure.
 - It is also the hitting measure for the Brownian motion.

(ロ) (同) (三) (三) (三) (○) (○)

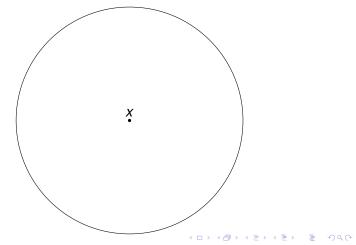
- 1. Lebesgue measure λ .
 - It is the unique rotationally invariant measure.
 - It is also the hitting measure for the Brownian motion.



- 1. Lebesgue measure λ .
 - It is the unique rotationally invariant measure.
 - It is also the hitting measure for the Brownian motion.



- 1. Lebesgue measure λ .
 - It is the unique rotationally invariant measure.
 - It is also the hitting measure for the Brownian motion.



A discrete stochastic process: a random walk.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

A discrete stochastic process: a **random walk**. Consider $\Gamma < PSL_2(\mathbb{R}) = Isom(\mathbb{H}^2)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A discrete stochastic process: a **random walk**. Consider $\Gamma < PSL_2(\mathbb{R}) = Isom(\mathbb{H}^2)$.

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \cdot z \mapsto \frac{az+b}{cz+d}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A discrete stochastic process: a **random walk**. Consider $\Gamma < PSL_2(\mathbb{R}) = Isom(\mathbb{H}^2)$.

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}
ight) \cdot z \mapsto rac{az+b}{cz+d}$$

Fix a probability measure μ on Γ ,

A discrete stochastic process: a **random walk**. Consider $\Gamma < PSL_2(\mathbb{R}) = Isom(\mathbb{H}^2)$.

$$\left(egin{array}{c} a & b \\ c & d \end{array}
ight) \cdot z \mapsto \displaystyle rac{az+b}{cz+d}$$

Fix a probability measure μ on $\Gamma,$ and extract a sequence

 $(g_1, g_2, ...)$

(日) (日) (日) (日) (日) (日) (日)

of elements,

A discrete stochastic process: a **random walk**. Consider $\Gamma < PSL_2(\mathbb{R}) = Isom(\mathbb{H}^2)$.

$$\left(egin{array}{c} a & b \\ c & d \end{array}
ight) \cdot z \mapsto \displaystyle rac{az+b}{cz+d}$$

Fix a probability measure μ on Γ , and extract a sequence

 $(g_1, g_2, ...)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

of elements, independent, identically distributed with distribution μ .

A discrete stochastic process: a **random walk**. Consider $\Gamma < PSL_2(\mathbb{R}) = Isom(\mathbb{H}^2)$.

$$\left(egin{array}{c} a & b \\ c & d \end{array}
ight) \cdot z \mapsto rac{az+b}{cz+d}$$

Fix a probability measure μ on Γ , and extract a sequence

$$(g_1, g_2, \dots)$$

of elements, independent, identically distributed with distribution μ . E.g:

$$\mu := \frac{1}{\#S} \sum_{g \in S} \delta_g$$

(日) (日) (日) (日) (日) (日) (日)

A discrete stochastic process: a **random walk**. Consider $\Gamma < PSL_2(\mathbb{R}) = Isom(\mathbb{H}^2)$.

$$\left(egin{array}{c} a & b \\ c & d \end{array}
ight) \cdot z \mapsto \displaystyle rac{az+b}{cz+d}$$

Fix a probability measure μ on Γ , and extract a sequence

$$(g_1, g_2, \dots)$$

of elements, independent, identically distributed with distribution μ . E.g:

$$\mu := \frac{1}{\#S} \sum_{g \in S} \delta_g$$

Consider the sample path

$$w_n := g_1 g_2 \dots g_n$$

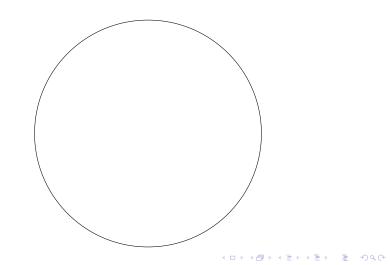
◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Random walks on $PSL_2(\mathbb{R})$ Fix μ on Γ ,

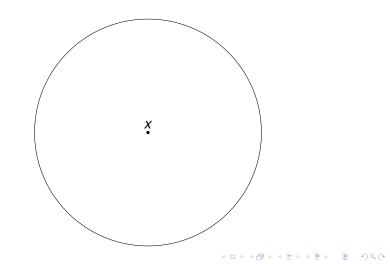
Fix μ on Γ , pick $x \in \mathbb{D}$ a base point.

Fix μ on Γ , pick $x \in \mathbb{D}$ a base point.

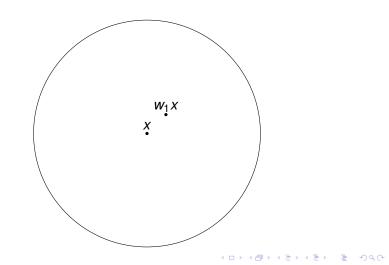
Fix μ on Γ , pick $x \in \mathbb{D}$ a base point.



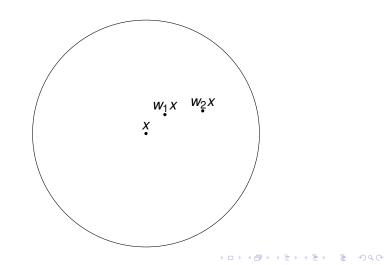
Fix μ on Γ , pick $x \in \mathbb{D}$ a base point.



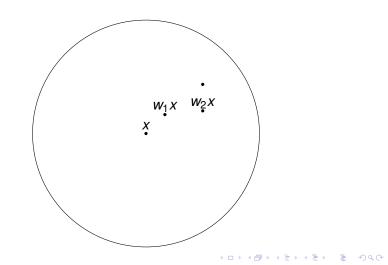
Fix μ on Γ , pick $x \in \mathbb{D}$ a base point.



Fix μ on Γ , pick $x \in \mathbb{D}$ a base point.



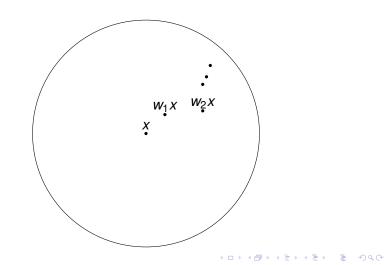
Fix μ on Γ , pick $x \in \mathbb{D}$ a base point.



Fix μ on Γ , pick $x \in \mathbb{D}$ a base point.



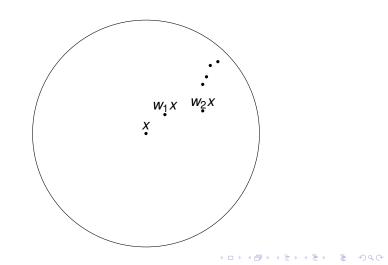
Fix μ on Γ , pick $x \in \mathbb{D}$ a base point.



Random walks on $PSL_2(\mathbb{R})$

Fix μ on Γ , pick $x \in \mathbb{D}$ a base point.

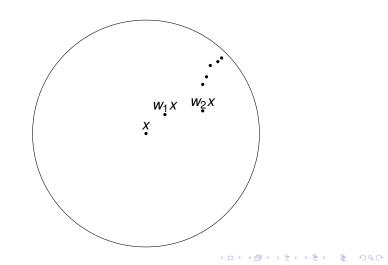
 $W_n X := g_1 g_2 \dots g_n X$



Random walks on $PSL_2(\mathbb{R})$

Fix μ on Γ , pick $x \in \mathbb{D}$ a base point.

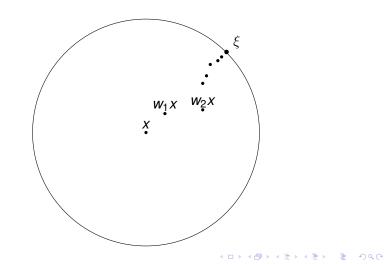
 $W_n X := g_1 g_2 \dots g_n X$

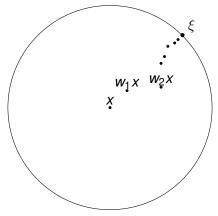


Random walks on $PSL_2(\mathbb{R})$

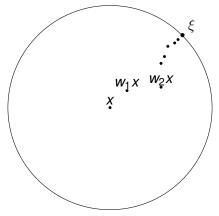
Fix μ on Γ , pick $x \in \mathbb{D}$ a base point.

 $W_n X := g_1 g_2 \dots g_n X$

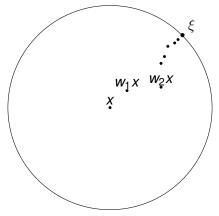




Lemma (Furstenberg) If the group $\langle \text{supp } \mu \rangle$ is non-elementary, almost every sample path converges to some $\xi \in \partial \mathbb{D}$.



Lemma (Furstenberg) If the group $\langle \text{supp } \mu \rangle$ is non-elementary, almost every sample path converges to some $\xi \in \partial \mathbb{D}$. Define the **hitting measure** (or **harmonic measure**) for $A \subseteq \partial \mathbb{D}$



Lemma (Furstenberg) If the group $\langle \text{supp } \mu \rangle$ is non-elementary, almost every sample path converges to some $\xi \in \partial \mathbb{D}$. Define the **hitting measure** (or **harmonic measure**) for $A \subseteq \partial \mathbb{D}$

$$\nu(A) := \mathbb{P}\left(\lim_{n \to \infty} w_n x \in A\right)$$

The hitting measure ν is also μ -harmonic,

The hitting measure ν is also μ -harmonic, or μ -stationary:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The hitting measure ν is also $\mu\text{-harmonic},$ or $\mu\text{-stationary}:$ namely,

$$\sum_{oldsymbol{g}\in \mathsf{F}}\mu(oldsymbol{g})oldsymbol{g}_{\star}
u=
u$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The hitting measure ν is also $\mu\text{-harmonic},$ or $\mu\text{-stationary}:$ namely,

$$\sum_{oldsymbol{g}\in \mathsf{F}} \mu(oldsymbol{g}) oldsymbol{g}_\star
u =
u$$

One also defines μ -harmonic functions

$$H(\Gamma,\mu) := \left\{ f: \Gamma \to \mathbb{R} : f(g) = \sum_{h} f(gh) \mu(h) \right\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The hitting measure ν is also $\mu\text{-harmonic},$ or $\mu\text{-stationary}:$ namely,

$$\sum_{oldsymbol{g}\in \mathsf{F}} \mu(oldsymbol{g}) oldsymbol{g}_\star
u =
u$$

One also defines μ -harmonic functions

$$H(\Gamma,\mu) := \left\{ f: \Gamma \to \mathbb{R} : f(g) = \sum_{h} f(gh) \mu(h) \right\}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

and there is a Poisson representation formula

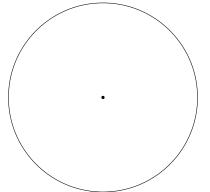
The Poisson representation formula

$$h^{\infty}(\mathbb{D}) := \{ u : \mathbb{D} \to \mathbb{R} \text{ bounded } : \Delta u = 0 \}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

The Poisson representation formula

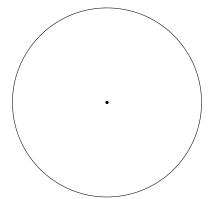
 $h^{\infty}(\mathbb{D}) := \{ u : \mathbb{D} \to \mathbb{R} \text{ bounded } : \Delta u = 0 \}$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Poisson representation formula

 $h^{\infty}(\mathbb{D}) := \{ u : \mathbb{D} \to \mathbb{R} \text{ bounded } : \Delta u = 0 \}$



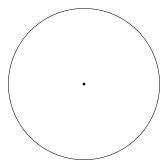
Theorem (Poisson representation) There is a bijection

 $h^{\infty}(\mathbb{D}) \quad \leftrightarrow \quad L^{\infty}(S^{1}, \lambda)$

$$H^\infty(\Gamma,\mu):=\{f:\Gamma o\mathbb{R} ext{ bounded }: \ f(g)=\sum_h f(gh)\mu(h)\}$$

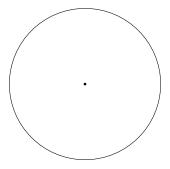
・ロト・四ト・モート ヨー うへの

$$H^\infty(\Gamma,\mu):=\{f:\Gamma o\mathbb{R} ext{ bounded }: \ f(g)=\sum_h f(gh)\mu(h)\}$$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

$$\mathcal{H}^\infty(\Gamma,\mu):=\{f:\Gamma o\mathbb{R} ext{ bounded }: \ f(g)=\sum_h f(gh)\mu(h)\}$$

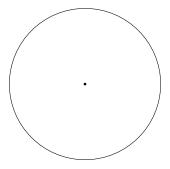


Theorem (Furstenberg '71, Kaimanovich '00) *There is a bijection*

I

 $H^{\infty}(\Gamma,\mu) \quad \leftrightarrow \quad L^{\infty}(\partial \mathbb{D},\nu)$

$$\mathcal{H}^\infty(\Gamma,\mu):=\{f:\Gamma o\mathbb{R} ext{ bounded }: \ f(g)=\sum_h f(gh)\mu(h)\}$$

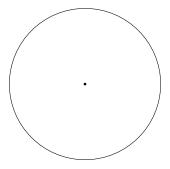


Theorem (Furstenberg '71, Kaimanovich '00) *There is a bijection*

I

 $H^{\infty}(\Gamma,\mu) \quad \leftrightarrow \quad L^{\infty}(\partial \mathbb{D},\nu)$

$$\mathcal{H}^\infty(\Gamma,\mu):=\{f:\Gamma o\mathbb{R} ext{ bounded }: \ f(g)=\sum_h f(gh)\mu(h)\}$$



Theorem (Furstenberg '71, Kaimanovich '00) *There is a bijection*

I

 $H^{\infty}(\Gamma,\mu) \quad \leftrightarrow \quad L^{\infty}(\partial \mathbb{D},\nu)$

Consider the Poincaré disk \mathbb{D} with the hyperbolic metric. Its boundary is $\partial \mathbb{D} = S^1$. Two types of measures on $\partial \mathbb{D}$:

Consider the Poincaré disk \mathbb{D} with the hyperbolic metric. Its boundary is $\partial \mathbb{D} = S^1$. Two types of measures on $\partial \mathbb{D}$:

(ロ) (同) (三) (三) (三) (○) (○)

1. Lebesgue measure λ . It is the unique rotationally invariant measure.

Consider the Poincaré disk \mathbb{D} with the hyperbolic metric. Its boundary is $\partial \mathbb{D} = S^1$. Two types of measures on $\partial \mathbb{D}$:

(ロ) (同) (三) (三) (三) (○) (○)

- 1. Lebesgue measure λ . It is the unique rotationally invariant measure.
- 2. Harmonic measure ν . Consider

 $\Gamma < PSL_2(\mathbb{R}) = Isom(\mathbb{H}^2)$. Fix μ on Γ , $x \in \mathbb{D}$.

Consider the Poincaré disk \mathbb{D} with the hyperbolic metric. Its boundary is $\partial \mathbb{D} = S^1$. Two types of measures on $\partial \mathbb{D}$:

- 1. Lebesgue measure λ . It is the unique rotationally invariant measure.
- Harmonic measure ν. Consider
 Γ < PSL₂(ℝ) = lsom(ℍ²). Fix μ on Γ, x ∈ D. Define the random walk

$$w_n := g_1 g_2 \dots g_n$$

(ロ) (同) (三) (三) (三) (○) (○)

where (g_i) are i.i.d. with distribution μ . Define the <u>hitting</u> measure (or <u>harmonic measure</u>)

Consider the Poincaré disk \mathbb{D} with the hyperbolic metric. Its boundary is $\partial \mathbb{D} = S^1$. Two types of measures on $\partial \mathbb{D}$:

- 1. Lebesgue measure λ . It is the unique rotationally invariant measure.
- Harmonic measure ν. Consider
 Γ < PSL₂(ℝ) = lsom(ℍ²). Fix μ on Γ, x ∈ D. Define the random walk

$$w_n := g_1 g_2 \dots g_n$$

where (g_i) are i.i.d. with distribution μ . Define the <u>hitting</u> measure (or <u>harmonic measure</u>) for any $A \subseteq \partial \mathbb{D}$

$$\nu(A) := \mathbb{P}\left(\lim_{n \to \infty} w_n x \in A\right)$$

Consider the Poincaré disk \mathbb{D} with the hyperbolic metric. Its boundary is $\partial \mathbb{D} = S^1$. Two types of measures on $\partial \mathbb{D}$:

- 1. Lebesgue measure λ . It is the unique rotationally invariant measure.
- Harmonic measure ν. Consider
 Γ < PSL₂(ℝ) = lsom(ℍ²). Fix μ on Γ, x ∈ D. Define the random walk

$$w_n := g_1 g_2 \dots g_n$$

where (g_i) are i.i.d. with distribution μ . Define the <u>hitting</u> measure (or <u>harmonic measure</u>) for any $A \subseteq \partial \mathbb{D}$

$$\nu(A) := \mathbb{P}\left(\lim_{n \to \infty} w_n x \in A\right)$$

Question. Can these two measures be the same, or in the same measure class?

Furstenberg '71: for <u>any</u> lattice Γ < PSL₂(ℝ), there exists a random walk for which the hitting measure is <u>absolutely</u> <u>continuous</u> w.r.t. Lebesgue.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Furstenberg '71: for <u>any</u> lattice Γ < PSL₂(ℝ), there exists a random walk for which the hitting measure is <u>absolutely</u> <u>continuous</u> w.r.t. Lebesgue. Generalization to any lattice in a semisimple Lie group.

Furstenberg '71: for <u>any</u> lattice Γ < PSL₂(R), there exists a random walk for which the hitting measure is <u>absolutely</u> <u>continuous</u> w.r.t. Lebesgue. Generalization to any lattice in a semisimple Lie group.
 Idea: discretization of Brownian motion: measure is very spread out.

Furstenberg '71: for <u>any</u> lattice Γ < PSL₂(R), there exists a random walk for which the hitting measure is <u>absolutely</u> <u>continuous</u> w.r.t. Lebesgue. Generalization to any lattice in a semisimple Lie group.
 Idea: discretization of Brownian motion: measure is very spread out.

Furstenberg '71: for <u>any</u> lattice Γ < PSL₂(R), there exists a random walk for which the hitting measure is <u>absolutely</u> <u>continuous</u> w.r.t. Lebesgue. Generalization to any lattice in a semisimple Lie group.
 Idea: discretization of Brownian motion: measure is very spread out.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Q: What about for finitely supported measures?

Furstenberg '71: for <u>any</u> lattice Γ < PSL₂(R), there exists a random walk for which the hitting measure is <u>absolutely</u> <u>continuous</u> w.r.t. Lebesgue. Generalization to any lattice in a semisimple Lie group.
 Idea: discretization of Brownian motion: measure is very spread out.

Q: What about for finitely supported measures?

▶ for Γ < Isom \mathbb{H}^2 a discrete, non-cocompact subgroup

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Furstenberg '71: for <u>any</u> lattice Γ < PSL₂(R), there exists a random walk for which the hitting measure is <u>absolutely</u> <u>continuous</u> w.r.t. Lebesgue. Generalization to any lattice in a semisimple Lie group.
 Idea: discretization of Brownian motion: measure is very spread out.

Q: What about for finitely supported measures?

for Γ < lsom ℍ² a discrete, non-cocompact subgroup (e.g: SL₂(ℤ)),

Furstenberg '71: for <u>any</u> lattice Γ < PSL₂(R), there exists a random walk for which the hitting measure is <u>absolutely</u> <u>continuous</u> w.r.t. Lebesgue. Generalization to any lattice in a semisimple Lie group.
 Idea: discretization of Brownian motion: measure is very spread out.

Q: What about for finitely supported measures?

 for Γ < Isom H² a discrete, non-cocompact subgroup (e.g: SL₂(Z)), for any finitely supported measure on Γ, the hitting measure is singular

Furstenberg '71: for <u>any</u> lattice Γ < PSL₂(R), there exists a random walk for which the hitting measure is <u>absolutely</u> <u>continuous</u> w.r.t. Lebesgue. Generalization to any lattice in a semisimple Lie group.
 Idea: discretization of Brownian motion: measure is very spread out.

Q: What about for finitely supported measures?

 for Γ < Isom H² a discrete, non-cocompact subgroup (e.g: SL₂(Z)), for any finitely supported measure on Γ, the hitting measure is singular

Guivarc'h-LeJan '90, Deroin-Kleptsyn-Navas '09, Blachére-Haissinsky-Mathieu '11, Randecker-T. '19

Conjecture (Kaimanovich-Le Prince '11) Every finitely supported measure on $SL_d(\mathbb{R})$ is singular at infinity.

Conjecture (Kaimanovich-Le Prince '11) Every finitely supported measure on $SL_d(\mathbb{R})$ is singular at infinity.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Kaimanovich-Le Prince '11

Conjecture (Kaimanovich-Le Prince '11) Every finitely supported measure on $SL_d(\mathbb{R})$ is singular at infinity.

Kaimanovich-Le Prince '11

On any lattice in $SL_d(\mathbb{R})$ there exists a finitely supported measure which is singular at infinity

(ロ) (同) (三) (三) (三) (○) (○)

Conjecture (Kaimanovich-Le Prince '11) Every finitely supported measure on $SL_d(\mathbb{R})$ is singular at infinity.

Kaimanovich-Le Prince '11

On any lattice in $SL_d(\mathbb{R})$ there exists a finitely supported measure which is singular at infinity

(ロ) (同) (三) (三) (三) (○) (○)

► Bourgain '12, Barany-Pollicott-Simon '12

Conjecture (Kaimanovich-Le Prince '11) Every finitely supported measure on $SL_d(\mathbb{R})$ is singular at infinity.

Kaimanovich-Le Prince '11

On any lattice in $SL_d(\mathbb{R})$ there exists a finitely supported measure which is singular at infinity

Bourgain '12, Barany-Pollicott-Simon '12 There exist finitely supported measure on (non-discrete) Γ such that ν is absolutely continuous

(ロ) (同) (三) (三) (三) (○) (○)

Conjecture

Every <u>discrete</u>, finitely supported measure on $SL_2(\mathbb{R})$ is singular at infinity.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Conjecture

Every <u>discrete</u>, finitely supported measure on $SL_2(\mathbb{R})$ is singular at infinity.

Compare Ledrappier '90: for the Brownian motion on a surface, the hitting measure is <u>absolutely continuous</u> if and only if the curvature is constant.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Conjecture

Every <u>discrete</u>, finitely supported measure on $SL_2(\mathbb{R})$ is singular at infinity.

Compare Ledrappier '90: for the Brownian motion on a surface, the hitting measure is <u>absolutely continuous</u> if and only if the curvature is constant.

(日) (日) (日) (日) (日) (日) (日)

The only remaining case is for Γ discrete, cocompact

Conjecture

Every <u>discrete</u>, finitely supported measure on $SL_2(\mathbb{R})$ is singular at infinity.

Compare Ledrappier '90: for the Brownian motion on a surface, the hitting measure is <u>absolutely continuous</u> if and only if the curvature is constant.

(ロ) (同) (三) (三) (三) (○) (○)

- The only remaining case is for Γ discrete, cocompact
- ► Kosenko '19, Carrasco-Lessa-Paquette '17

Conjecture

Every <u>discrete</u>, finitely supported measure on $SL_2(\mathbb{R})$ is singular at infinity.

- Compare Ledrappier '90: for the Brownian motion on a surface, the hitting measure is <u>absolutely continuous</u> if and only if the curvature is constant.
- The only remaining case is for F discrete, cocompact
- Kosenko '19, Carrasco-Lessa-Paquette '17 If the fundamental domain of Γ is a regular polygon with n>> 1 sides, the measure is singular at infinity

(ロ) (同) (三) (三) (三) (○) (○)

Let *M* be a manifold of finite volume and pinched negative curvature, $X = \widetilde{M}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let *M* be a manifold of finite volume and pinched negative curvature, $X = \widetilde{M}$ (today, $X = \mathbb{D}$).

Let *M* be a manifold of finite volume and pinched negative curvature, $X = \widetilde{M}$ (today, $X = \mathbb{D}$). Let $\Gamma = \pi_1(M) < \text{Isom } X$.

Let *M* be a manifold of finite volume and pinched negative curvature, $X = \widetilde{M}$ (today, $X = \mathbb{D}$). Let $\Gamma = \pi_1(M) < \text{Isom } X$.

The critical exponent (or volume growth) is

$$v := \lim_{n \to \infty} \frac{1}{n} \log \# \{g : d(x, gx) \le n\}$$

(ロ) (同) (三) (三) (三) (○) (○)

Let *M* be a manifold of finite volume and pinched negative curvature, $X = \widetilde{M}$ (today, $X = \mathbb{D}$). Let $\Gamma = \pi_1(M) < \text{Isom } X$.

The <u>critical exponent</u> (or <u>volume growth</u>) is

$$v := \lim_{n \to \infty} \frac{1}{n} \log \# \{g : d(x, gx) \le n\}$$

• The entropy of μ is

$$H(\mu) := -\sum \mu(g)\log \mu(g)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let *M* be a manifold of finite volume and pinched negative curvature, $X = \widetilde{M}$ (today, $X = \mathbb{D}$). Let $\Gamma = \pi_1(M) < \text{Isom } X$.

The <u>critical exponent</u> (or <u>volume growth</u>) is

$$v := \lim_{n \to \infty} \frac{1}{n} \log \# \{g : d(x, gx) \le n\}$$

• The entropy of μ is

$$H(\mu) := -\sum \mu(g)\log \mu(g)$$

and the asymptotic entropy is

$$h:=\lim_{n\to\infty}\frac{H(\mu^n)}{n}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let *M* be a manifold of finite volume and pinched negative curvature, $X = \widetilde{M}$ (today, $X = \mathbb{D}$). Let $\Gamma = \pi_1(M) < \text{Isom } X$.

The <u>critical exponent</u> (or <u>volume growth</u>) is

$$v := \lim_{n \to \infty} \frac{1}{n} \log \# \{g : d(x, gx) \le n\}$$

• The entropy of μ is

$$extsf{H}(\mu) := -\sum \mu(m{g}) \log \mu(m{g})$$

and the asymptotic entropy is

$$h:=\lim_{n\to\infty}\frac{H(\mu^n)}{n}$$

The <u>drift</u> is

$$\ell := \lim_{n \to \infty} \frac{d(x, w_n x)}{n}$$

where the limit exists a.s. and is constant.

Guivarc'h '80 proved the inequality

Guivarc'h '80 proved the inequality (a.k.a. fundamental inequality - Vershik '00)

Guivarc'h '80 proved the inequality (a.k.a. fundamental inequality - Vershik '00)

$$h \le \ell v \tag{1}$$

Guivarc'h '80 proved the inequality (a.k.a. fundamental inequality - Vershik '00)

$$h \le \ell v \tag{1}$$

(ロ) (同) (三) (三) (三) (○) (○)

<u>Note:</u> $\frac{h}{\ell}$ is the Hausdorff dimension of the harmonic measure ν (Tanaka '19).

Guivarc'h '80 proved the inequality (a.k.a. fundamental inequality - Vershik '00)

$$h \le \ell v \tag{1}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

<u>Note:</u> $\frac{h}{\ell}$ is the Hausdorff dimension of the harmonic measure ν (Tanaka '19).

Theorem (Blachère-Haïssinsky-Mathieu '11) Let Γ be a cocompact group of isometries of hyperbolic space \mathbb{H}^n . Then

 $h = \ell v$

Guivarc'h '80 proved the inequality (a.k.a. fundamental inequality - Vershik '00)

$$h \le \ell v \tag{1}$$

(ロ) (同) (三) (三) (三) (○) (○)

<u>Note:</u> $\frac{h}{\ell}$ is the Hausdorff dimension of the harmonic measure ν (Tanaka '19).

Theorem (Blachère-Haïssinsky-Mathieu '11) Let Γ be a cocompact group of isometries of hyperbolic space \mathbb{H}^n . Then

 $h = \ell v$

if and only if the harmonic measure and the Lebesgue measure are in the same class.

Guivarc'h '80 proved the inequality (a.k.a. fundamental inequality - Vershik '00)

$$h \le \ell v \tag{1}$$

<u>Note:</u> $\frac{h}{\ell}$ is the Hausdorff dimension of the harmonic measure ν (Tanaka '19).

Theorem (Blachère-Haïssinsky-Mathieu '11) Let Γ be a cocompact group of isometries of hyperbolic space \mathbb{H}^n . Then

 $h = \ell v$

if and only if the harmonic measure and the Lebesgue measure are in the same class.

Compare Gouëzël-Mathéus-Maucourant '18: if we consider ℓ with respect to the <u>word metric</u> on Γ ,

Guivarc'h '80 proved the inequality (a.k.a. fundamental inequality - Vershik '00)

$$h \le \ell v \tag{1}$$

<u>Note:</u> $\frac{h}{\ell}$ is the Hausdorff dimension of the harmonic measure ν (Tanaka '19).

Theorem (Blachère-Haïssinsky-Mathieu '11) Let Γ be a cocompact group of isometries of hyperbolic space \mathbb{H}^n . Then

 $h = \ell v$

if and only if the harmonic measure and the Lebesgue measure are in the same class.

Compare Gouëzël-Mathéus-Maucourant '18: if we consider ℓ with respect to the word metric on Γ , then $h < \ell v$ unless Γ is virtually free.

Theorem (Kosenko-T. '20)

Let P be a symmetric hyperbolic polygon with sum of angles 2π .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

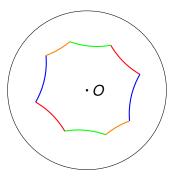
Theorem (Kosenko-T. '20)

Let *P* be a symmetric hyperbolic polygon with sum of angles 2π . Let μ be a prob. measure supported on the set (t_i) of translations which identify opposite sides.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (Kosenko-T. '20)

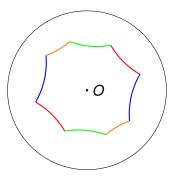
Let *P* be a symmetric hyperbolic polygon with sum of angles 2π . Let μ be a prob. measure supported on the set (t_i) of translations which identify opposite sides.



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (Kosenko-T. '20)

Let *P* be a symmetric hyperbolic polygon with sum of angles 2π . Let μ be a prob. measure supported on the set (t_i) of translations which identify opposite sides.



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Then the hitting measure ν_{μ} is singular w.r.t. Lebesgue measure.

Theorem (Kosenko-T. '20)

Let P be a symmetric hyperbolic polygon with 2m sides, with sum of angles 2π . Let μ be a symmetric prob. measure supported on the set $(t_i)_{i=1}^{2m}$ of translations which identify opposite sides. Then the hitting measure ν_{μ} is singular w.r.t. Lebesgue measure.

(日) (日) (日) (日) (日) (日) (日)

Theorem (Kosenko-T. '20)

Let P be a symmetric hyperbolic polygon with 2m sides, with sum of angles 2π . Let μ be a symmetric prob. measure supported on the set $(t_i)_{i=1}^{2m}$ of translations which identify opposite sides. Then the hitting measure ν_{μ} is singular w.r.t. Lebesgue measure.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Corollary

Then:

h < ℓ is strict;</p>

Theorem (Kosenko-T. '20)

Let P be a symmetric hyperbolic polygon with 2m sides, with sum of angles 2π . Let μ be a symmetric prob. measure supported on the set $(t_i)_{i=1}^{2m}$ of translations which identify opposite sides. Then the hitting measure ν_{μ} is singular w.r.t. Lebesgue measure.

Corollary

Then:

- *h* < ℓ is strict;</p>
- The Hausdorff dimension satisfies

H.dim
$$u_{\mu} = \frac{h}{\ell} < 1.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (Kosenko-T. '20)

Let *P* be a symmetric hyperbolic polygon with sum of angles 2π , and let Γ be its associated cocompact Fuchsian group.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem (Kosenko-T. '20)

Let P be a symmetric hyperbolic polygon with sum of angles 2π , and let Γ be its associated cocompact Fuchsian group. Let $S := \{g_1, \ldots, g_{2m}\}$ be the set of hyperbolic translations identifying opposite sides of P.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (Kosenko-T. '20)

Let *P* be a symmetric hyperbolic polygon with sum of angles 2π , and let Γ be its associated cocompact Fuchsian group. Let $S := \{g_1, \ldots, g_{2m}\}$ be the set of hyperbolic translations identifying opposite sides of *P*. Then we have

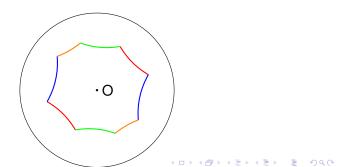
$$\sum_{g\in S}\frac{1}{1+e^{\ell(g)}}<1.$$

(日) (日) (日) (日) (日) (日) (日)

Theorem (Kosenko-T. '20)

Let *P* be a symmetric hyperbolic polygon with sum of angles 2π , and let Γ be its associated cocompact Fuchsian group. Let $S := \{g_1, \ldots, g_{2m}\}$ be the set of hyperbolic translations identifying opposite sides of *P*. Then we have

 $\sum_{g\in \mathcal{S}}\frac{1}{1+e^{\ell(g)}}<1.$



Theorem (Kosenko-T. '20)

Let P be a hyperelliptic polygon, and let Γ be its associated cocompact Fuchsian group. Let $S := \{g_1, \ldots, g_{2m}\}$ be the set of hyperbolic translations identifying opposite sides of P. Then we have

$$\sum_{g\in \mathcal{S}}\frac{1}{1+e^{\ell(g)}}<1.$$

Compare:

► Culler-Shalen '92, Anderson-Canary-Culler-Shalen '96:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem (Kosenko-T. '20)

Let P be a hyperelliptic polygon, and let Γ be its associated cocompact Fuchsian group. Let $S := \{g_1, \ldots, g_{2m}\}$ be the set of hyperbolic translations identifying opposite sides of P. Then we have

$$\sum_{g\in \mathcal{S}}\frac{1}{1+e^{\ell(g)}}<1.$$

Compare:

 Culler-Shalen '92, Anderson-Canary-Culler-Shalen '96: free Kleinian groups

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A geometric inequality

Theorem (Kosenko-T. '20)

Let P be a hyperelliptic polygon, and let Γ be its associated cocompact Fuchsian group. Let $S := \{g_1, \ldots, g_{2m}\}$ be the set of hyperbolic translations identifying opposite sides of P. Then we have

$$\sum_{g\in \mathcal{S}}\frac{1}{1+e^{\ell(g)}}<1.$$

Compare:

- Culler-Shalen '92, Anderson-Canary-Culler-Shalen '96: free Kleinian groups
- McShane '98:

A geometric inequality

Theorem (Kosenko-T. '20)

Let P be a hyperelliptic polygon, and let Γ be its associated cocompact Fuchsian group. Let $S := \{g_1, \ldots, g_{2m}\}$ be the set of hyperbolic translations identifying opposite sides of P. Then we have

$$\sum_{g\in \mathcal{S}}\frac{1}{1+e^{\ell(g)}}<1.$$

Compare:

- Culler-Shalen '92, Anderson-Canary-Culler-Shalen '96: free Kleinian groups
- McShane '98: punctured torus, infinite sum

The Green metric (Blachère-Brofferio '07) is

The Green metric (Blachère-Brofferio '07) is

$$d_{\mu}(x,y) := -\log \mathbb{P}(\exists n : w_n x = y)$$

The Green metric (Blachère-Brofferio '07) is

$$d_{\mu}(x,y) := -\log \mathbb{P}(\exists n : w_n x = y)$$

Theorem (BHM '11, Tanaka '19) The following are equivalent:

The Green metric (Blachère-Brofferio '07) is

$$d_{\mu}(x,y) := -\log \mathbb{P}(\exists n : w_n x = y)$$

(ロ) (同) (三) (三) (三) (○) (○)

Theorem (BHM '11, Tanaka '19)

The following are equivalent:

1. The equality $h = \ell v$ holds.

The Green metric (Blachère-Brofferio '07) is

$$d_{\mu}(x,y) := -\log \mathbb{P}(\exists n : w_n x = y)$$

Theorem (BHM '11, Tanaka '19)

The following are equivalent:

- 1. The equality $h = \ell v$ holds.
- 2. The Hausdorff dimension of the hitting measure ν on S^1 is equal to 1.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Green metric (Blachère-Brofferio '07) is

$$d_{\mu}(x,y) := -\log \mathbb{P}(\exists n : w_n x = y)$$

Theorem (BHM '11, Tanaka '19)

The following are equivalent:

- 1. The equality $h = \ell v$ holds.
- 2. The Hausdorff dimension of the hitting measure ν on S^1 is equal to 1.
- 3. The measure ν is equivalent to Lebesgue measure on S^1 .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Green metric (Blachère-Brofferio '07) is

$$d_{\mu}(x,y) := -\log \mathbb{P}(\exists n : w_n x = y)$$

Theorem (BHM '11, Tanaka '19)

The following are equivalent:

- 1. The equality $h = \ell v$ holds.
- 2. The Hausdorff dimension of the hitting measure ν on S^1 is equal to 1.
- 3. The measure ν is equivalent to Lebesgue measure on S^1 .
- 4. For any $o \in \mathbb{H}^2$, there exists a constant C > 0 such that for any $g \in \Gamma$ we have

$$|d_{\mu}(1,g)-d_{\mathbb{H}}(o,go)|\leq C.$$

Lemma If ν is AC, then $\ell(g) \leq d_{\mu}(1,g)$ for all $g \in \Gamma$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Lemma If ν is AC, then $\ell(g) \leq d_{\mu}(1,g)$ for all $g \in \Gamma$.

Theorem If the support of μ is S and μ is symmetric,

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Lemma If ν is AC, then $\ell(g) \leq d_{\mu}(1,g)$ for all $g \in \Gamma$.

Theorem

If the support of μ is S and μ is symmetric, then if

$$\sum_{g\in \mathcal{S}}\frac{1}{1+e^{\ell(g)}}<1$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Lemma If ν is AC, then $\ell(g) \leq d_{\mu}(1,g)$ for all $g \in \Gamma$.

Theorem

If the support of μ is S and μ is symmetric, then if

$$\sum_{g\in \mathcal{S}}\frac{1}{1+e^{\ell(g)}}<1$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

then the hitting measure ν_{μ} is singular.

A criterion for singularity - sketch of proof

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Theorem

If the support of μ is S and μ is symmetric,

A criterion for singularity - sketch of proof

Theorem

If the support of μ is S and μ is symmetric, then if

$$\sum_{g\in \mathcal{S}}\frac{1}{1+e^{\ell(g)}}<1$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A criterion for singularity - sketch of proof

Theorem

If the support of μ is S and μ is symmetric, then if

$$\sum_{g\in \mathcal{S}}\frac{1}{1+e^{\ell(g)}}<1$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

then the hitting measure ν_{μ} is singular.

lf

 $z_i := \tanh d_{\mathbb{H}}(o, L_i)$

lf

$$z_i := \tanh d_{\mathbb{H}}(o, L_i)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

is the distance from the i^{th} side,

lf

 $z_i := \tanh d_{\mathbb{H}}(o, L_i)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is the distance from the *i*th side, we reduce to

Proposition If $0 \le z_i \le 1$ with $\sum_{i=1}^m z_i = m - 1$,

lf

 $z_i := \tanh d_{\mathbb{H}}(o, L_i)$

is the distance from the *i*th side, we reduce to

Proposition If $0 \le z_i \le 1$ with $\sum_{i=1}^m z_i = m - 1$, then

$$\sum_{i=1}^{m} \arccos(z_i z_{i+1}) \geq \pi$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

lf

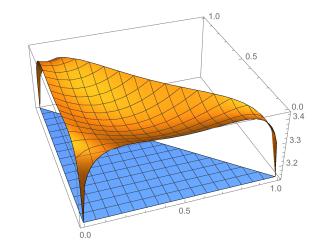
 $z_i := \tanh d_{\mathbb{H}}(o, L_i)$

is the distance from the *i*th side, we reduce to

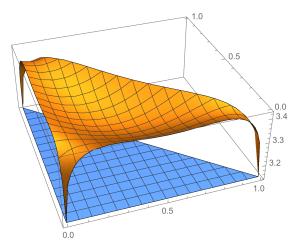
Proposition If $0 \le z_i \le 1$ with $\sum_{i=1}^m z_i = m - 1$, then

$$\sum_{i=1}^{m} \arccos(z_i z_{i+1}) \geq \pi$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで



The graph of $f(x) := \sum_{i=1}^{3} \arccos((1 - x_i)(1 - x_{i+1}))$ subject to the constraint $\sum_{i=1}^{3} x_i = 1$, compared with the constant function at height π .

Setting x = 1 - z

Setting x = 1 - z and noting that

$$\frac{2}{\pi} \arccos(1-x) \sim \sqrt{x}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Setting x = 1 - z and noting that

$$\frac{2}{\pi} \arccos(1-x) \sim \sqrt{x}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

the previous inequality is (almost) equivalent to

Setting x = 1 - z and noting that

$$\frac{2}{\pi} \arccos(1-x) \sim \sqrt{x}$$

the previous inequality is (almost) equivalent to

Proposition

For $m \ge 3$, with $0 \le x_i \le 1$ and $\sum_{i=1}^m x_i = 1$, we have

$$\sum_{i=1}^{m} \sqrt{x_i + x_{i+1} - x_i x_{i+1}} \ge 2$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The end

Thank you! Grazie! Merci!

