Tuning and plateaux for the entropy of α -continued fraction transformations

Giulio Tiozzo Harvard University

Marseille, May 24, 2012

Credits

Joint work with C. Carminati (Pisa)

1. α -continued fractions

- 1. α -continued fractions
- **2**. The entropy function $h(\alpha)$

- 1. α -continued fractions
- 2. The entropy function $h(\alpha)$
- 3. Quadratic intervals and matching

- 1. α -continued fractions
- 2. The entropy function $h(\alpha)$
- 3. Quadratic intervals and matching
- 4. Tuning operators

- 1. α -continued fractions
- 2. The entropy function $h(\alpha)$
- 3. Quadratic intervals and matching
- 4. Tuning operators
- 5. Characterization of plateaux

- 1. α -continued fractions
- 2. The entropy function $h(\alpha)$
- 3. Quadratic intervals and matching
- 4. Tuning operators
- 5. Characterization of plateaux
- 6. Local monotonicity of the entropy

$$x = \frac{p}{q}$$

$$p = a_0 q + r_0$$

$$x = \frac{p}{q}$$

$$p = a_0 q + r_0 \quad \Rightarrow \quad \frac{p}{q} = a_0 + \frac{r_0}{q}$$

$$x = \frac{p}{q}$$

$$p = a_0 q + r_0 \quad \Rightarrow \quad \frac{p}{q} = a_0 + \frac{r_0}{q}$$

$$q = a_1 r_0 + r_1$$

$$x = \frac{p}{q}$$

$$p = a_0 q + r_0 \quad \Rightarrow \quad \frac{p}{q} = a_0 + \frac{r_0}{q}$$

$$q = a_1 r_0 + r_1 \quad \Rightarrow \quad \frac{q}{r_0} = a_1 + \frac{r_1}{r_0}$$

$$x = \frac{p}{q}$$

$$p = a_0 q + r_0 \quad \Rightarrow \quad \frac{p}{q} = a_0 + \frac{r_0}{q}$$

$$q = a_1 r_0 + r_1 \quad \Rightarrow \quad \frac{q}{r_0} = a_1 + \frac{r_1}{r_0}$$

$$\frac{p}{q} = a_0 + \frac{1}{a_1 + \frac{r_1}{r_0}}$$

$$x = \frac{p}{q}$$

$$p = a_0 q + r_0 \quad \Rightarrow \quad \frac{p}{q} = a_0 + \frac{r_0}{q}$$

$$q = a_1 r_0 + r_1 \quad \Rightarrow \quad \frac{q}{r_0} = a_1 + \frac{r_1}{r_0}$$

$$\frac{p}{q} = a_0 + \frac{1}{a_1 + \frac{r_1}{r_0}} = a_0 + \frac{1}{a_1 + \frac{1}{a_{k-1} + \frac{1}{a_{k}}}}$$

$$\vdots$$

$$x \in \mathbb{R} \setminus \mathbb{Q}$$

$$x = \lfloor x \rfloor + x_0 =$$

$$x \in \mathbb{R} \setminus \mathbb{Q}$$

$$x = \lfloor x \rfloor + x_0 = a_0 + x_0 \quad 0 \le x_0 \le 1$$

$$x = a_0 + x_0$$

$$x \in \mathbb{R} \setminus \mathbb{Q}$$

$$x = \lfloor x \rfloor + x_0 = a_0 + x_0 \quad 0 \le x_0 \le 1$$

$$\frac{1}{x_0} = \left\lfloor \frac{1}{x_0} \right\rfloor + x_1 =$$

$$x = a_0 + x_0$$

$$x \in \mathbb{R} \setminus \mathbb{Q}$$

$$x = \lfloor x \rfloor + x_0 = a_0 + x_0 \quad 0 \le x_0 \le 1$$

 $\frac{1}{x_0} = \lfloor \frac{1}{x_0} \rfloor + x_1 = a_1 + x_1 \quad 0 \le x_1 \le 1$

$$x=a_0+\frac{1}{a_1+x_1}$$

$$x \in \mathbb{R} \setminus \mathbb{Q}$$

$$x = \lfloor x \rfloor + x_0 = a_0 + x_0 \quad 0 \le x_0 \le 1$$

$$\frac{1}{x_0} = \lfloor \frac{1}{x_0} \rfloor + x_1 = a_1 + x_1 \quad 0 \le x_1 \le 1$$

$$\frac{1}{x_1} = \lfloor \frac{1}{x_1} \rfloor + x_2 =$$

$$x = a_0 + \frac{1}{a_1 + x_1}$$

$$x \in \mathbb{R} \setminus \mathbb{Q}$$

$$x = \lfloor x \rfloor + x_0 = a_0 + x_0 \quad 0 \le x_0 \le 1$$

$$\frac{1}{x_0} = \left\lfloor \frac{1}{x_0} \right\rfloor + x_1 = a_1 + x_1 \quad 0 \le x_1 \le 1$$

$$\frac{1}{x_1} = \left\lfloor \frac{1}{x_1} \right\rfloor + x_2 = a_2 + x_2 \quad 0 \le x_2 \le 1$$

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + x_2}}$$

$$x \in \mathbb{R} \setminus \mathbb{Q}$$

$$x = \lfloor x \rfloor + x_0 = a_0 + x_0 \quad 0 \le x_0 \le 1$$

$$\frac{1}{x_0} = \begin{bmatrix} \frac{1}{x_0} \end{bmatrix} + x_1 = a_1 + x_1 \quad 0 \le x_1 \le 1$$

$$\frac{1}{x_1} = \begin{bmatrix} \frac{1}{x_1} \end{bmatrix} + x_2 = a_2 + x_2 \quad 0 \le x_2 \le 1$$

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}$$

INFINITE EXPANSION

$$\frac{1}{x_n} = \left\lfloor \frac{1}{x_n} \right\rfloor + x_{n+1}$$

$$\frac{1}{x_n} = \left\lfloor \frac{1}{x_n} \right\rfloor + x_{n+1}$$
$$x_{n+1} = \left\{ \frac{1}{x_n} \right\}$$

$$\frac{1}{x_n} = \left\lfloor \frac{1}{x_n} \right\rfloor + x_{n+1}$$
$$G(x) = \left\{ \frac{1}{x} \right\}$$

$$\frac{1}{x_n} = \left\lfloor \frac{1}{x_n} \right\rfloor + x_{n+1}$$

$$G(x) = \left\{\frac{1}{x}\right\}$$

For each $\alpha \in [0, 1]$, we can define a α -euclidean algorithm, where we take the remainder to be in $[\alpha - 1, \alpha]$. It is generated by $T_{\alpha} : [\alpha - 1, \alpha] \to [\alpha - 1, \alpha]$ as follows:

For each $\alpha \in [0,1]$, we can define a α -euclidean algorithm, where we take the remainder to be in $[\alpha-1,\alpha]$. It is generated by $\mathcal{T}_{\alpha}: [\alpha-1,\alpha] \to [\alpha-1,\alpha]$ as follows:

$$T_{\alpha}(x) := \frac{1}{|x|} - c_{\alpha}(x),$$

For each $\alpha \in [0, 1]$, we can define a α -euclidean algorithm, where we take the remainder to be in $[\alpha - 1, \alpha]$. It is generated by $\mathcal{T}_{\alpha} : [\alpha - 1, \alpha] \to [\alpha - 1, \alpha]$ as follows:

$$\mathcal{T}_{\alpha}(x) := \frac{1}{|x|} - c_{\alpha}(x), \quad c_{\alpha}(x) := \left| \frac{1}{|x|} + 1 - \alpha \right|.$$

For each $\alpha \in [0,1]$, we can define a α -euclidean algorithm, where we take the remainder to be in $[\alpha-1,\alpha]$. It is generated by $\mathcal{T}_{\alpha}: [\alpha-1,\alpha] \to [\alpha-1,\alpha]$ as follows:

$$T_{\alpha}(x) := \frac{1}{|x|} - c_{\alpha}(x), \quad c_{\alpha}(x) := \left\lfloor \frac{1}{|x|} + 1 - \alpha \right\rfloor.$$

and associated to the α -continued fraction expansion:

$$x = \frac{\epsilon_{1,\alpha}}{c_{1,\alpha} + \frac{\epsilon_{2,\alpha}}{c_{2,\alpha} + \dots}} \quad c_{n,\alpha} \in \mathbb{N}^+, \epsilon_{n,\alpha} \in \{\pm 1\}$$

For each $\alpha \in [0,1]$, we can define a α -euclidean algorithm, where we take the remainder to be in $[\alpha-1,\alpha]$. It is generated by $\mathcal{T}_{\alpha}: [\alpha-1,\alpha] \to [\alpha-1,\alpha]$ as follows:

$$T_{\alpha}(x) := \frac{1}{|x|} - c_{\alpha}(x), \quad c_{\alpha}(x) := \left\lfloor \frac{1}{|x|} + 1 - \alpha \right\rfloor.$$

and associated to the α -continued fraction expansion:

$$x = \frac{\epsilon_{1,\alpha}}{c_{1,\alpha} + \frac{\epsilon_{2,\alpha}}{c_{2,\alpha} + \dots}} \quad c_{n,\alpha} \in \mathbb{N}^+, \epsilon_{n,\alpha} \in \{\pm 1\}$$

For each $\alpha \in [0,1]$, we can define a α -euclidean algorithm, where we take the remainder to be in $[\alpha-1,\alpha]$. It is generated by $\mathcal{T}_{\alpha}: [\alpha-1,\alpha] \to [\alpha-1,\alpha]$ as follows:

$$T_{\alpha}(x) := \frac{1}{|x|} - c_{\alpha}(x), \quad c_{\alpha}(x) := \left\lfloor \frac{1}{|x|} + 1 - \alpha \right\rfloor.$$

and associated to the α -continued fraction expansion:

$$x = \frac{\epsilon_{1,\alpha}}{c_{1,\alpha} + \frac{\epsilon_{2,\alpha}}{c_{2,\alpha} + \dots}} \quad c_{n,\alpha} \in \mathbb{N}^+, \epsilon_{n,\alpha} \in \{\pm 1\}$$

Nakada's α -continued fraction transformations

Nakada's α -continued fraction transformations

Nakada's α -continued fraction transformations

What is the average speed of convergence of the α -euclidean algorithm?

What is the average speed of convergence of the α -euclidean algorithm? How does it vary with α ?

For each α , the topological entropy of T_{α} is infinite. However, every T_{α} has a unique invariant measure μ_{α} in the Lebesgue measure class.

For each α , the topological entropy of \mathcal{T}_{α} is infinite. However, every \mathcal{T}_{α} has a unique invariant measure μ_{α} in the Lebesgue measure class. Hence we can consider the metric entropy with respect to that measure.

$$h(lpha) := \int \log |T_lpha'| d\mu_lpha$$

$$h(lpha) := \int \log |T'_lpha| d\mu_lpha$$

It measures:

• the speed of convergence of the α -euclidean algorithm

$$h(\alpha) := \int \log |T'_{\alpha}| d\mu_{\alpha}$$

It measures:

the speed of convergence of the α-euclidean algorithm: The average number of steps over all rationals of denominator less than N is

$$P_N(\alpha) \cong \frac{2}{h(\alpha)} \log N$$

[Bourdon-Daireaux-Vallée]

$$h(lpha) := \int \log |T'_lpha| d\mu_lpha$$

It measures:

- the speed of convergence of the α -euclidean algorithm
- the growth rate of the denominators

$$h(lpha) := \int \log |T_lpha'| d\mu_lpha$$

It measures:

- the speed of convergence of the α -euclidean algorithm
- ▶ the growth rate of the denominators : For almost every x ∈ [0, 1]

$$h(\alpha) = \lim_{n \to +\infty} \frac{2}{n} \log q_{n,\alpha}(x)$$

where $p_{n,\alpha}(x)/q_{n,\alpha}(x)$ is the n-th convergent of the α -expansion of x

$$h(lpha) := \int \log |T_lpha'| d\mu_lpha$$

It measures:

- the speed of convergence of the α -euclidean algorithm
- the growth rate of the denominators
- how chaotic the map T_{α} is

Is entropy monotone increasing for $\alpha < \frac{1}{2}$?

No, it is not monotone!

It seems like entropy displays a fractal structure

$h(\alpha)$ is:

non-monotone [Nakada-Natsui]

$h(\alpha)$ is:

- non-monotone [Nakada-Natsui]
- continuous [Luzzi-Marmi], [Kraaikamp-Schmidt-Steiner]

$h(\alpha)$ is:

- non-monotone [Nakada-Natsui]
- continuous [Luzzi-Marmi], [Kraaikamp-Schmidt-Steiner]
- ▶ Hölder-continuous with exponent $(1/2 \epsilon)$ [T.]

$h(\alpha)$ is:

- non-monotone [Nakada-Natsui]
- continuous [Luzzi-Marmi], [Kraaikamp-Schmidt-Steiner]
- ▶ Hölder-continuous with exponent $(1/2 \epsilon)$ [T.]

How to describe and explain the fractal structure?

Nakada and Natsui defined *matching intervals* as intervals on which the orbits of the two endpoints collide:

$$T_{\alpha}^{N+1}(\alpha) = T_{\alpha}^{M+1}(\alpha - 1)$$
 $M, N \in \mathbb{N}$

Nakada and Natsui defined *matching intervals* as intervals on which the orbits of the two endpoints collide:

$$T_{\alpha}^{N+1}(\alpha) = T_{\alpha}^{M+1}(\alpha - 1)$$
 $M, N \in \mathbb{N}$

They proved that, whenever this happens, the entropy $h(\alpha)$ is monotone near the parameter α ;

Nakada and Natsui defined *matching intervals* as intervals on which the orbits of the two endpoints collide:

$$T_{\alpha}^{N+1}(\alpha) = T_{\alpha}^{M+1}(\alpha - 1)$$
 $M, N \in \mathbb{N}$

They proved that, whenever this happens, the entropy $h(\alpha)$ is monotone near the parameter α ; but different intervals might display different kind of monotonicity

Nakada and Natsui defined *matching intervals* as intervals on which the orbits of the two endpoints collide:

$$T_{\alpha}^{N+1}(\alpha) = T_{\alpha}^{M+1}(\alpha - 1)$$
 $M, N \in \mathbb{N}$

They proved that, whenever this happens, the entropy $h(\alpha)$ is monotone near the parameter α ; but different intervals might display different kind of monotonicity

▶ matching intervals where $h(\alpha)$ is increasing;

- ▶ matching intervals where $h(\alpha)$ is increasing;
- ▶ matching intervals where $h(\alpha)$ is decreasing;

- ▶ matching intervals where $h(\alpha)$ is increasing;
- ▶ matching intervals where $h(\alpha)$ is decreasing;
- ▶ matching intervals where $h(\alpha)$ is constant.

- ▶ matching intervals where $h(\alpha)$ is increasing;
- ▶ matching intervals where $h(\alpha)$ is decreasing;
- ▶ matching intervals where $h(\alpha)$ is constant.

Conjecture

The union of all matching intervals is dense and has full measure in parameter space.

Quadratic intervals

FACT:

$$\frac{3}{10} = \frac{1}{3 + \frac{1}{3}}$$

$$\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{3}{10} = [0; 3, 3]$$

$$\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].$$

FACT: Every rational value admits exactly two C.F. expansions.

$$\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].$$

So any $a \in \mathbb{Q} \cap (0,1)$ will have two C.F. expansions of the type

FACT: Every rational value admits exactly two C.F. expansions.

$$\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].$$

So any $a \in \mathbb{Q} \cap (0,1)$ will have two C.F. expansions of the type

$$a = [0; A^{-}] = [0; A^{+}]$$

FACT: Every rational value admits exactly two C.F. expansions.

$$\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].$$

So any $a \in \mathbb{Q} \cap (0,1)$ will have two C.F. expansions of the type

$$a = [0; A^{-}] = [0; A^{+}]$$

$$\alpha^- := [0; \overline{A^-}]$$

FACT: Every rational value admits exactly two C.F. expansions.

$$\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].$$

So any $a \in \mathbb{Q} \cap (0,1)$ will have two C.F. expansions of the type

$$a = [0; A^{-}] = [0; A^{+}]$$

$$\alpha^- := [0; \overline{A^-}]$$
 (E.g. $\alpha^- = [0; \overline{3, 2, 1}] = \frac{\sqrt{37} - 4}{7}$)

FACT: Every rational value admits exactly two C.F. expansions.

$$\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].$$

So any $a \in \mathbb{Q} \cap (0,1)$ will have two C.F. expansions of the type

$$a = [0; A^{-}] = [0; A^{+}]$$

$$\alpha^{-} := [0; \overline{A^{-}}] \text{ (E.g. } \alpha^{-} = [0; \overline{3, 2, 1}] = \frac{\sqrt{37} - 4}{7})$$

 $\alpha^{+} := [0; \overline{A^{+}}]$

FACT: Every rational value admits exactly two C.F. expansions.

$$\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].$$

So any $a \in \mathbb{Q} \cap (0,1)$ will have two C.F. expansions of the type

$$a = [0; A^{-}] = [0; A^{+}]$$

$$\alpha^{-} := [0; \overline{A^{-}}] \text{ (E.g. } \alpha^{-} = [0; \overline{3, 2, 1}] = \frac{\sqrt{37-4}}{7})$$

 $\alpha^{+} := [0; \overline{A^{+}}] \text{ (E.g. } \alpha^{+} = [0; \overline{3, 3}] = \frac{\sqrt{13-3}}{2})$

For each $a \in \mathbb{Q} \cap (0,1)$

For each $a \in \mathbb{Q} \cap (0,1)$ we define open interval I_a as follows $a = [0; A^{\pm}]$

$$a = [0; A^{\pm}] \mapsto$$

$$a = [0; A^{\pm}] \mapsto I_a := (\alpha^-, \alpha^+),$$

$$a = [0; A^{\pm}] \mapsto I_a := (\alpha^-, \alpha^+), \quad \alpha^{\pm} := [0; \overline{A^{\pm}}].$$

For each $a \in \mathbb{Q} \cap (0,1)$ we define open interval I_a as follows

$$\mathbf{a} = [\mathbf{0}; \mathbf{A}^{\pm}] \mapsto \mathbf{I}_{\mathbf{a}} := (\alpha^{-}, \alpha^{+}), \quad \alpha^{\pm} := [\mathbf{0}; \overline{\mathbf{A}^{\pm}}].$$

The interval $I_a := (\alpha^-, \alpha^+)$ will be called

For each $a \in \mathbb{Q} \cap (0,1)$ we define open interval I_a as follows

$$a = [0; A^{\pm}] \mapsto I_a := (\alpha^-, \alpha^+), \quad \alpha^{\pm} := [0; \overline{A^{\pm}}].$$

The interval $I_a := (\alpha^-, \alpha^+)$ will be called the *quadratic interval* generated by $a \in \mathbb{Q} \cap (0, 1)$.

Quadratic intervals are matching intervals

Theorem (Carminati-T., 2010)

Let I_r be a maximal quadratic interval, and $r = [0; a_1, \dots, a_n]$ with n even. Let

$$N = \sum_{i \text{ even}} a_i$$
 $M = \sum_{i \text{ odd}} a_i$ (1)

Then for all $\alpha \in I_r$,

$$T_{\alpha}^{N+1}(\alpha) = T_{\alpha}^{M+1}(\alpha - 1) \tag{2}$$

Quadratic intervals are matching intervals

Theorem (Carminati-T., 2010)

Let I_r be a maximal quadratic interval, and $r = [0; a_1, \dots, a_n]$ with n even. Let

$$N = \sum_{i \text{ even}} a_i$$
 $M = \sum_{i \text{ odd}} a_i$ (1)

Then for all $\alpha \in I_r$,

$$T_{\alpha}^{N+1}(\alpha) = T_{\alpha}^{M+1}(\alpha - 1) \tag{2}$$

Corollary

The union of all matching intervals is dense of full measure.

► Parameter space splits into countably many open intervals, each one of them labelled by a rational number *r*.

- ► Parameter space splits into countably many open intervals, each one of them labelled by a rational number *r*.
- ▶ h is monotone on I_r, and its monotonicity type is determined by the continued fraction expansion of r.

- ► Parameter space splits into countably many open intervals, each one of them labelled by a rational number *r*.
- ▶ h is monotone on I_r, and its monotonicity type is determined by the continued fraction expansion of r.
- ▶ The complement is a set of parameters \mathcal{E} which will be called the bifurcation set.

- ► Parameter space splits into countably many open intervals, each one of them labelled by a rational number *r*.
- ▶ h is monotone on I_r, and its monotonicity type is determined by the continued fraction expansion of r.
- ▶ The complement is a set of parameters \mathcal{E} which will be called the bifurcation set.

How about the fractal structure?

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators.

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$\tau_r: [0,1] \mapsto [0,1]$$

of parameter space into itself.

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$\tau_r: [0,1] \mapsto [0,1]$$

of parameter space into itself.

If $r = [0; S_0] = [0; S_1]$, it is given in c.f. expansion by:

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$\tau_r: [0,1] \mapsto [0,1]$$

of parameter space into itself.

If $r = [0; S_0] = [0; S_1]$, it is given in c.f. expansion by:

$$[0; a_1, a_2, \dots] \mapsto [0; S_1 S_0^{a_1-1} S_1 S_0^{a_2-1} \dots]$$

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$\tau_r: [0,1] \mapsto [0,1]$$

of parameter space into itself.

If $r = [0; S_0] = [0; S_1]$, it is given in c.f. expansion by:

$$[0; a_1, a_2, \dots] \mapsto [0; S_1 S_0^{a_1-1} S_1 S_0^{a_2-1} \dots]$$

The image of τ_r is called the <u>tuning window</u> W_r .

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$\tau_r: [0,1] \mapsto [0,1]$$

of parameter space into itself.

If $r = [0; S_0] = [0; S_1]$, it is given in c.f. expansion by:

$$[0; a_1, a_2, \ldots] \mapsto [0; S_1 S_0^{a_1-1} S_1 S_0^{a_2-1} \ldots]$$

The image of τ_r is called the <u>tuning window</u> W_r .

Example: if
$$r = \frac{1}{2} = [0; 2] = \overline{[0; 1, 1]}$$
, then

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$\tau_r: [0,1] \mapsto [0,1]$$

of parameter space into itself.

If $r = [0; S_0] = [0; S_1]$, it is given in c.f. expansion by:

$$[0; a_1, a_2, \ldots] \mapsto [0; S_1 S_0^{a_1-1} S_1 S_0^{a_2-1} \ldots]$$

The image of τ_r is called the <u>tuning window</u> W_r .

Example: if $r = \frac{1}{2} = [0; 2] = \overline{[0; 1, 1]}$, then

$$W_{\frac{1}{2}} = [[0; 2, \overline{1}], [0; \overline{1, 1}])$$

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$\tau_r: [0,1] \mapsto [0,1]$$

of parameter space into itself.

If $r = [0; S_0] = [0; S_1]$, it is given in c.f. expansion by:

$$[0; a_1, a_2, \dots] \mapsto [0; S_1 S_0^{a_1-1} S_1 S_0^{a_2-1} \dots]$$

The image of τ_r is called the <u>tuning window</u> W_r .

Example: if $r = \frac{1}{2} = [0; 2] = \overline{[0; 1, 1]}$, then

$$W_{\frac{1}{2}} = [[0; 2, \overline{1}], [0; \overline{1, 1}]) = [g^2, g)$$

The self-similarity of $h(\alpha)$ can be explained in terms of tuning operators. Each $r \in \mathbb{Q}$ determines a map

$$\tau_r: [0,1] \mapsto [0,1]$$

of parameter space into itself.

If $r = [0; S_0] = [0; S_1]$, it is given in c.f. expansion by:

$$[0; a_1, a_2, \dots] \mapsto [0; S_1 S_0^{a_1-1} S_1 S_0^{a_2-1} \dots]$$

The image of τ_r is called the <u>tuning window</u> W_r .

Example: if $r = \frac{1}{2} = [0; 2] = [0; 1, 1]$, then

$$W_{\frac{1}{2}} = [[0; 2, \overline{1}], [0; \overline{1, 1}]) = [g^2, g)$$

Idea: τ_r maps the large scale structure to a smaller scale structure, thus creating the fractal self-similarity.

Results: self-similarity of parameter space

Theorem

If h is increasing on a maximal interval I_r , then the monotonicity of h on the tuning window W_r reproduces the behaviour on the interval [0, 1], but with reversed sign.

Results: self-similarity of parameter space

Theorem

If h is increasing on a maximal interval I_r , then the monotonicity of h on the tuning window W_r reproduces the behaviour on the interval [0,1], but with reversed sign. More precisely, if I_p is another maximal interval, then

- 1. *h* is increasing on $I_{\tau_r(p)}$ iff it is decreasing on I_p ;
- 2. h is decreasing on $I_{\tau_r(p)}$ iff it is increasing on I_p ;
- 3. h is constant on $I_{\tau_r(p)}$ iff it is constant on I_p .

Results: self-similarity of parameter space

Theorem

If h is increasing on a maximal interval I_r , then the monotonicity of h on the tuning window W_r reproduces the behaviour on the interval [0,1], but with reversed sign. More precisely, if I_p is another maximal interval, then

- 1. h is increasing on $I_{\tau_r(p)}$ iff it is decreasing on I_p ;
- 2. h is decreasing on $I_{\tau_r(p)}$ iff it is increasing on I_p ;
- 3. h is constant on $I_{\tau_r(p)}$ iff it is constant on I_p .

Results: self-similarity of parameter space Theorem

If h is increasing on a maximal interval I_r , then the monotonicity of h on the tuning window W_r reproduces the behaviour on the interval [0, 1], but with reversed sign. More precisely, if I_p is another maximal interval, then

- 1. *h* is increasing on $I_{\tau_r(p)}$ iff it is decreasing on I_p ;
- 2. *h* is decreasing on $I_{\tau_r(p)}$ iff it is increasing on I_p ;
- 3. h is constant on $I_{\tau_r(p)}$ iff it is constant on I_p .

If, instead, h is decreasing on I_r , then the monotonicity of I_p and $I_{\tau_r(p)}$ is the same.

Results: plateaux

A plateau of a real-valued function is a maximal open interval on which the function is constant.

Theorem (Kraaikamp-Schmidt-Steiner) The interval (g^2, g) is a plateau for $h(\alpha)$.

Results: plateaux

A plateau of a real-valued function is a maximal open interval on which the function is constant.

Theorem (Kraaikamp-Schmidt-Steiner)

The interval (g^2, g) is a plateau for $h(\alpha)$.

Definition

A tuning window W_r is <u>neutral</u> if, given $r = [0; a_1, ..., a_n]$ the expansion of r of even length,

$$a_1 - a_2 + \cdots + a_{n-1} - a_n = 0$$

Results: plateaux

A plateau of a real-valued function is a maximal open interval on which the function is constant.

Theorem (Kraaikamp-Schmidt-Steiner)

The interval (g^2, g) is a plateau for $h(\alpha)$.

Definition

A tuning window W_r is <u>neutral</u> if, given $r = [0; a_1, ..., a_n]$ the expansion of r of even length,

$$a_1 - a_2 + \cdots + a_{n-1} - a_n = 0$$

Theorem

Every plateau of h is the interior of a neutral tuning window W_r .

Theorem

Theorem

Let α be a parameter in the parameter space of α -continued fractions. Then:

1. if $\alpha \notin \mathcal{E}$, then *h* is monotone on a neighbourhood of α ;

Theorem

- 1. if $\alpha \notin \mathcal{E}$, then *h* is monotone on a neighbourhood of α ;
- 2. if $\alpha \in \mathcal{E}$, then either

- 1. if $\alpha \notin \mathcal{E}$, then h is monotone on a neighbourhood of α ;
- 2. if $\alpha \in \mathcal{E}$, then either
 - (i) α is a phase transition: h is constant on the left of α and strictly monotone (increasing or decreasing) on the right of α ;

Theorem

- 1. if $\alpha \notin \mathcal{E}$, then *h* is monotone on a neighbourhood of α ;
- 2. if $\alpha \in \mathcal{E}$, then either
 - (i) α is a phase transition: h is constant on the left of α and strictly monotone (increasing or decreasing) on the right of α ;
 - (ii) α lies in the interior of a neutral tuning window: then h is constant on a neighbourhood of α ;

- 1. if $\alpha \notin \mathcal{E}$, then h is monotone on a neighbourhood of α ;
- 2. if $\alpha \in \mathcal{E}$, then either
 - (i) α is a phase transition: h is constant on the left of α and strictly monotone (increasing or decreasing) on the right of α ;
 - (ii) α lies in the interior of a neutral tuning window: then h is constant on a neighbourhood of α ;

Theorem

- 1. if $\alpha \notin \mathcal{E}$, then *h* is monotone on a neighbourhood of α ;
- 2. if $\alpha \in \mathcal{E}$, then either
 - (i) α is a phase transition: h is constant on the left of α and strictly monotone (increasing or decreasing) on the right of α ;
 - (ii) α lies in the interior of a neutral tuning window: then h is constant on a neighbourhood of α ;
 - (iii) otherwise, h has mixed monotonic behaviour at α , i.e. in every neighbourhood of α there are infinitely many intervals on which h is increasing, infinitely many on which it is decreasing and infinitely many on which it is constant.

Note:

all cases occur for infinitely many parameters;

- all cases occur for infinitely many parameters;
- 1. occurs for a set of parameters of full Lebesgue measure;

- all cases occur for infinitely many parameters;
- 1. occurs for a set of parameters of full Lebesgue measure;
- ▶ 2. there are countably many phase transitions, and they all are tuned images of the phase transition at $\alpha = g$;

- all cases occur for infinitely many parameters;
- 1. occurs for a set of parameters of full Lebesgue measure;
- ▶ 2. there are countably many phase transitions, and they all are tuned images of the phase transition at $\alpha = g$;
- ▶ 2.(iii) for a set of parameters of Hausdorff dimension 1!

- all cases occur for infinitely many parameters;
- 1. occurs for a set of parameters of full Lebesgue measure;
- ▶ 2. there are countably many phase transitions, and they all are tuned images of the phase transition at $\alpha = g$;
- ▶ 2.(iii) for a set of parameters of Hausdorff dimension 1!
- there is an explicit algorithm to decide which case occurs, given the usual continued fraction expansion of α .

The end

Thank you!

Bonus level: tuning from complex dynamics

Let $f_c(z) := z^2 + c$.

Bonus level: tuning from complex dynamics

Let $f_c(z) := z^2 + c$. The *Mandelbrot set* \mathcal{M} is the set of $c \in \mathbb{C}$ for which the orbit of 0 is bounded:

$$f_c^n(0) \nrightarrow \infty$$

Bonus level: tuning from complex dynamics

Let $f_c(z) := z^2 + c$. The *Mandelbrot set* \mathcal{M} is the set of $c \in \mathbb{C}$ for which the orbit of 0 is bounded:

$$f_c^n(0) \nrightarrow \infty$$

The Mandelbrot set has a self-similar structure. More precisely, there are <u>baby copies</u> of $\mathcal M$ everywhere near its boundary.

The Mandelbrot set has a self-similar structure. More precisely, there are <u>baby copies</u> of $\mathcal M$ everywhere near its boundary.

Baby copies are images of $\mathcal M$ via the Douady-Hubbard tuning maps $\tau_{\mathcal W}$.

The boundary of $\ensuremath{\mathcal{M}}$ can be described combinatorially in terms of the doubling map.

The boundary of $\mathcal M$ can be described combinatorially in terms of the doubling map. Baby copies of $\mathcal M$ can be described in terms of substitutions:

$$\theta = 0.\theta_1\theta_2\ldots\mapsto au_W(heta) = 0.\Sigma_{ heta_1}\Sigma_{ heta_2}\ldots$$

The boundary of $\mathcal M$ can be described combinatorially in terms of the doubling map. Baby copies of $\mathcal M$ can be described in terms of substitutions:

$$\theta = 0.\theta_1\theta_2\ldots\mapsto \tau_W(\theta) = 0.\Sigma_{\theta_1}\Sigma_{\theta_2}\ldots$$

E.g.: Feigenbaum parameter ⇔ Thue-Morse sequence!

Dictionary

The set of rays landing on the real slice of the Mandelbrot set is isomorphic to the bifurcation set $\mathcal E$ for α -c.f. [Bonanno, Carminati, Isola, T., 2011]

Dictionary

The set of rays landing on the real slice of the Mandelbrot set is isomorphic to the bifurcation set \mathcal{E} for α -c.f. [Bonanno, Carminati, Isola, T., 2011] Hence the Douady-Hubbard substitution rule translates into our definition of tuning maps for α -c.f.!

The end

Thank you!