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Entropy

For each «, the topological entropy of T, is infinite. However,
every T, has a unique invariant measure p,, in the Lebesgue
measure class. Hence we can consider the metric entropy with
respect to that measure.

h(a) = / log | T |
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Entropy

h(a) == / l0g | djia

It measures:

» the speed of convergence of the a-euclidean algorithm:
The average number of steps over all rationals of
denominator less than N is

Pn(a) = h(za) log N

[Bourdon-Daireaux-Vallée]
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h(a) = / AL

It measures:
» the speed of convergence of the a-euclidean algorithm
» the growth rate of the denominators : For almost every
x € [0,1]

h() = lim 2109 Gna(x)

n—-4oo N

where pp o (X)/qn,«(X) is the n-th convergent of the
a-expansion of x



Entropy

h(a) == / l0g | T/ djia

It measures:
» the speed of convergence of the a-euclidean algorithm
» the growth rate of the denominators
» how chaotic the map T, is
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It seems like entropy displays a fractal structure
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Global behaviour of h(«)

h(a) is:
» non-monotone [Nakada-Natsui]
» continuous [Luzzi-Marmi], [Kraaikamp-Schmidt-Steiner]
» Holder-continuous with exponent (1/2 — ¢€) [T.]

How to describe and explain the fractal structure?
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Indeed, they found examples of

» matching intervals where h(«) is increasing;
» matching intervals where h(«) is decreasing;
» matching intervals where h(«) is constant.

3.1816El f

3.181260{ 8 |

Conjecture

The union of all matching intervals is dense and has full
measure in parameter space.
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FACT: Every rational value admits exactly two C.F. expansions.
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So any a€ QN (0, 1) will have two C.F. expansions of the type

=10;3,3] =0;3,2,1].

a=[0;A"]=[0;A"]

Using such strings we can construct the two quadratic
irrationals

a =[0;A"](Eg.a” =10;3,2
at :=[0;At] (E.g. a* =[0;3,3] = ¥13=8)
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Quadratic intervals

For each a € QN (0, 1) we define open interval I, as follows

a=[0;At] = lp:=(a",a"), oF =0, AF].

The interval I := (a~, at) will be called the quadratic interval
generated by ac QnN (0, 1).
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Theorem (Carminati-T., 2010)

Let I, be a maximal quadratic interval, and r = [0; ay, .

with n even. Let
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Quadratic intervals are matching intervals

Theorem (Carminati-T., 2010)

Let I, be a maximal quadratic interval, and r = [0; a1, ..., an]
with n even. Let

N:Za, M:Za,- (1)

i even i odd

Then for all o € Iy,

M) = TV (- 1) (2)

Corollary
The union of all matching intervals is dense of full measure.
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The story so far

» Parameter space splits into countably many open intervals,
each one of them labelled by a rational number r.

» his monotone on /,, and its monotonicity type is
determined by the continued fraction expansion of r.

» The complement is a set of parameters £ which will be
called the bifurcation set.

How about the fractal structure?
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Tuning operators

The self-similarity of h(«) can be explained in terms of tuning
operators. Each r € Q determines a map

7r :[0,1] — [0, 1]

of parameter space into itself.
If r =[0; Sp] = [0; S1], it is given in c.f. expansion by:

[0;a1,a,...]— [0;$1S31S;8% 1. ]

The image of 7, is called the tuning window W,.
Example: if r = } = [0;2] = [0; 1,1], then

Wy =[[0;2,1].[0:1.1]) = [¢°. )

Idea: 7, maps the large scale structure to a smaller scale
structure, thus creating the fractal self-similarity.
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Results: self-similarity of parameter space

Theorem
If his increasing on a maximal interval I, then the monotonicity
of h on the tuning window W, reproduces the behaviour on the
interval [0, 1], but with reversed sign. More precisely, if I is
another maximal interval, then

1. hisincreasing on Iy iff it is decreasing on /p;

2. his decreasing on /. iff it is increasing on /p;

3. his constanton [, iff it is constant on /.
If, instead, h is decreasing on /, then the monotonicity of /, and
I.(p) is the same.
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Results: plateaux

A plateau of a real-valued function is a maximal open interval
on which the function is constant.

Theorem (Kraaikamp-Schmidt-Steiner)

The interval (g2, g) is a plateau for h(«).

Definition

A tuning window W, is neutral if, given r = [0; a4, . .., a,] the
expansion of r of even length,

a1—a2++an7‘|_an:0

Theorem
Every plateau of h is the interior of a neutral tuning window Wi, .
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Results: classification of local monotonic behaviour

Theorem
Let a be a parameter in the parameter space of a-continued
fractions. Then:
1. if o ¢ &€, then h is monotone on a neighbourhood of «;
2. if a € &, then either
(i) «is a phase transition: his constant on the left of « and
strictly monotone (increasing or decreasing) on the right of
Q;

(il) « lies in the interior of a neutral tuning window: then his
constant on a neighbourhood of «;

(iii) otherwise, h has mixed monotonic behaviour at «, i.e. in
every neighbourhood of « there are infinitely many intervals
on which his increasing, infinitely many on which it is
decreasing and infinitely many on which it is constant.
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Classification of local monotonic behaviour: remarks

Note:
» all cases occur for infinitely many parameters;
1. occurs for a set of parameters of full Lebesgue measure;

2. there are countably many phase transitions, and they all
are tuned images of the phase transition at « = g;

2.(iii) for a set of parameters of Hausdorff dimension 1!

there is an explicit algorithm to decide which case occurs,
given the usual continued fraction expansion of «.

v

v

v

v



The end

Thank you!



Bonus level: tuning from complex dynamics
Let f,(2) := z% + c.



Bonus level: tuning from complex dynamics

Let f;(z) := z2 + ¢. The Mandelbrot set M is the set of ¢ € C
for which the orbit of 0 is bounded:

f2(0) - oo



Bonus level: tuning from complex dynamics

Let f,(2) := 2% + ¢. The Mandelbrot set M is the set of ¢ € C
for which the orbit of 0 is bounded:

f2(0) » oo
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there are baby copies of M everywhere near its boundary.

Baby copies are images of M via the Douady-Hubbard tuning
maps Ty .
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The boundary of M can be described combinatorially in terms
of the doubling map. Baby copies of M can be described in
terms of substitutions:

(9:0.(9102... r—)Tw(Q) 20.291292...

E.g.: Feigenbaum parameter < Thue-Morse sequence!
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Dictionary

The set of rays landing on the real slice of the Mandelbrot set is
isomorphic to the bifurcation set £ for a-c.f. [Bonanno,
Carminati, Isola, T., 2011] Hence the Douady-Hubbard
substitution rule translates into our definition of tuning maps for
a-c.f.!



The end

Thank you!
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