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First email: March 4, 2012

Hi Mr. Giulio Tiozzo,
My name is Tan Lei. I am a chinese mathematician working in France
in the field of holomorphic dynamics. Curt McMullen suggested me to
contact you for the following questions that you might help.
It seems that one can think of the core entropy as a function on the
Mandelbrot set itself. And Milnor had a student who proved entropy is
monotone on M.
Do you have a copy of this thesis? How to define the core entropy
when the Hubbard tree is topologically infinite? Or worse when the
critical orbit is dense in J? Is the monotonicity proved using puzzles?
Is there a continuity result of the core entropy as a function of the
external angle?
Many thanks in advance for your help.
Sincerely yours, Tan Lei
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The function c → htop(fc ,R):

I is continuous and monotone (Milnor-Thurston 1977,
Douady-Hubbard).

I 0 ≤ htop(fc ,R) ≤ log 2.

Remark. If we consider f : Ĉ→ Ĉ entropy is constant
htop(f , Ĉ) = log d .
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Primitive majors

A critical portrait of degree d is defined as a collection

m = {`1, . . . , `s}

of leaves and ideal polygons in D such that:
1. any two distinct elements `k and `l either are disjoint or

intersect at one point on ∂D;
2. the vertices of each `k are identified under z 7→ zd ;
3.
∑s

k=1
(
#(`k ∩ ∂D)− 1

)
= d − 1.

A critical portrait m is said to be a primitive major if moreover
the elements of m are pairwise disjoint.



Primitive majors

A critical portrait of degree d is defined as a collection

m = {`1, . . . , `s}

of leaves and ideal polygons in D such that:

1. any two distinct elements `k and `l either are disjoint or
intersect at one point on ∂D;

2. the vertices of each `k are identified under z 7→ zd ;
3.
∑s

k=1
(
#(`k ∩ ∂D)− 1

)
= d − 1.

A critical portrait m is said to be a primitive major if moreover
the elements of m are pairwise disjoint.



Primitive majors

A critical portrait of degree d is defined as a collection

m = {`1, . . . , `s}

of leaves and ideal polygons in D such that:
1. any two distinct elements `k and `l either are disjoint or

intersect at one point on ∂D;

2. the vertices of each `k are identified under z 7→ zd ;
3.
∑s

k=1
(
#(`k ∩ ∂D)− 1

)
= d − 1.

A critical portrait m is said to be a primitive major if moreover
the elements of m are pairwise disjoint.



Primitive majors

A critical portrait of degree d is defined as a collection

m = {`1, . . . , `s}

of leaves and ideal polygons in D such that:
1. any two distinct elements `k and `l either are disjoint or

intersect at one point on ∂D;
2. the vertices of each `k are identified under z 7→ zd ;

3.
∑s

k=1
(
#(`k ∩ ∂D)− 1

)
= d − 1.

A critical portrait m is said to be a primitive major if moreover
the elements of m are pairwise disjoint.



Primitive majors

A critical portrait of degree d is defined as a collection

m = {`1, . . . , `s}

of leaves and ideal polygons in D such that:
1. any two distinct elements `k and `l either are disjoint or

intersect at one point on ∂D;
2. the vertices of each `k are identified under z 7→ zd ;
3.
∑s

k=1
(
#(`k ∩ ∂D)− 1

)
= d − 1.

A critical portrait m is said to be a primitive major if moreover
the elements of m are pairwise disjoint.



Primitive majors

A critical portrait of degree d is defined as a collection

m = {`1, . . . , `s}

of leaves and ideal polygons in D such that:
1. any two distinct elements `k and `l either are disjoint or

intersect at one point on ∂D;
2. the vertices of each `k are identified under z 7→ zd ;
3.
∑s

k=1
(
#(`k ∩ ∂D)− 1

)
= d − 1.

A critical portrait m is said to be a primitive major if moreover
the elements of m are pairwise disjoint.



The space PM(d) of primitive majors

PM(d) = {primitive majors of degree d}

has a canonical metric.
The quotient Xm := ∂D/m is a graph (tree of circles)
Let πm : ∂D→ ∂D/m the projection map.

Define the distance between primitive majors as

d(m1,m2) := sup
x ,y
|d(πm1(x), πm1(y))− d(πm2(x), πm2(y))|
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Critical markings

Let f be a postcritically finite polynomial.

For each critical point
c, we define the critical leaf Θ(c) as follows.

1. If c is in the Julia set, then pick one ray θ of minimal period
which lands at f (c), and take Θ(c) to be the preimage of θ.

2. If c is in the Fatou component U, then pick one ray θ which
lands on the boundary of f (U), and take Θ(c) to be the
preimage of θ.

Then
Θ := {Θ(c1), . . . ,Θ(ck )}

is a critical marking (Poirier).
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The entropy as a function of external angle

I Monotonicity still holds along veins:

Li Tao for postcritically
finite, Penrose, Tan Lei, Zeng

I The core entropy is also proportional to the dimension of
the set of biaccessible angles (Zakeri, Smirnov, Zdunik,
Bruin-Schleicher ...)
θ is biaccessible if ∃η 6= θ s.t. R(θ) and R(η) land at the
same point.

Bc := {θ ∈ R/Z : θ is biaccessible }

H. dim Bc =
h(fc)

log d

I Core entropy also proportional to Hausdorff dimension of
angles landing on the corresponding vein (T., Jung)
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Tan Lei’s proof of monotonicity (Feb 16, 2013)

Dear Giulio,
I think the following strategy might prove trivially a generalization of
Tao Li’s results, even in higher degree. I’ll concentrate on the
quadratic case.

Any pair of distinct angles θ± defines four partitions of the circle:
L(θ±) is the circle minus the four points θ±/2, and θ±/2 + 1/2 and
Full(θ±) is S1 minus the two intervals [ θ

−

2 ,
θ+

2 ] and [ θ
−

2 + 1
2 ,

θ+

2 + 1
2 ] .

Now, rather than, as Douady and Tao Li, looking at angles landing as
the Hubbard tree, we look at pairs of angles landing together and
pairs of angles landing at the tree.
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Tan Lei’s proof of monotonicity

So let
F (θ±) = the set of pairs (η, ζ) having the same itinerary with respect
to components of Full(θ±)

Then
H(θ±) ⊆ F (θ±) ⊆ B(θ±)

where B(θ±) is the set of pairs of biaccessible angles and H(θ±) is
the set of angles of rays landing on the tree.

Once all these are set up cleanly, the result becomes trivial: If you
take c′ further than c, than Full(θ′±) contains Full(θ±) and trivially

F (θ±) ⊆ F (θ′±).

So the entropy increases.

With pictures the idea would be a lot easer to explain.
All the best, Tan Lei



Tan Lei’s proof of monotonicity

So let
F (θ±) = the set of pairs (η, ζ) having the same itinerary with respect
to components of Full(θ±)
Then

H(θ±) ⊆ F (θ±) ⊆ B(θ±)

where B(θ±) is the set of pairs of biaccessible angles and H(θ±) is
the set of angles of rays landing on the tree.

Once all these are set up cleanly, the result becomes trivial: If you
take c′ further than c, than Full(θ′±) contains Full(θ±) and trivially

F (θ±) ⊆ F (θ′±).

So the entropy increases.

With pictures the idea would be a lot easer to explain.
All the best, Tan Lei



Tan Lei’s proof of monotonicity

So let
F (θ±) = the set of pairs (η, ζ) having the same itinerary with respect
to components of Full(θ±)
Then

H(θ±) ⊆ F (θ±) ⊆ B(θ±)

where B(θ±) is the set of pairs of biaccessible angles and H(θ±) is
the set of angles of rays landing on the tree.

Once all these are set up cleanly, the result becomes trivial: If you
take c′ further than c, than Full(θ′±) contains Full(θ±)

and trivially

F (θ±) ⊆ F (θ′±).

So the entropy increases.

With pictures the idea would be a lot easer to explain.
All the best, Tan Lei



Tan Lei’s proof of monotonicity

So let
F (θ±) = the set of pairs (η, ζ) having the same itinerary with respect
to components of Full(θ±)
Then

H(θ±) ⊆ F (θ±) ⊆ B(θ±)

where B(θ±) is the set of pairs of biaccessible angles and H(θ±) is
the set of angles of rays landing on the tree.

Once all these are set up cleanly, the result becomes trivial: If you
take c′ further than c, than Full(θ′±) contains Full(θ±) and trivially

F (θ±) ⊆ F (θ′±).

So the entropy increases.

With pictures the idea would be a lot easer to explain.
All the best, Tan Lei



Tan Lei’s proof of monotonicity

So let
F (θ±) = the set of pairs (η, ζ) having the same itinerary with respect
to components of Full(θ±)
Then

H(θ±) ⊆ F (θ±) ⊆ B(θ±)

where B(θ±) is the set of pairs of biaccessible angles and H(θ±) is
the set of angles of rays landing on the tree.

Once all these are set up cleanly, the result becomes trivial: If you
take c′ further than c, than Full(θ′±) contains Full(θ±) and trivially

F (θ±) ⊆ F (θ′±).

So the entropy increases.

With pictures the idea would be a lot easer to explain.
All the best, Tan Lei
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Is h(θ) a continuous function of θ?

Theorem (T., Dudko-Schleicher)
The core entropy function h(θ) extends to a continuous function
from R/Z to R.
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Primitive majors

A critical portrait of degree d is defined as a collection

m = {`1, . . . , `s}

of leaves and ideal polygons in D such that:
1. any two distinct elements `k and `l either are disjoint or

intersect at one point on ∂D;
2. the vertices of each `k are identified under z 7→ zd ;
3.
∑s

k=1
(
#(`k ∩ ∂D)− 1

)
= d − 1.

A critical portrait m is said to be a primitive major if moreover
the elements of m are pairwise disjoint.
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Primitive majors and polynomials

Let Pd be the space of monic, centered polynomials of degree
d .

Define the potential function of f at c as

Gf (c) := lim
n→∞

1
dn log |f n(c)|

which measure the rate of escape of the critical point.
For r > 0, define the equipotential locus

Yd (r) := {f ∈ Pd : Gf (c) = r for all c ∈ Crit(f )}

Theorem (Thurston)
For each r > 0, we have a homeomorphism

Yd (r) ∼= PM(d)
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The space PM(3) of cubic primitive majors

For d = 3,

generically two leaves: (a,a + 1/3), (b,b + 1/3)
non-intersecting: a + 1/3 ≤ b ≤ a + 2/3
symmetry: a + 1/3 ≤ b ≤ a + 1/2

PM(3) =

{
(a,b) ∈ S1 × S1 : a +

1
3
≤ b ≤ a +

1
2

}
/ ∼

where:
I (a,a + 1/3) ∼ (a + 1/3,a + 2/3) (wraps 3 times around)
I (a,a + 1/2) ∼ (a + 1/2,a) (wraps 2 times around)
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Main theorem, combinatorial version
Theorem (T. - Yan Gao)
Fix d ≥ 2. Then the core entropy extends to a continuous
function on the space PM(d) of primitive majors.
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Main theorem, analytic version

Define Pd as the space of monic, centered polynomials of
degree d .

One says fn → f if the coefficients of fn converge to
the coefficients of f .

Theorem (T. - Yan Gao)
Let d ≥ 2. Then the core entropy is a continuous function on
the space of monic, centered, postcritically finite polynomials of
degree d.

“I hope you two will make a great paper together!” (January 28, 2015)
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Computing the entropy

Idea 1: look at Markov partition, write matrix and take leading
eigenvalue

This works, but you need to know the topology of the tree,
and that varies wildly with the parameter!

Idea 2: (Thurston): look at set of pairs of postcritical points,
which correspond to arcs between postcritical points.
Denote iα := f i(cα) the i th iterate of the critical point cα, let

P := {iα : i ≥ 1,1 ≤ α ≤ s}

the postcritical set, and

A := P × P

the set of pairs of postcritical points (= arcs between them)
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Computing the entropy: non-separated pair

A pair (iα, jβ) is non-separated if the corresponding arc does not
contain critical points.

⇒

(1,2) ⇒ (2,3)
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Computing the entropy: separated pair

A pair (iα, jβ) is separated if the corresponding arc contains
critical points cγ1 , . . . , cγk .

We record the critical points we cross
in the separation vector (γ1, . . . , γk )

⇒

(1,3) ⇒ (1,2) + (1,4)
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The algorithm
Let r the cardinality of the set of pairs of postcritical points, and
consider A : Rr → Rr given by

I If (iα, jβ) is non-separated, then

A(eiα,jβ ) = e(i+1)α,(j+1)β

I If (iα, jβ) is separated by (γ1, . . . , γk ), then

A(eiα,jβ ) = e(i+1)α,1γ1
+ e1γ1 ,1γ2

+ · · ·+ e1γk ,(j+1)β

Theorem (Thurston; Tan Lei; Gao Yan)
The core entropy of f is given by

h(f ) = logλ

where λ is the leading eigenvalue of A.
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Computing entropy: the clique polynomial
Let Γ be a finite, directed graph.

Its adjacency matrix is A such
that

Aij := #{i → j}

We can consider its spectral determinant

P(t) := det(I − tA)

Note that λ−1 is the smallest root of P(t). Note that P(t) can be
obtained as the clique polynomial

P(t) =
∑

γ simple multicycle

(−1)C(γ)t`(γ)

where:
I a simple multicycle is a disjoint union of (vertex)-disjoint

cycles
I C(γ) is the number of connected components of γ
I `(γ) its length.
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I two 2-cycles
I one 3-cycle
I one pair of disjoint

cycles (2 + 3)

P(t) = 1− 2t2 − t3 + t5
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Computing entropy: the infinite clique polynomial

Let Γ be a countable, directed graph.

Let us suppose that:
I Γ has bounded outgoing degree;
I Γ has bounded cycles: for every n there exists finitely many

simple cycles of length n

Then we define the growth rate of Γ as :

r(Γ) := lim sup n
√

C(Γ,n)

where C(Γ,n) is the number of closed paths of length n.
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Computing entropy: the infinite clique polynomial

Let Γ with bounded outgoing degree and bounded cycles.

Then
one can define as a formal power series

P(t) =
∑

γ simple multicycle

(−1)C(γ)t`(γ)

Let now σ := lim sup n
√

S(n) where S(n) is the number of
simple multi-cycles of length n.

Theorem
Let σ ≤ 1. Then P(t) defines a holomorphic function in the unit
disk, and its root of minimum modulus is r−1.
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Wedges

· · ·

(4,5) · · ·

(3,4) (3,5) · · ·

(2,3) (2,4) (2,5) · · ·

(1,2) (1,3) (1,4) (1,5) · · ·



Labeled wedges

Label all pairs as either separated or non-separated

(3,4) · · ·

(2,3) (2,4) · · ·

(1,2) (1,3) (1,4) · · ·

(The boxed pairs are the separated ones.)
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From wedges to graphs
Define a graph associated to the wedge as follows:

I If (i , j) is non-separated, then (i , j)→ (i + 1, j + 1)

I If (i , j) is separated, then (i , j)→ (1, i + 1) and
(i , j)→ (1, j + 1).

(3,4) · · ·

(2,3)

�� ##

(2,4) · · ·

(1,2)

;;

(1,3)oo // (1,4) · · ·

“This sounds like climbing a mountain; you go up step by step, but
you chute all the way to the bottom, and in two broken pieces”
(August 25, 2014)
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Continuity: sketch of proof

Suppose θn → θ (primitive majors)

Then Wθn →Wθ (wedges)

so Pθn (t)→ Pθ(t) (spectral determinants)

and r(θn)→ r(θ) (growth rates)
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Further directions / questions

1. Conjecture: In each stratum the maximum of the core
entropy equals

max
m∈Π

h(m) = log(Depth(Π) + 1)

where the Depth of a stratum is the maximum length of a
chain of nested leaves in the primitive major.

2. The level sets of the function h(θ) determines lamination
for the Mandelbrot set:

use h to define vein structure in
higher degree?

3. The local Hölder exponent of h at m equals h(m)
log d (Fels)

Also true for invariant sets of the doubling map on the
circle, (Carminati-T., Bandtlow-Rugh)

4. Derivative of core entropy yields measure on lamination for
M.set
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3. The local Hölder exponent of h at m equals h(m)
log d (Fels)

Also true for invariant sets of the doubling map on the
circle, (Carminati-T., Bandtlow-Rugh)

4. Derivative of core entropy yields measure on lamination for
M.set



Merci!
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