Dynamics of continued fractions and kneading sequences of unimodal maps

Giulio Tiozzo Harvard University

April 10, 2011

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

## Results contained in joint works with C. Carminati (Pisa), C. Bonanno (Pisa), S. Isola (Camerino)



# Results contained in joint works with C. Carminati (Pisa), C. Bonanno (Pisa), S. Isola (Camerino)

Thanks to C. McMullen



#### Sullivan's dictionary

 $\Leftrightarrow$ 

limit sets of subgroups of  $PSL_2(\mathbb{C})$ 

Julia sets of rational maps

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ● ●

limit sets of semigroups of  $SL_2(\mathbb{Z})$ 

 $\Leftrightarrow$ 

Julia sets of rational maps

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

limit sets of semigroups of  $SL_2(\mathbb{Z})$ 

set of endpoints of bounded  $\Leftrightarrow$  geodesics on  $\mathbb{H}/SL_2(\mathbb{Z})$ 

Julia sets of real quadratic polynomials

(日) (日) (日) (日) (日) (日) (日)

sets of badly approximable

numbers

limit sets of semigroups of  $SL_2(\mathbb{Z})$ 

```
set of endpoints of bounded \Leftrightarrow geodesics on \mathbb{H}/SL_2(\mathbb{Z})
```

Julia sets of real quadratic polynomials

sets of badly approximable

numbers

**Question**: Are there <u>continuous</u> families of objects on the left side?

limit sets of semigroups of  $SL_2(\mathbb{Z})$ 

set of endpoints of bounded  $\Leftrightarrow$  geodesics on  $\mathbb{H}/\textit{SL}_2(\mathbb{Z})$ 

Julia sets of real

quadratic polynomials

sets of badly approximable

numbers

Question: How do their parameter spaces look like?

## Entropy of the logistic family

$$f_{\lambda}(x) = \lambda x(1-x) \qquad \lambda \in [0,4]$$

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ● ●

## Entropy of the logistic family

$$f_{\lambda}(x) = \lambda x(1-x)$$
  $\lambda \in [0,4]$ 

## Theorem (Milnor-Thurston 1977) The topological entropy

 $\lambda \mapsto h_{top}(\lambda)$ 

▲□▶▲□▶▲□▶▲□▶ □ のQ@

is continuous monotone in  $\lambda$ .

## Entropy of the logistic family

$$f_{\lambda}(x) = \lambda x(1-x)$$
  $\lambda \in [0,4]$ 

### Theorem (Milnor-Thurston 1977) The topological entropy

 $\lambda \mapsto h_{top}(\lambda)$ 

is continuous monotone in  $\lambda$ .

The *bifurcation locus* is the set of locally unstable parameters  $(\cong \text{ real boundary of the Mandelbrot set})$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consider the set

$$\mathcal{B}_N := \{x = [0; a_1, a_2, \dots] \mid 1 \le a_i \le N\}$$

Consider the set

$$\mathcal{B}_N := \{x = [0; a_1, a_2, \dots] \mid 1 \le a_i \le N\}$$

$$= \{x \ : \ \left|x - rac{p}{q}
ight| \geq rac{C_N}{q^2} \quad orall p \in \mathbb{Z}, q \in \mathbb{N}^+ \}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Consider the set

$$\mathcal{B}_N := \{x = [0; a_1, a_2, \dots] \mid 1 \le a_i \le N\}$$

$$= \{x : \left| x - \frac{p}{q} \right| \ge \frac{C_N}{q^2} \quad \forall p \in \mathbb{Z}, q \in \mathbb{N}^+ \}$$
$$= \{x : G^n(x) \ge \frac{1}{N+1} \quad \forall n \ge 0 \}$$

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ● ●

Consider the set

$$\mathcal{B}_N := \{x = [0; a_1, a_2, \dots] \mid 1 \le a_i \le N\}$$

$$egin{aligned} &= \{x \ : \ \left| x - rac{p}{q} 
ight| \geq rac{C_N}{q^2} \quad orall p \in \mathbb{Z}, q \in \mathbb{N}^+ \} \ &= \{x \ : \ G^n(x) \geq rac{1}{N+1} \quad orall n \geq 0 \} \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- $m(\mathcal{B}_N) = 0$
- $\lim_{N\to\infty}$  H.dim  $\mathcal{B}_N = 1$  [Jarnik]

$$\mathcal{B}(t) = \{x : G^n(x) \ge t \quad \forall n \ge 0\}$$



$$\mathcal{B}(t) = \{x : G^n(x) \ge t \quad \forall n \ge 0\}$$



$$\mathcal{B}(t) = \{x : G^n(x) \ge t \quad \forall n \ge 0\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• 
$$t > g = \frac{\sqrt{5}-1}{2} \Rightarrow \mathcal{B}(t) = \emptyset$$

$$\mathcal{B}(t) = \{x : G^n(x) \ge t \quad \forall n \ge 0\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

t > g = 
$$\frac{\sqrt{5}-1}{2}$$
 ⇒ B(t) = Ø
t = 0 ⇒ B(t) = [0, 1]

$$\mathcal{B}(t) = \{x : G^n(x) \ge t \quad \forall n \ge 0\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

► 
$$t > g = \frac{\sqrt{5}-1}{2} \Rightarrow \mathcal{B}(t) = \emptyset$$
  
►  $t = 0 \Rightarrow \mathcal{B}(t) = [0, 1]$   
►  $t = \frac{1}{2} \Rightarrow \mathcal{B}(t) = \{g\}$ 

$$\mathcal{B}(t) = \{x : G^n(x) \ge t \quad \forall n \ge 0\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

t > g = 
$$\frac{\sqrt{5}-1}{2}$$
 ⇒ B(t) = ∅
t = 0 ⇒ B(t) = [0, 1]
t =  $\frac{1}{2}$  ⇒ B(t) = {g}
t = g ⇒ B(t) = {g}

$$\mathcal{B}(t) = \{x : G^n(x) \ge t \quad \forall n \ge 0\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• 
$$t > g = \frac{\sqrt{5}-1}{2} \Rightarrow \mathcal{B}(t) = \emptyset$$
  
•  $t = 0 \Rightarrow \mathcal{B}(t) = [0, 1]$   
•  $t = \frac{1}{2} \Rightarrow \mathcal{B}(t) = \{g\}$   
•  $t = g \Rightarrow \mathcal{B}(t) = \{g\}$   
•  $t = [0; \overline{2}] \Rightarrow \mathcal{B}(t) = \bigcup_{n \ge 0} [0; 1^n \overline{2}]$ 

$$\mathcal{B}(t) = \{x : G^n(x) \ge t \quad \forall n \ge 0\}$$

For t > 0,  $\mathcal{B}(t)$  is a closed set with no interior. Examples:

• 
$$t > g = \frac{\sqrt{5}-1}{2} \Rightarrow \mathcal{B}(t) = \emptyset$$
  
•  $t = 0 \Rightarrow \mathcal{B}(t) = [0, 1]$   
•  $t = \frac{1}{2} \Rightarrow \mathcal{B}(t) = \{g\}$   
•  $t = g \Rightarrow \mathcal{B}(t) = \{g\}$   
•  $t = [0; \overline{2}] \Rightarrow \mathcal{B}(t) = \bigcup_{n \ge 0} [0; 1^n \overline{2}]$ 

The map  $t \mapsto \mathcal{B}(t)$  is locally constant near every  $t \in \mathbb{Q}$ .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○



・ロト・四ト・モート ヨー うへの



・ロト・四ト・モート ヨー うへの



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○

The maps  $G_{\alpha} : [\alpha - 1, \alpha] \rightarrow [\alpha - 1, \alpha]$  are defined as follows:



The maps  $G_{\alpha} : [\alpha - 1, \alpha] \rightarrow [\alpha - 1, \alpha]$  are defined as follows:

$$G_{lpha}(x):=rac{1}{|x|}-c_{lpha}(x), \quad c_{lpha}(x):=\lfloorrac{1}{|x|}+1-lpha
floor.$$

and generate the  $\alpha$ -continued fraction expansion:

$$\boldsymbol{x} = \frac{\epsilon_{1,\alpha}}{\boldsymbol{c}_{1,\alpha} + \frac{\epsilon_{2,\alpha}}{\boldsymbol{c}_{2,\alpha} + \dots}} \quad \boldsymbol{c}_{n,\alpha} \in \mathbb{N}^+, \epsilon_{n,\alpha} \in \{\pm 1\}$$



・ロト・四ト・モート ヨー うへの



・ロト・(四ト・(川下・(日下)))



・ロト・四ト・モート ヨー うへの

 Every G<sub>α</sub> has a unique a.c. invariant measure in the Lebesgue class

- Every G<sub>α</sub> has a unique a.c. invariant measure in the Lebesgue class
- One can consider the metric entropy function

#### $\alpha \mapsto h(G_{\alpha})$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $(\cong$  average speed of convergence of rational approximations to the real number)

- Every G<sub>α</sub> has a unique a.c. invariant measure in the Lebesgue class
- One can consider the metric entropy function

#### $\alpha \mapsto h(G_{\alpha})$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $(\cong$  average speed of convergence of rational approximations to the real number)

h is continuous [Kraaikamp-Schmidt-Steiner '10]
- Every G<sub>α</sub> has a unique a.c. invariant measure in the Lebesgue class
- One can consider the metric entropy function

#### $\alpha \mapsto h(G_{\alpha})$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $(\cong$  average speed of convergence of rational approximations to the real number)

- h is continuous [Kraaikamp-Schmidt-Steiner '10]
- h is not monotone [Nakada-Natsui, '08]

- Every G<sub>α</sub> has a unique a.c. invariant measure in the Lebesgue class
- One can consider the metric entropy function

#### $\alpha \mapsto h(G_{\alpha})$

(ロ) (同) (三) (三) (三) (○) (○)

 $(\cong$  average speed of convergence of rational approximations to the real number)

- h is continuous [Kraaikamp-Schmidt-Steiner '10]
- h is not monotone [Nakada-Natsui, '08]

**Conjecture**(Nakada-Natsui): *h* is locally monotone almost everywhere.



The entropy is not monotone!

#### Let

$$\mathcal{E} := \{ x \in [0,1] \mid G^n(x) \ge x \quad \forall n \ge 0 \}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

#### Let

$$\mathcal{E} := \{ x \in [0,1] \mid G^n(x) \ge x \quad \forall n \ge 0 \}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

For all 
$$t, \mathcal{E} \cap [t, 1] \subseteq \mathcal{B}(t)$$

Let

$$\mathcal{E} := \{ x \in [0,1] \mid G^n(x) \ge x \quad \forall n \ge 0 \}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

- For all  $t, \mathcal{E} \cap [t, 1] \subseteq \mathcal{B}(t)$
- Hence  $m(\mathcal{E}) = 0$ .

#### Let

$$\mathcal{E} := \{ x \in [0,1] \mid G^n(x) \ge x \quad \forall n \ge 0 \}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- For all  $t, \mathcal{E} \cap [t, 1] \subseteq \mathcal{B}(t)$
- Hence  $m(\mathcal{E}) = 0$ .
- H. dim  $\mathcal{E} = \lim_{N \mapsto \infty} H$ . dim  $\mathcal{B}(t) = 1$

Let

$$\mathcal{E} := \{ x \in [0,1] \mid G^n(x) \ge x \quad \forall n \ge 0 \}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- For all  $t, \mathcal{E} \cap [t, 1] \subseteq \mathcal{B}(t)$
- Hence  $m(\mathcal{E}) = 0$ .
- H. dim  $\mathcal{E} = \lim_{N \mapsto \infty} H$ . dim  $\mathcal{B}(t) = 1$
- E does not contain any rational number



▲日 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●

The exceptional set  $\ensuremath{\mathcal{E}}$ 



# ${\ensuremath{\mathcal{E}}}$ vs horoballs



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

# Monotonicity of entropy

#### Theorem (Carminati-T, '10)

The entropy function  $\alpha \mapsto h(T_{\alpha})$  is monotone on each connected component of the complement of  $\mathcal{E}$ .



# Monotonicity of entropy

#### Theorem (Carminati-T, '10)

The entropy function  $\alpha \mapsto h(T_{\alpha})$  is monotone on each connected component of the complement of  $\mathcal{E}$ .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

#### Corollary

Nakada-Natsui's conjecture holds.

# Monotonicity of entropy

#### Theorem (Carminati, T, '10)

The entropy function  $\alpha \mapsto h(T_{\alpha})$  is monotone on each connected component of the complement of  $\mathcal{E}$ .



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

# The bifurcation locus for numbers of bounded type

Theorem (Carminati-T, 2011)

The map t → B(t) is locally constant precisely on the complement of E

▲□▶▲□▶▲□▶▲□▶ □ のQ@

# The bifurcation locus for numbers of bounded type

Theorem (Carminati-T, 2011)

- The map t → B(t) is locally constant precisely on the complement of E
- ► The dimension function t → H.dim B(t) is continuous decreasing.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

FACT:

FACT: Every rational value admits exactly two C.F. expansions.

FACT: Every rational value admits exactly two C.F. expansions.

$$\frac{3}{10} = \frac{1}{3 + \frac{1}{3}}$$

FACT: Every rational value admits exactly two C.F. expansions.

$$\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}$$

FACT: Every rational value admits exactly two C.F. expansions.

$$\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}$$
$$\frac{3}{10} = [0; 3, 3]$$

FACT: Every rational value admits exactly two C.F. expansions.

$$\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}$$
$$\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].$$

FACT: Every rational value admits exactly two C.F. expansions.

$$\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].$$

So any  $a \in \mathbb{Q} \cap (0, 1)$  will have two C.F. expansions of the type

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

FACT: Every rational value admits exactly two C.F. expansions.

$$\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].$$

So any  $a \in \mathbb{Q} \cap (0, 1)$  will have two C.F. expansions of the type

$$a = [0; A^{-}] = [0; A^{+}]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

FACT: Every rational value admits exactly two C.F. expansions.

$$\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].$$

So any  $a \in \mathbb{Q} \cap (0, 1)$  will have two C.F. expansions of the type

$$a = [0; A^{-}] = [0; A^{+}]$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\alpha^- := [0; \overline{A^-}]$$

FACT: Every rational value admits exactly two C.F. expansions.

$$\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].$$

So any  $a \in \mathbb{Q} \cap (0, 1)$  will have two C.F. expansions of the type

$$a = [0; A^{-}] = [0; A^{+}]$$

$$\alpha^- := [0; \overline{A^-}]$$
 (E.g.  $\alpha^- = [0; \overline{3, 2, 1}] = \frac{\sqrt{37}-4}{7}$ )

FACT: Every rational value admits exactly two C.F. expansions.

$$\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].$$

So any  $a \in \mathbb{Q} \cap (0, 1)$  will have two C.F. expansions of the type

$$a = [0; A^{-}] = [0; A^{+}]$$

$$\alpha^{-} := [0; \overline{A^{-}}]$$
 (E.g.  $\alpha^{-} = [0; \overline{3, 2, 1}] = \frac{\sqrt{37} - 4}{7}$ )  
 $\alpha^{+} := [0; \overline{A^{+}}]$ 

FACT: Every rational value admits exactly two C.F. expansions.

$$\frac{3}{10} = \frac{1}{3 + \frac{1}{3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{1}}}$$

$$\frac{3}{10} = [0; 3, 3] = [0; 3, 2, 1].$$

So any  $a \in \mathbb{Q} \cap (0, 1)$  will have two C.F. expansions of the type

$$a = [0; A^{-}] = [0; A^{+}]$$

$$\begin{array}{l} \alpha^{-} := [0; \overline{A^{-}}] \; (\text{E.g.} \; \alpha^{-} = [0; \overline{3, 2, 1}] = \frac{\sqrt{37} - 4}{7}) \\ \alpha^{+} := [0; \overline{A^{+}}] \; (\text{E.g.} \; \alpha^{+} = [0; \overline{3, 3}] = \frac{\sqrt{13} - 3}{2}) \end{array}$$

For each  $a \in \mathbb{Q} \cap (0, 1)$ 



#### For each $a \in \mathbb{Q} \cap (0, 1)$ we define open interval $I_a$ as follows

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

# For each $a \in \mathbb{Q} \cap (0, 1)$ we define open interval $I_a$ as follows $a = [0; A^{\pm}]$

(ロ)、

# For each $a \in \mathbb{Q} \cap (0, 1)$ we define open interval $I_a$ as follows $a = [0; A^{\pm}] \mapsto$

(ロ)、

#### For each $a \in \mathbb{Q} \cap (0, 1)$ we define open interval $I_a$ as follows

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$a = [0; A^{\pm}] \mapsto I_a := (\alpha^-, \alpha^+),$$

For each  $a \in \mathbb{Q} \cap (0, 1)$  we define open interval  $I_a$  as follows  $a = [0; A^{\pm}] \mapsto I_a := (\alpha^-, \alpha^+), \quad \alpha^{\pm} := [0; \overline{A^{\pm}}].$ 

For each  $a \in \mathbb{Q} \cap (0, 1)$  we define open interval  $I_a$  as follows  $a = [0; A^{\pm}] \mapsto I_a := (\alpha^-, \alpha^+), \quad \alpha^{\pm} := [0; \overline{A^{\pm}}].$ 

The interval  $I_a := (\alpha^-, \alpha^+)$  will be called

For each  $a \in \mathbb{Q} \cap (0, 1)$  we define open interval  $I_a$  as follows

$$a = [0; A^{\pm}] \mapsto I_a := (\alpha^-, \alpha^+), \quad \alpha^{\pm} := [0; \overline{A^{\pm}}].$$

The interval  $I_a := (\alpha^-, \alpha^+)$  will be called the *quadratic interval* generated by  $a \in \mathbb{Q} \cap (0, 1)$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ
# Thickening ${\mathbb Q}$

$$\mathcal{M} = \bigcup_{a \in \mathbb{Q} \cap ]0,1]} I_a$$

- $\mathcal{M}$  is an open neighbourhood of  $\mathbb{Q} \cap ]0, 1];$
- ► the connected components of *M* are quadratic intervals; The *exceptional set*

$$\mathcal{E} := [0,1] \setminus \mathcal{M} = [0,1] \setminus \bigcup_{a \in \mathbb{Q} \cap ]0,1]} I_a$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

is such that

- ▶ |*E*| = 0;
- $\dim_{\mathcal{H}}(\mathcal{E}) = 1;$

Let  $f : [0, 1] \rightarrow [0, 1]$  be a smooth map, F is called *unimodal* if it has exactly one critical point  $0 < c_0 < 1$  and f(0) = f(1) = 0.

Let  $f : [0, 1] \rightarrow [0, 1]$  be a smooth map, F is called *unimodal* if it has exactly one critical point  $0 < c_0 < 1$  and f(0) = f(1) = 0.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The *itinerary* of a point  $x \in [0, 1]$  with *f* is the sequence

Let  $f : [0, 1] \rightarrow [0, 1]$  be a smooth map, F is called *unimodal* if it has exactly one critical point  $0 < c_0 < 1$  and f(0) = f(1) = 0.

The *itinerary* of a point  $x \in [0, 1]$  with *f* is the sequence

$$i(x) = s_1 s_2 \dots$$
 with  $s_i = \begin{cases} 0 & \text{if } f^{i-1}(x) < c_0 \\ 1 & \text{if } f^{i-1}(x) \ge c_0 \end{cases}$ 

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let  $f : [0, 1] \rightarrow [0, 1]$  be a smooth map, F is called *unimodal* if it has exactly one critical point  $0 < c_0 < 1$  and f(0) = f(1) = 0.

The *itinerary* of a point  $x \in [0, 1]$  with f is the sequence

$$i(x) = s_1 s_2 \dots$$
 with  $s_i = \begin{cases} 0 & \text{if } f^{i-1}(x) < c_0 \\ 1 & \text{if } f^{i-1}(x) \ge c_0 \end{cases}$ 

The complexity of the orbits of a unimodal map is encoded by its *kneading sequence* 

$$K(f) = i(f(c_0)) \in \{0, 1\}^{\mathbb{N}}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let  $f : [0, 1] \rightarrow [0, 1]$  be a smooth map, F is called *unimodal* if it has exactly one critical point  $0 < c_0 < 1$  and f(0) = f(1) = 0.

The *itinerary* of a point  $x \in [0, 1]$  with f is the sequence

$$i(x) = s_1 s_2 \dots$$
 with  $s_i = \begin{cases} 0 & \text{if } f^{i-1}(x) < c_0 \\ 1 & \text{if } f^{i-1}(x) \ge c_0 \end{cases}$ 

The complexity of the orbits of a unimodal map is encoded by its *kneading sequence* 

$$K(f) = i(f(c_0)) \in \{0, 1\}^{\mathbb{N}}$$

#### Theorem (Milnor-Thurston '77)

The kneading sequence determines the topological entropy

The set of all kneading sequences  $\Lambda$ 

Using the kneading sequence one can produce a kneading invariant  $\tau_{\rm f}$ 

 $f \mapsto K(f) \in \{0,1\}^{\mathbb{N}} \mapsto \tau_f \in [0,1]$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The set of all kneading sequences  $\Lambda$ 

Using the kneading sequence one can produce a kneading invariant  $\tau_{\rm f}$ 

$$f \mapsto K(f) \in \{0,1\}^{\mathbb{N}} \mapsto \tau_f \in [0,1]$$

#### Proposition

The set of all kneading invariants of all real quadratic polynomials is

$$\Lambda := \{ x \in [0,1] : T^k(x) \le x \; \forall k \in \mathbb{N} \}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where T is the classical tent map.

# Λ vs Mandelbrot

$$\Lambda := \{ x \in [0,1] : T^k(x) \le x \ \forall k \in \mathbb{N} \}$$

 $\Lambda$  corresponds to the set of external rays which 'land' on the bifurcation locus of the real quadratic family, i.e. the real slice of the Mandelbrot set.



Theorem (Bonanno-Carminati-Isola-T, '10) The sets  $\Lambda \setminus \{0\}$  and  $\mathcal{E}$  are homeomorphic.

Theorem (Bonanno-Carminati-Isola-T, '10)

The sets  $\Lambda \setminus \{0\}$  and  $\mathcal{E}$  are homeomorphic. More precisely, the map  $\varphi : [0, 1] \rightarrow [\frac{1}{2}, 1]$  given by

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (Bonanno-Carminati-Isola-T, '10)

The sets  $\Lambda \setminus \{0\}$  and  $\mathcal{E}$  are homeomorphic. More precisely, the map  $\varphi : [0, 1] \rightarrow [\frac{1}{2}, 1]$  given by



is an orientation-reversing homeomorphism which maps  ${\mathcal E}$  onto  $\Lambda \setminus \{0\}.$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem (Bonanno-Carminati-Isola-T, '10)

The sets  $\Lambda \setminus \{0\}$  and  $\mathcal{E}$  are homeomorphic. More precisely, the map  $\varphi : [0, 1] \rightarrow [\frac{1}{2}, 1]$  given by



is an orientation-reversing homeomorphism which maps  ${\mathcal E}$  onto  $\Lambda \setminus \{0\}.$ 

Corollary

H.dim 
$$\mathcal{E} = 1 \Leftrightarrow$$
 H.dim  $(\partial M \cap \mathbb{R}) = 1$ 

(日) (日) (日) (日) (日) (日) (日)

[Zakeri, Jakobson]

# Minkowski's question mark function

Let  $\alpha := [0; a_1, a_2, a_3, ...]$ , define



### Minkowski's question mark function

Let  $\alpha := [0; a_1, a_2, a_3, \ldots]$ , define  $?(\alpha) := 0. \underbrace{00 \dots 0}_{a_1 - 1} \underbrace{11 \dots 1}_{a_2} \underbrace{00 \dots 0}_{a_3} \cdots$ 

#### Minkowski's question mark function

Let  $\alpha := [0; a_1, a_2, a_3, \ldots]$ , define  $?(\alpha) := 0 \underbrace{0 0 \dots 0}_{a_1 - 1} \underbrace{1 1 \dots 1}_{a_2} \underbrace{0 0 \dots 0}_{a_3} \cdots$ 



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

# Further developments

- Correspondence between B(t) and sets of external rays landing on real slice of Julia sets
- Local Hausdorff dimension of *E* vs dimension of individual *B*(*t*)

(ロ) (同) (三) (三) (三) (○) (○)

Renormalization for α-continued fractions

# The end

Thank you!



### From Farey to the tent map, via ?





・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

### References

C.Carminati, S.Marmi, A.Profeti, G.Tiozzo: *The entropy of alpha-continued fractions: numerical results* NONLINEARITY, **23**, 2010

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

### References

C.Carminati, S.Marmi, A.Profeti, G.Tiozzo: *The entropy of alpha-continued fractions: numerical results* NONLINEARITY, **23**, 2010

C.Carminati, G.Tiozzo: *A canonical thickening of Q and the dynamics of continued fractions*, arXiv:1004.3790 [math.DS]

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

### References

C.Carminati, S.Marmi, A.Profeti, G.Tiozzo: *The entropy of alpha-continued fractions: numerical results* NONLINEARITY, **23**, 2010

C.Carminati, G.Tiozzo: *A canonical thickening of Q and the dynamics of continued fractions*, arXiv:1004.3790 [math.DS]

C.Bonanno, C.Carminati, S.Isola, G.Tiozzo: *Dynamics of continued fractions and kneading sequences of unimodal maps*, arXiv:1012.2131 [math.DS]

C.Carminati, G.Tiozzo: *The bifurcation locus for numbers of bounded type*, in preparation

(ロ) (同) (三) (三) (三) (○) (○)