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Entropy of the logistic family

fλ(x) = λx(1− x) λ ∈ [0,4]

Theorem (Milnor-Thurston 1977)
The topological entropy

λ 7→ htop(λ)

is continuous monotone in λ.
The bifurcation locus is the set of locally unstable parameters
(∼= real boundary of the Mandelbrot set)
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Numbers of bounded type

B(t) = {x : Gn(x) ≥ t ∀n ≥ 0}

For t > 0, B(t) is a closed set with no interior.
Examples:

I t > g =
√

5−1
2 ⇒ B(t) = ∅

I t = 0⇒ B(t) = [0,1]

I t = 1
2 ⇒ B(t) = {g}

I t = g ⇒ B(t) = {g}
I t = [0; 2]⇒ B(t) =

⋃
n≥0[0; 1n2]

The map t 7→ B(t) is locally constant near every t ∈ Q.
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α-continued fractions (Nakada ’81)

The maps Gα : [α− 1, α]→ [α− 1, α] are defined as follows:

Gα(x) :=
1
|x |
− cα(x), cα(x) := b 1

|x |
+ 1− αc.
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α-continued fractions (Nakada ’81)

The maps Gα : [α− 1, α]→ [α− 1, α] are defined as follows:

Gα(x) :=
1
|x |
− cα(x), cα(x) := b 1

|x |
+ 1− αc.

and generate the α-continued fraction expansion:

x =
ε1,α

c1,α +
ε2,α

c2,α + . . .

cn,α ∈ N+, εn,α ∈ {±1}
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I Every Gα has a unique a.c. invariant measure in the
Lebesgue class

I One can consider the metric entropy function

α 7→ h(Gα)

(∼= average speed of convergence of rational
approximations to the real number)

I h is continuous [Kraaikamp-Schmidt-Steiner ’10]
I h is not monotone [Nakada-Natsui, ’08]

Conjecture(Nakada-Natsui): h is locally monotone almost
everywhere.
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The entropy is not monotone!
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The exceptional set E

Let
E := {x ∈ [0,1] Gn(x) ≥ x ∀n ≥ 0}

Then:

I For all t , E ∩ [t ,1] ⊆ B(t)
I Hence m(E) = 0.
I H. dim E = limN 7→∞H. dim B(t) = 1
I E does not contain any rational number
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Quadratic intervals



The exceptional set E
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Monotonicity of entropy

Theorem (Carminati-T, ’10)
The entropy function α 7→ h(Tα) is monotone on each
connected component of the complement of E .

Corollary
Nakada-Natsui’s conjecture holds.
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Monotonicity of entropy

Theorem (Carminati, T, ’10)
The entropy function α 7→ h(Tα) is monotone on each
connected component of the complement of E .
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The bifurcation locus for numbers of bounded type

Theorem (Carminati-T, 2011)

I The map t 7→ B(t) is locally constant precisely on the
complement of E

I The dimension function t 7→ H.dim B(t) is continuous
decreasing.
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Construction of E
FACT:

Every rational value admits exactly two C.F. expansions.

3
10

=
1

3 +
1
3

=
1

3 +
1

2 +
1
1

3
10

= [0; 3,3] = [0; 3,2,1].

So any a ∈ Q ∩ (0,1) will have two C.F. expansions of the type

a = [0; A−] = [0; A+]

Using such strings we can construct the two quadratic
irrationals
α− := [0; A−] (E.g. α− = [0; 3,2,1] =

√
37−4
7 )

α+ := [0; A+] (E.g. α+ = [0; 3,3] =
√

13−3
2 )
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Quadratic intervals

For each a ∈ Q ∩ (0,1)

we define open interval Ia as follows

a = [0; A±] 7→ Ia := (α−, α+), α± := [0; A±].

The interval Ia := (α−, α+) will be called the quadratic interval
generated by a ∈ Q ∩ (0,1).
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Thickening Q

M =
⋃

a∈Q∩]0,1]

Ia.

I M is an open neighbourhood of Q∩]0,1];
I the connected components ofM are quadratic intervals;

The exceptional set

E := [0,1] \M = [0,1] \
⋃

a∈Q∩]0,1]

Ia

is such that
I |E| = 0;
I dimH(E) = 1;



Symbolic dynamics of unimodal maps

Let f : [0,1]→ [0,1] be a smooth map, F is called unimodal if it
has exactly one critical point 0 < c0 < 1 and f (0) = f (1) = 0.

The itinerary of a point x ∈ [0,1] with f is the sequence

i(x) = s1s2 . . . with si =

{
0 if f i−1(x) < c0
1 if f i−1(x) ≥ c0

The complexity of the orbits of a unimodal map is encoded by
its kneading sequence

K (f ) = i(f (c0)) ∈ {0,1}N

Theorem (Milnor-Thurston ’77)
The kneading sequence determines the topological entropy
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The set of all kneading sequences Λ

Using the kneading sequence one can produce a kneading
invariant τf

f 7→ K (f ) ∈ {0,1}N 7→ τf ∈ [0,1]

Proposition
The set of all kneading invariants of all real quadratic
polynomials is

Λ := {x ∈ [0,1] : T k (x) ≤ x ∀k ∈ N}

where T is the classical tent map.
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Λ vs Mandelbrot

Λ := {x ∈ [0,1] : T k (x) ≤ x ∀k ∈ N}

Λ corresponds to the set of external rays which ’land’ on the
bifurcation locus of the real quadratic family, i.e. the real slice of
the Mandelbrot set.



Identity of bifurcation sets
Theorem (Bonanno-Carminati-Isola-T, ’10)
The sets Λ \ {0} and E are homeomorphic.

More precisely, the
map ϕ : [0,1]→ [1

2 ,1] given by

x =
1

a1 +
1

a2 +
1

a3 +
1
. . .

7→ ϕ(x) = 0.11 . . . 1︸ ︷︷ ︸
a1

00 . . . 0︸ ︷︷ ︸
a2

11 . . . 1︸ ︷︷ ︸
a3

. . .

is an orientation-reversing homeomorphism which maps E onto
Λ \ {0}.

Corollary

H.dim E = 1⇔ H.dim (∂M ∩ R) = 1

[Zakeri, Jakobson]
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Minkowski’s question mark function
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Further developments

I Correspondence between B(t) and sets of external rays
landing on real slice of Julia sets

I Local Hausdorff dimension of E vs dimension of individual
B(t)

I Renormalization for α-continued fractions



The end

Thank you!



From Farey to the tent map, via ?

Minkowski questionmark function conjugates the Farey map
with the tent map
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