Dynamics of continued fractions and kneading sequences of unimodal maps

Giulio Tiozzo
Harvard University

April 10, 2011

Credits

Results contained in joint works with C. Carminati (Pisa), C. Bonanno (Pisa), S. Isola (Camerino)

Credits

Results contained in joint works with C. Carminati (Pisa), C. Bonanno (Pisa), S. Isola (Camerino)

Thanks to C. McMullen

Motivation

Sullivan's dictionary

Motivation

limit sets of semigroups of $S L_{2}(\mathbb{Z})$
 Julia sets of
 rational maps

Motivation

limit sets of
semigroups of $S L_{2}(\mathbb{Z})$
set of endpoints of bounded
geodesics on $\mathbb{H} / S L_{2}(\mathbb{Z})$
Julia sets of real
quadratic polynomials
sets of badly approximable
numbers

Motivation

limit sets of
semigroups of $S L_{2}(\mathbb{Z})$
set of endpoints of bounded
\Leftrightarrow
Julia sets of real
geodesics on $\mathbb{H} / S L_{2}(\mathbb{Z})$
quadratic polynomials
sets of badly approximable
numbers
Question: Are there continuous families of objects on the left side?

Motivation

limit sets of
semigroups of $S L_{2}(\mathbb{Z})$

set of endpoints of bounded
geodesics on $\mathbb{H} / S L_{2}(\mathbb{Z})$
Julia sets of real
quadratic polynomials
sets of badly approximable
numbers
Question: How do their parameter spaces look like?

Entropy of the logistic family

$$
f_{\lambda}(x)=\lambda x(1-x) \quad \lambda \in[0,4]
$$

Entropy of the logistic family

$$
f_{\lambda}(x)=\lambda x(1-x) \quad \lambda \in[0,4]
$$

Theorem (Milnor-Thurston 1977)
The topological entropy

$$
\lambda \mapsto h_{\text {top }}(\lambda)
$$

is continuous monotone in λ.

Entropy of the logistic family

$$
f_{\lambda}(x)=\lambda x(1-x) \quad \lambda \in[0,4]
$$

Theorem (Milnor-Thurston 1977)
The topological entropy

$$
\lambda \mapsto h_{\text {top }}(\lambda)
$$

is continuous monotone in λ.
The bifurcation locus is the set of locally unstable parameters (\cong real boundary of the Mandelbrot set)

Numbers of bounded type

Consider the set

$$
\mathcal{B}_{N}:=\left\{x=\left[0 ; a_{1}, a_{2}, \ldots\right] \quad 1 \leq a_{i} \leq N\right\}
$$

Numbers of bounded type

Consider the set

$$
\begin{aligned}
& \mathcal{B}_{N}:=\left\{x=\left[0 ; a_{1}, a_{2}, \ldots\right] \quad 1 \leq a_{i} \leq N\right\} \\
& =\left\{x:\left|x-\frac{p}{q}\right| \geq \frac{C_{N}}{q^{2}} \quad \forall p \in \mathbb{Z}, q \in \mathbb{N}^{+}\right\}
\end{aligned}
$$

Numbers of bounded type

Consider the set

$$
\begin{aligned}
& \mathcal{B}_{N}:=\left\{x=\left[0 ; a_{1}, a_{2}, \ldots\right] \quad 1 \leq a_{i} \leq N\right\} \\
& =\left\{x:\left|x-\frac{p}{q}\right| \geq \frac{C_{N}}{q^{2}} \quad \forall p \in \mathbb{Z}, q \in \mathbb{N}^{+}\right\} \\
& =\left\{x: G^{n}(x) \geq \frac{1}{N+1} \quad \forall n \geq 0\right\}
\end{aligned}
$$

Numbers of bounded type

Consider the set

$$
\begin{aligned}
& \mathcal{B}_{N}:=\left\{x=\left[0 ; a_{1}, a_{2}, \ldots\right] \quad 1 \leq a_{i} \leq N\right\} \\
& =\left\{x:\left|x-\frac{p}{q}\right| \geq \frac{C_{N}}{q^{2}} \quad \forall p \in \mathbb{Z}, q \in \mathbb{N}^{+}\right\} \\
& =\left\{x: G^{n}(x) \geq \frac{1}{N+1} \quad \forall n \geq 0\right\}
\end{aligned}
$$

- $m\left(\mathcal{B}_{N}\right)=0$
- $\lim _{N \rightarrow \infty} \mathrm{H} . \operatorname{dim} \mathcal{B}_{N}=1$ [Jarnik]

Numbers of bounded type

$$
\mathcal{B}(t)=\left\{x: G^{n}(x) \geq t \quad \forall n \geq 0\right\}
$$

Numbers of bounded type

$$
\mathcal{B}(t)=\left\{x: G^{n}(x) \geq t \quad \forall n \geq 0\right\}
$$

For $t>0, \mathcal{B}(t)$ is a closed set with no interior.
Examples:

Numbers of bounded type

$$
\mathcal{B}(t)=\left\{x: G^{n}(x) \geq t \quad \forall n \geq 0\right\}
$$

For $t>0, \mathcal{B}(t)$ is a closed set with no interior.
Examples:

- $t>g=\frac{\sqrt{5}-1}{2} \Rightarrow \mathcal{B}(t)=\emptyset$

Numbers of bounded type

$$
\mathcal{B}(t)=\left\{x: G^{n}(x) \geq t \quad \forall n \geq 0\right\}
$$

For $t>0, \mathcal{B}(t)$ is a closed set with no interior.
Examples:

- $t>g=\frac{\sqrt{5}-1}{2} \Rightarrow \mathcal{B}(t)=\emptyset$
- $t=0 \Rightarrow \mathcal{B}(t)=[0,1]$

Numbers of bounded type

$$
\mathcal{B}(t)=\left\{x: G^{n}(x) \geq t \quad \forall n \geq 0\right\}
$$

For $t>0, \mathcal{B}(t)$ is a closed set with no interior.
Examples:

- $t>g=\frac{\sqrt{5}-1}{2} \Rightarrow \mathcal{B}(t)=\emptyset$
- $t=0 \Rightarrow \mathcal{B}(t)=[0,1]$
- $t=\frac{1}{2} \Rightarrow \mathcal{B}(t)=\{g\}$

Numbers of bounded type

$$
\mathcal{B}(t)=\left\{x: \mathcal{G}^{n}(x) \geq t \quad \forall n \geq 0\right\}
$$

For $t>0, \mathcal{B}(t)$ is a closed set with no interior.
Examples:

- $t>g=\frac{\sqrt{5}-1}{2} \Rightarrow \mathcal{B}(t)=\emptyset$
- $t=0 \Rightarrow \mathcal{B}(t)=[0,1]$
- $t=\frac{1}{2} \Rightarrow \mathcal{B}(t)=\{g\}$
- $t=g \Rightarrow \mathcal{B}(t)=\{g\}$

Numbers of bounded type

$$
\mathcal{B}(t)=\left\{x: G^{n}(x) \geq t \quad \forall n \geq 0\right\}
$$

For $t>0, \mathcal{B}(t)$ is a closed set with no interior.
Examples:

- $t>g=\frac{\sqrt{5}-1}{2} \Rightarrow \mathcal{B}(t)=\emptyset$
- $t=0 \Rightarrow \mathcal{B}(t)=[0,1]$
- $t=\frac{1}{2} \Rightarrow \mathcal{B}(t)=\{g\}$
- $t=g \Rightarrow \mathcal{B}(t)=\{g\}$
- $t=[0 ; \overline{2}] \Rightarrow \mathcal{B}(t)=\bigcup_{n \geq 0}\left[0 ; 1^{n} \overline{2}\right]$

Numbers of bounded type

$$
\mathcal{B}(t)=\left\{x: G^{n}(x) \geq t \quad \forall n \geq 0\right\}
$$

For $t>0, \mathcal{B}(t)$ is a closed set with no interior.
Examples:

- $t>g=\frac{\sqrt{5}-1}{2} \Rightarrow \mathcal{B}(t)=\emptyset$
- $t=0 \Rightarrow \mathcal{B}(t)=[0,1]$
- $t=\frac{1}{2} \Rightarrow \mathcal{B}(t)=\{g\}$
- $t=g \Rightarrow \mathcal{B}(t)=\{g\}$
- $t=[0 ; \overline{2}] \Rightarrow \mathcal{B}(t)=\bigcup_{n \geq 0}\left[0 ; 1^{n} \overline{2}\right]$

The map $t \mapsto \mathcal{B}(t)$ is locally constant near every $t \in \mathbb{Q}$.

α-continued fractions (Nakada '81)

α-continued fractions (Nakada '81)

The maps $G_{\alpha}:[\alpha-1, \alpha] \rightarrow[\alpha-1, \alpha]$ are defined as follows:

$$
G_{\alpha}(x):=\frac{1}{|x|}-c_{\alpha}(x), \quad c_{\alpha}(x):=\left\lfloor\frac{1}{|x|}+1-\alpha\right\rfloor .
$$

α-continued fractions (Nakada '81)

The maps $G_{\alpha}:[\alpha-1, \alpha] \rightarrow[\alpha-1, \alpha]$ are defined as follows:

$$
G_{\alpha}(x):=\frac{1}{|x|}-c_{\alpha}(x), \quad c_{\alpha}(x):=\left\lfloor\frac{1}{|x|}+1-\alpha\right\rfloor .
$$

and generate the α-continued fraction expansion:

$$
x=\frac{\epsilon_{1, \alpha}}{c_{1, \alpha}+\frac{\epsilon_{2, \alpha}}{c_{2, \alpha}+} \quad} \quad c_{n, \alpha} \in \mathbb{N}^{+}, \epsilon_{n, \alpha} \in\{ \pm 1\}
$$

α-continued fractions (Nakada '81)

α-continued fractions (Nakada '81)

α-continued fractions (Nakada '81)

- Every G_{α} has a unique a.c. invariant measure in the Lebesgue class
- Every G_{α} has a unique a.c. invariant measure in the Lebesgue class
- One can consider the metric entropy function

$$
\alpha \mapsto h\left(G_{\alpha}\right)
$$

(\cong average speed of convergence of rational approximations to the real number)

- Every G_{α} has a unique a.c. invariant measure in the Lebesgue class
- One can consider the metric entropy function

$$
\alpha \mapsto h\left(G_{\alpha}\right)
$$

(\cong average speed of convergence of rational approximations to the real number)

- h is continuous [Kraaikamp-Schmidt-Steiner '10]
- Every G_{α} has a unique a.c. invariant measure in the Lebesgue class
- One can consider the metric entropy function

$$
\alpha \mapsto h\left(G_{\alpha}\right)
$$

(\cong average speed of convergence of rational approximations to the real number)

- h is continuous [Kraaikamp-Schmidt-Steiner '10]
- h is not monotone [Nakada-Natsui, '08]
- Every G_{α} has a unique a.c. invariant measure in the Lebesgue class
- One can consider the metric entropy function

$$
\alpha \mapsto h\left(G_{\alpha}\right)
$$

(\cong average speed of convergence of rational approximations to the real number)

- h is continuous [Kraaikamp-Schmidt-Steiner '10]
- h is not monotone [Nakada-Natsui, '08]

Conjecture(Nakada-Natsui): h is locally monotone almost everywhere.

The entropy is not monotone!

The exceptional set \mathcal{E}

Let

$$
\mathcal{E}:=\left\{x \in[0,1] \quad G^{n}(x) \geq x \quad \forall n \geq 0\right\}
$$

Then:

The exceptional set \mathcal{E}

Let

$$
\mathcal{E}:=\left\{x \in[0,1] \quad G^{n}(x) \geq x \quad \forall n \geq 0\right\}
$$

Then:

- For all $t, \mathcal{E} \cap[t, 1] \subseteq \mathcal{B}(t)$

The exceptional set \mathcal{E}

Let

$$
\mathcal{E}:=\left\{x \in[0,1] \quad G^{n}(x) \geq x \quad \forall n \geq 0\right\}
$$

Then:

- For all $t, \mathcal{E} \cap[t, 1] \subseteq \mathcal{B}(t)$
- Hence $m(\mathcal{E})=0$.

The exceptional set \mathcal{E}

Let

$$
\mathcal{E}:=\left\{x \in[0,1] \quad G^{n}(x) \geq x \quad \forall n \geq 0\right\}
$$

Then:

- For all $t, \mathcal{E} \cap[t, 1] \subseteq \mathcal{B}(t)$
- Hence $m(\mathcal{E})=0$.
- H. $\operatorname{dim} \mathcal{E}=\lim _{N \mapsto \infty} \mathrm{H} . \operatorname{dim} \mathcal{B}(t)=1$

The exceptional set \mathcal{E}

Let

$$
\mathcal{E}:=\left\{x \in[0,1] \quad G^{n}(x) \geq x \quad \forall n \geq 0\right\}
$$

Then:

- For all $t, \mathcal{E} \cap[t, 1] \subseteq \mathcal{B}(t)$
- Hence $m(\mathcal{E})=0$.
- H. $\operatorname{dim} \mathcal{E}=\lim _{N \rightarrow \infty} \mathrm{H} . \operatorname{dim} \mathcal{B}(t)=1$
- \mathcal{E} does not contain any rational number

Quadratic intervals

The exceptional set \mathcal{E}

\mathcal{E} vs horoballs

Monotonicity of entropy

Theorem (Carminati-T, '10)
The entropy function $\alpha \mapsto h\left(T_{\alpha}\right)$ is monotone on each connected component of the complement of \mathcal{E}.

Monotonicity of entropy

Theorem (Carminati-T, '10)
The entropy function $\alpha \mapsto h\left(T_{\alpha}\right)$ is monotone on each connected component of the complement of \mathcal{E}.

Corollary
Nakada-Natsui's conjecture holds.

Monotonicity of entropy

Theorem (Carminati, T, '10)
The entropy function $\alpha \mapsto h\left(T_{\alpha}\right)$ is monotone on each connected component of the complement of \mathcal{E}.

The bifurcation locus for numbers of bounded type

Theorem (Carminati-T, 2011)

- The map $t \mapsto \mathcal{B}(t)$ is locally constant precisely on the complement of \mathcal{E}

The bifurcation locus for numbers of bounded type

Theorem (Carminati-T, 2011)

- The map $t \mapsto \mathcal{B}(t)$ is locally constant precisely on the complement of \mathcal{E}
- The dimension function $t \mapsto \mathrm{H} \cdot \operatorname{dim} \mathcal{B}(t)$ is continuous decreasing.

Construction of \mathcal{E}

FACT:

Construction of \mathcal{E}

FACT:Every rational value admits exactly two C.F. expansions.

Construction of \mathcal{E}

FACT:Every rational value admits exactly two C.F. expansions.

$$
\frac{3}{10}=\frac{1}{3+\frac{1}{3}}
$$

Construction of \mathcal{E}

FACT:Every rational value admits exactly two C.F. expansions.

$$
\frac{3}{10}=\frac{1}{3+\frac{1}{3}}=\frac{1}{3+\frac{1}{2+\frac{1}{1}}}
$$

Construction of \mathcal{E}

FACT:Every rational value admits exactly two C.F. expansions.

$$
\begin{aligned}
& \frac{3}{10}=\frac{1}{3+\frac{1}{3}}=\frac{1}{3+\frac{1}{2+\frac{1}{1}}} \\
& \frac{3}{10}=[0 ; 3,3]
\end{aligned}
$$

Construction of \mathcal{E}

FACT:Every rational value admits exactly two C.F. expansions.

$$
\begin{aligned}
& \frac{3}{10}=\frac{1}{3+\frac{1}{3}}=\frac{1}{3+\frac{1}{2+\frac{1}{1}}} \\
& \frac{3}{10}=[0 ; 3,3]=[0 ; 3,2,1] .
\end{aligned}
$$

Construction of \mathcal{E}

FACT:Every rational value admits exactly two C.F. expansions.

$$
\begin{aligned}
& \frac{3}{10}=\frac{1}{3+\frac{1}{3}}=\frac{1}{3+\frac{1}{2+\frac{1}{1}}} \\
& \frac{3}{10}=[0 ; 3,3]=[0 ; 3,2,1] .
\end{aligned}
$$

So any $a \in \mathbb{Q} \cap(0,1)$ will have two C.F. expansions of the type

Construction of \mathcal{E}

FACT:Every rational value admits exactly two C.F. expansions.

$$
\begin{aligned}
& \frac{3}{10}=\frac{1}{3+\frac{1}{3}}=\frac{1}{3+\frac{1}{2+\frac{1}{1}}} \\
& \frac{3}{10}=[0 ; 3,3]=[0 ; 3,2,1] .
\end{aligned}
$$

So any $a \in \mathbb{Q} \cap(0,1)$ will have two C.F. expansions of the type

$$
a=\left[0 ; A^{-}\right]=\left[0 ; A^{+}\right]
$$

Construction of \mathcal{E}

FACT:Every rational value admits exactly two C.F. expansions.

$$
\begin{aligned}
& \frac{3}{10}=\frac{1}{3+\frac{1}{3}}=\frac{1}{3+\frac{1}{2+\frac{1}{1}}} \\
& \frac{3}{10}=[0 ; 3,3]=[0 ; 3,2,1] .
\end{aligned}
$$

So any $a \in \mathbb{Q} \cap(0,1)$ will have two C.F. expansions of the type

$$
a=\left[0 ; A^{-}\right]=\left[0 ; A^{+}\right]
$$

Using such strings we can construct the two quadratic irrationals
$\alpha^{-}:=\left[0 ; \overline{A^{-}}\right]$

Construction of \mathcal{E}

FACT:Every rational value admits exactly two C.F. expansions.

$$
\begin{aligned}
& \frac{3}{10}=\frac{1}{3+\frac{1}{3}}=\frac{1}{3+\frac{1}{2+\frac{1}{1}}} \\
& \frac{3}{10}=[0 ; 3,3]=[0 ; 3,2,1] .
\end{aligned}
$$

So any $a \in \mathbb{Q} \cap(0,1)$ will have two C.F. expansions of the type

$$
a=\left[0 ; A^{-}\right]=\left[0 ; A^{+}\right]
$$

Using such strings we can construct the two quadratic irrationals
$\alpha^{-}:=\left[0 ; \overline{A^{-}}\right]\left(\right.$E.g. $\left.\alpha^{-}=[0 ; \overline{3,2,1}]=\frac{\sqrt{37}-4}{7}\right)$

Construction of \mathcal{E}

FACT:Every rational value admits exactly two C.F. expansions.

$$
\begin{aligned}
& \frac{3}{10}=\frac{1}{3+\frac{1}{3}}=\frac{1}{3+\frac{1}{2+\frac{1}{1}}} \\
& \frac{3}{10}=[0 ; 3,3]=[0 ; 3,2,1] .
\end{aligned}
$$

So any $a \in \mathbb{Q} \cap(0,1)$ will have two C.F. expansions of the type

$$
a=\left[0 ; A^{-}\right]=\left[0 ; A^{+}\right]
$$

Using such strings we can construct the two quadratic irrationals
$\alpha^{-}:=\left[0 ; \overline{A^{-}}\right]\left(\right.$E.g. $\left.\alpha^{-}=[0 ; \overline{3,2,1}]=\frac{\sqrt{37}-4}{7}\right)$
$\alpha^{+}:=\left[0 ; \overline{A^{+}}\right]$

Construction of \mathcal{E}

FACT:Every rational value admits exactly two C.F. expansions.

$$
\begin{aligned}
& \frac{3}{10}=\frac{1}{3+\frac{1}{3}}=\frac{1}{3+\frac{1}{2+\frac{1}{1}}} \\
& \frac{3}{10}=[0 ; 3,3]=[0 ; 3,2,1] .
\end{aligned}
$$

So any $a \in \mathbb{Q} \cap(0,1)$ will have two C.F. expansions of the type

$$
a=\left[0 ; A^{-}\right]=\left[0 ; A^{+}\right]
$$

Using such strings we can construct the two quadratic irrationals

$$
\begin{aligned}
& \alpha^{-}:=\left[0 ; \overline{A^{-}}\right]\left(\text {E.g. } \alpha^{-}=[0 ; \overline{3,2,1}]=\frac{\sqrt{37}-4}{7}\right) \\
& \alpha^{+}:=\left[0 ; \overline{A^{+}}\right]\left(\text {E.g. } \alpha^{+}=[0 ; \overline{3,3}]=\frac{\sqrt{13}-3}{2}\right)
\end{aligned}
$$

Quadratic intervals

For each $a \in \mathbb{Q} \cap(0,1)$

Quadratic intervals

For each $a \in \mathbb{Q} \cap(0,1)$ we define open interval I_{a} as follows

Quadratic intervals

For each $a \in \mathbb{Q} \cap(0,1)$ we define open interval I_{a} as follows

$$
a=\left[0 ; A^{ \pm}\right]
$$

Quadratic intervals

For each $a \in \mathbb{Q} \cap(0,1)$ we define open interval I_{a} as follows

$$
a=\left[0 ; A^{ \pm}\right] \mapsto
$$

Quadratic intervals

For each $a \in \mathbb{Q} \cap(0,1)$ we define open interval I_{a} as follows

$$
a=\left[0 ; A^{ \pm}\right] \mapsto I_{a}:=\left(\alpha^{-}, \alpha^{+}\right),
$$

Quadratic intervals

For each $a \in \mathbb{Q} \cap(0,1)$ we define open interval I_{a} as follows

$$
\boldsymbol{a}=\left[0 ; A^{ \pm}\right] \mapsto I_{a}:=\left(\alpha^{-}, \alpha^{+}\right), \quad \alpha^{ \pm}:=\left[0 ; \overline{A^{ \pm}}\right] .
$$

Quadratic intervals

For each $a \in \mathbb{Q} \cap(0,1)$ we define open interval I_{a} as follows

$$
\boldsymbol{a}=\left[0 ; A^{ \pm}\right] \mapsto I_{a}:=\left(\alpha^{-}, \alpha^{+}\right), \quad \alpha^{ \pm}:=\left[0 ; \overline{A^{ \pm}}\right] .
$$

The interval $I_{a}:=\left(\alpha^{-}, \alpha^{+}\right)$will be called

Quadratic intervals

For each $a \in \mathbb{Q} \cap(0,1)$ we define open interval I_{a} as follows

$$
\boldsymbol{a}=\left[0 ; \boldsymbol{A}^{ \pm}\right] \mapsto I_{a}:=\left(\alpha^{-}, \alpha^{+}\right), \quad \alpha^{ \pm}:=\left[0 ; \overline{A^{ \pm}}\right] .
$$

The interval $I_{a}:=\left(\alpha^{-}, \alpha^{+}\right)$will be called the quadratic interval generated by $a \in \mathbb{Q} \cap(0,1)$.

Thickening \mathbb{Q}

$$
\mathcal{M}=\bigcup_{a \in \mathbb{Q} \cap] 0,1]} l_{a}
$$

- \mathcal{M} is an open neighbourhood of $\mathbb{Q} \cap] 0,1]$;
- the connected components of \mathcal{M} are quadratic intervals;

The exceptional set

$$
\mathcal{E}:=[0,1] \backslash \mathcal{M}=[0,1] \backslash \bigcup_{a \in \mathbb{Q} \cap] 0,1]} I_{a}
$$

is such that

- $|\mathcal{E}|=0$;
- $\operatorname{dim}_{\mathcal{H}}(\mathcal{E})=1$;

Symbolic dynamics of unimodal maps

Let $f:[0,1] \rightarrow[0,1]$ be a smooth map, F is called unimodal if it has exactly one critical point $0<c_{0}<1$ and $f(0)=f(1)=0$.

Symbolic dynamics of unimodal maps

Let $f:[0,1] \rightarrow[0,1]$ be a smooth map, F is called unimodal if it has exactly one critical point $0<c_{0}<1$ and $f(0)=f(1)=0$.
The itinerary of a point $x \in[0,1]$ with f is the sequence

Symbolic dynamics of unimodal maps

Let $f:[0,1] \rightarrow[0,1]$ be a smooth map, F is called unimodal if it has exactly one critical point $0<c_{0}<1$ and $f(0)=f(1)=0$.
The itinerary of a point $x \in[0,1]$ with f is the sequence

$$
i(x)=s_{1} s_{2} \ldots \text { with } s_{i}= \begin{cases}0 & \text { if } f^{i-1}(x)<c_{0} \\ 1 & \text { if } f^{i-1}(x) \geq c_{0}\end{cases}
$$

Symbolic dynamics of unimodal maps

Let $f:[0,1] \rightarrow[0,1]$ be a smooth map, F is called unimodal if it has exactly one critical point $0<c_{0}<1$ and $f(0)=f(1)=0$.
The itinerary of a point $x \in[0,1]$ with f is the sequence

$$
i(x)=s_{1} s_{2} \ldots \text { with } s_{i}= \begin{cases}0 & \text { if } f_{i-1}(x)<c_{0} \\ 1 & \text { if } f^{i-1}(x) \geq c_{0}\end{cases}
$$

The complexity of the orbits of a unimodal map is encoded by its kneading sequence

$$
K(f)=i\left(f\left(c_{0}\right)\right) \in\{0,1\}^{\mathbb{N}}
$$

Symbolic dynamics of unimodal maps

Let $f:[0,1] \rightarrow[0,1]$ be a smooth map, F is called unimodal if it has exactly one critical point $0<c_{0}<1$ and $f(0)=f(1)=0$.
The itinerary of a point $x \in[0,1]$ with f is the sequence

$$
i(x)=s_{1} s_{2} \ldots \text { with } s_{i}= \begin{cases}0 & \text { if } f_{i-1}(x)<c_{0} \\ 1 & \text { if } f^{i-1}(x) \geq c_{0}\end{cases}
$$

The complexity of the orbits of a unimodal map is encoded by its kneading sequence

$$
K(f)=i\left(f\left(c_{0}\right)\right) \in\{0,1\}^{\mathbb{N}}
$$

Theorem (Milnor-Thurston '77)
The kneading sequence determines the topological entropy

The set of all kneading sequences \wedge

Using the kneading sequence one can produce a kneading invariant τ_{f}

$$
f \mapsto K(f) \in\{0,1\}^{\mathbb{N}} \mapsto \tau_{f} \in[0,1]
$$

The set of all kneading sequences \wedge

Using the kneading sequence one can produce a kneading invariant τ_{f}

$$
f \mapsto K(f) \in\{0,1\}^{\mathbb{N}} \mapsto \tau_{f} \in[0,1]
$$

Proposition

The set of all kneading invariants of all real quadratic polynomials is

$$
\Lambda:=\left\{x \in[0,1]: T^{k}(x) \leq x \forall k \in \mathbb{N}\right\}
$$

where T is the classical tent map.

Λ vs Mandelbrot

$$
\wedge:=\left\{x \in[0,1]: T^{k}(x) \leq x \forall k \in \mathbb{N}\right\}
$$

Λ corresponds to the set of external rays which 'land' on the bifurcation locus of the real quadratic family, i.e. the real slice of the Mandelbrot set.

Identity of bifurcation sets

Theorem (Bonanno-Carminati-Isola-T, '10)
The sets $\wedge \backslash\{0\}$ and \mathcal{E} are homeomorphic.

Identity of bifurcation sets

Theorem (Bonanno-Carminati-Isola-T, '10)
The sets $\Lambda \backslash\{0\}$ and \mathcal{E} are homeomorphic. More precisely, the $\operatorname{map} \varphi:[0,1] \rightarrow\left[\frac{1}{2}, 1\right]$ given by

Identity of bifurcation sets

Theorem (Bonanno-Carminati-Isola-T, '10)
The sets $\Lambda \backslash\{0\}$ and \mathcal{E} are homeomorphic. More precisely, the $\operatorname{map} \varphi:[0,1] \rightarrow\left[\frac{1}{2}, 1\right]$ given by

$$
x=\frac{1}{a_{1}+\frac{1}{1}} \mapsto \varphi(x)=0 \cdot \underbrace{11 \ldots 1}_{a_{1}} \underbrace{00 \ldots 0}_{a_{2}} \underbrace{11 \ldots 1}_{a_{3}} \ldots
$$

is an orientation-reversing homeomorphism which maps \mathcal{E} onto $\Lambda \backslash\{0\}$.

Identity of bifurcation sets

Theorem (Bonanno-Carminati-Isola-T, '10)
The sets $\Lambda \backslash\{0\}$ and \mathcal{E} are homeomorphic. More precisely, the $\operatorname{map} \varphi:[0,1] \rightarrow\left[\frac{1}{2}, 1\right]$ given by

$$
x=\frac{1}{a_{1}+\frac{1}{a_{0}+\frac{1}{1}}} \mapsto \varphi(x)=0 \cdot \underbrace{11 \ldots 1}_{a_{1}} \underbrace{00 \ldots 0}_{a_{2}} \underbrace{11 \ldots 1}_{a_{3}} \ldots
$$

is an orientation-reversing homeomorphism which maps \mathcal{E} onto $\Lambda \backslash\{0\}$.

Corollary
$H . \operatorname{dim} \mathcal{E}=1 \Leftrightarrow H . \operatorname{dim}(\partial M \cap \mathbb{R})=1$
[Zakeri, Jakobson]

Minkowski's question mark function

Let $\alpha:=\left[0 ; a_{1}, a_{2}, a_{3}, \ldots\right]$, define

Minkowski's question mark function

Let $\alpha:=\left[0 ; a_{1}, a_{2}, a_{3}, \ldots\right]$, define

$$
?(\alpha):=0 . \underbrace{00 \ldots 0}_{a_{1}-1} \underbrace{11 \ldots 1}_{a_{2}} \underbrace{00 \ldots 0}_{a_{3}} \cdots
$$

Minkowski's question mark function

Let $\alpha:=\left[0 ; a_{1}, a_{2}, a_{3}, \ldots\right]$, define

$$
?(\alpha):=0 . \underbrace{00 \ldots 0}_{a_{1}-1} \underbrace{11 \ldots 1}_{a_{2}} \underbrace{00 \ldots 0}_{a_{3}} \cdots
$$

Further developments

- Correspondence between $\mathcal{B}(t)$ and sets of external rays landing on real slice of Julia sets
- Local Hausdorff dimension of \mathcal{E} vs dimension of individual $\mathcal{B}(t)$
- Renormalization for α-continued fractions

The end

Thank you!

From Farey to the tent map, via?

Minkowski questionmark function conjugates the Farey map with the tent map

References

C.Carminati, S.Marmi, A.Profeti, G.Tiozzo: The entropy of alpha-continued fractions: numerical results NONLINEARITY, 23, 2010

References

C.Carminati, S.Marmi, A.Profeti, G.Tiozzo: The entropy of alpha-continued fractions: numerical results NONLINEARITY, 23, 2010
C.Carminati, G.Tiozzo:A canonical thickening of Q and the dynamics of continued fractions, arXiv:1004.3790 [math.DS]

References

C.Carminati, S.Marmi, A.Profeti, G.Tiozzo: The entropy of alpha-continued fractions: numerical results NONLINEARITY, 23, 2010
C.Carminati, G.Tiozzo:A canonical thickening of Q and the dynamics of continued fractions, arXiv:1004.3790 [math.DS]
C.Bonanno, C.Carminati, S.Isola, G.Tiozzo: Dynamics of continued fractions and kneading sequences of unimodal maps, arXiv:1012.2131 [math.DS]
C.Carminati, G.Tiozzo:The bifurcation locus for numbers of bounded type, in preparation

