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Abstract

We continue the study of list recovery properties of high-rate tensor codes, initiated by
Hemenway, Ron-Zewi, and Wootters (FOCS’17). In that work it was shown that the tensor
product of an efficient (poly-time) high-rate globally list recoverable code is approzimately locally
list recoverable, as well as globally list recoverable in probabilistic near-linear time. This was
used in turn to give the first capacity-achieving list decodable codes with (1) local list decoding
algorithms, and with (2) probabilistic near-linear time global list decoding algorithms. This
also yielded constant-rate codes approaching the Gilbert-Varshamov bound with probabilistic
near-linear time global unique decoding algorithms.

In the current work we obtain the following results:

1. The tensor product of an efficient (poly-time) high-rate globally list recoverable code is
globally list recoverable in deterministic near-linear time. This yields in turn the first
capacity-achieving list decodable codes with deterministic near-linear time global list de-
coding algorithms. It also gives constant-rate codes approaching the Gilbert-Varshamov
bound with deterministic near-linear time global unique decoding algorithms.

2. If the base code is additionally locally correctable, then the tensor product is (genuinely)
locally list recoverable. This yields in turn (non-explicit) constant-rate codes approach-
ing the Gilbert-Varshamov bound that are locally correctable with query complexity and
running time N°1). This improves over prior work by Gopi et. al. (SODA’17; IEEE
Transactions on Information Theory’18) that only gave query complexity N¢ with rate
that is exponentially small in 1/e.

3. A nearly-tight combinatorial lower bound on output list size for list recovering high-rate
tensor codes. This bound implies in turn a nearly-tight lower bound of N(1/loglogN) op
the product of query complexity and output list size for locally list recovering high-rate
tensor codes.

*An extended abstract appeared at RANDOM 2019.
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1 Introduction

Error-correcting codes enable protection of data from errors. They allow one to encode a message
so that even after some symbols of the encoding get changed, the original message can still be
recovered.

Formally, an error-correcting code of blocklength n over a finite alphabet X is a subset C' C X", If k
is such that |C| = |2|¥, then a k symbol message can be encoded using this code. The redundancy
of the code is measured by the rate p = k/n (so that |C| = |X|?™). The robustness to errors
is measured by its relative distance §, defined to be the minimum, over all distinct x,y € C, of
the relative Hamming distance dist(z,y). A basic but important observation is that for codes with
relative distance ¢, for every w € X", there is at most one codeword ¢ € C for which dist(w, ¢) < §/2.
Finding this codeword given w is the algorithmic problem of unique decoding C' up to half the
minimum distance.

Given this setup, we now state some central goals of coding theory. First, we would like to un-
derstand the best possible tradeoffs for p and § that are achievable. Next, we would like to have
explicit constructions of codes that achieve this best possible tradeoff. Finally, we would like effi-
cient algorithms for decoding such optimal codes up to half their minimum distance — this would
give codes correcting the maximum possible fraction of (worst-case) errors for their rate.

For the case of |¥| = 2 (the binary alphabet), the Gilbert-Varshamov bound states that for all
§ < 1/2 and v > 0 there exist codes with n — oo for which! p > 1 — Hy(§) — v. In fact, a random
linear code satisfies this with high probability. The Gilbert-Varshamov bound is the best known
tradeoff in the setting where § = (1), and surprisingly, it is not known to be tight. Furthermore,
despite their abundance, we do not know how to explicitly construct codes achieving the Gilbert-
Varshamov bound.

For growing alphabets, |%| = w(1), the picture is almost completely understood. We know that the
best tradeoff achievable is p = 1 —§ —~y, and furthermore we know how to explicitly construct codes
achieving this tradeoff that can be efficiently unique decoded up to half their minimum distance.

1.1 The cast

In recent years, several important variations of the problem of unique decoding have been consid-
ered. We will need many of these, so we give below a quick and gentle introduction (without formal
definitions).

List decoding. In list decoding we attempt to decode from an even larger fraction a of errors
than /2 — now there may be more than one nearby codeword, and our goal is to find the list of all

'"Here H> is the binary entropy function.



of them. A basic limitation is that efficient list decoding is only possible if the number of nearby
codewords is guaranteed to be polynomially bounded.

Unlike the case of unique decoding, the optimal tradeoff between the rate p and the list decoding
radius « (for polynomial-size lists) is known for all alphabet sizes. The optimal rate for a given «
is known as the list decoding capacity. For |X| = 2, the list decoding capacity is p = 1 — Ha(«a) — 7,
while for |¥| = w(1), the list decoding capacity is p = 1 —a —+. Over large alphabets, this tradeoff
can be achieved by explicit codes with efficient list decoding algorithms [GR08b] (see also [KRSW18]
for the state of the art). Over binary alphabet, we do not know how to explicitly construct codes
achieving list decoding capacity.

List recovery. List recovery is a generalization of list decoding where we are given a small list
of candidate alphabet symbols at each coordinate (these lists are called the input lists) and the
goal is to find the output list of all codewords that are consistent with many of these input lists.
In other words, we want all codewords such that for a (1 — «)-fraction of coordinates, the symbol
of the codeword at that coordinate lies within the input list for that coordinate (we call these the
“nearby codewords”). When the input list size is 1, then list recovery is the same as list decoding.

Local decoding. In local decoding, we want to unique decode in sublinear time. Standard
decoding has linear output size, so we need to aim lower. For a given w € X" and a given message
coordinate i € [k], we only ask to recover symbol i of the message underlying the codeword ¢ near
w. We would like to run in sublinear time (and hence use only a sublinear number of queries to
w), so we allow the algorithm to use randomness and allow a small probability of error.

Local correction is a variation of local decoding where one is required to recover codeword symbols
as opposed to message symbols. In approximate local decoding (local correction, resp.) one is only
required to recover correctly most of the message (codeword, resp.) coordinates.

Local list decoding. Local list decoding combines the notions of local decoding and list decoding.
We are given some w € X", and the goal is that for any nearby codeword, one can in sublinear time
recover the ith symbol of the message corresponding to the codeword for any i € [k]. In order to
make this precise, the local list decoding algorithm first does some preprocessing and then produces
as output a collection of algorithms A;. For any nearby codeword ¢, with high probability one of
these algorithms corresponds to it.> These algorithms then behave like local decoding algorithms.
On input ¢ € [k], if the algorithm corresponded to a codeword ¢, then by making queries to only a
sublinear number of coordinates, the algorithm with high probability outputs the correct value of
the ith symbol of the message corresponding to c.

The above definition of local list decoding can be extended to local list recovery in a straightforward
way where now the algorithms A; correspond to all codewords that agree with most of the input
lists. As above, we can also define a local correction version of local list decoding (or local list
recovery) where the algorithms A; are required to recover codeword symbols as opposed to message

2Some of these algorithms A; might not correspond to any codeword and might output garbage. Later in the
paper we define local list decoding to not allow these garbage producing A;’s. Eliminating the garbage can be easily
done if the underlying code is also locally testable, and in this case the stronger notion can be achieved.



symbols. Finally, we can also define approximate local list decoding (or local list recovery) where
the algorithms A; are only required to recover correctly most of the message (or codeword in the
local correction version) coordinates.

1.2 The context

The starting point for this paper is the recent result of [HRW17a] on high-rate list recoverable tensor
codes, and its corollaries. Tensoring is a natural operation on codes that significantly enhances their
local properties [BS06, Val05, CR05, DSW06, GM12, BV(09, BV15, Vid15, Mei09, Vid13, KMRS17].

The main technical result of [HRW17a] was that the tensor product of an efficient (poly-time)
high-rate globally list recoverable code is approximately locally list recoverable (in either the local
decoding or local correction version). They then observed that the ‘approximately’ modifier can be
eliminated by pre-encoding the tensor product with a locally decodable code. This gave the first
construction of codes with rate arbitrarily close to 1 that are locally list recoverable from an (1)
fraction of errors (however, only in the local decoding version). Finally, using the expander-based
distance amplification method of [AEL95, AL96] (specialized to the setting of local list recovery
[GI02, GKO™18]), this gave the first capacity-achieving locally list recoverable (and in particular,
list decodable) codes with sublinear (and in fact NO(1/1oglog N)) query complexity and running time
(once more, in the local decoding version).

The above result also yielded further consequences for global decoding. Specifically, [HRW17a]
observed that the approximate local list recovery algorithm for tensor codes naturally gives a
probabilistic near-linear time global list recovery algorithm. Once more, using the expander-based
distance amplification method of [AEL95, AL96, GI02], this gave the first capacity-achieving list
recoverable (and in particular, list decodable) codes with probabilistic near-linear time global list
recovery algorithms. Finally, via the random concatenation method of [Tho83, GI04], this yielded in
turn a (randomized) construction of constant-rate binary codes approaching the Gilbert-Varshamov
bound with a probabilistic near-linear time algorithm for global unique decoding up to half the
minimum distance.

One could potentially hope (following [GKO™18] which implemented a local version of [Tho83,
GI04]) for an analogous result that would give constant-rate codes approaching the Gilbert-Varshamov
bound that are locally correctable (or locally decodable) with query complexity and running time
N°(). However, what prevented [HRW17a] from obtaining such a result was the fact that their
capacity-achieving locally list recoverable codes only worked in the local decoding version (i.e., they
were only able to recover message coordinates).

1.3 Results

We revisit the technique of [HRW17a] and show the following.

e The tensor product of an efficient (poly-time) high-rate globally list recoverable code is
globally list recoverable in deterministic near-linear time. Plugging this into the machinery
of [AEL95, AL96, GI02], we get the first capacity-achieving list recoverable (and in particular,



list decodable) codes with deterministic near-linear time global list recovery algorithms. Plug-
ging this into the machinery of [Tho83, GI04], yields in turn constant-rate binary codes (with
a randomized construction) approaching the Gilbert-Varshamov bound with deterministic
near-linear time global unique decoding algorithms.

Our deterministic global list recovery algorithm is obtained by derandomizing the random
choices of the [HRW17a] algorithm using appropriate samplers.

e An instantiation of the base code to produce tensor product codes which are themselves gen-
uinely locally list recoverable (i.e., not just approximately locally list recoverable) in the local
correction version. Once more, plugging this into the machinery of [AEL95, AL96, GKOT18],
we get capacity-achieving locally list recoverable codes, but now in the local correction version.
This now plugs in turn into the machinery of [Tho83, GI04, GKO™'18] to give constant-rate
binary codes (with a randomized construction) approaching the Gilbert-Varshamov bound
that are locally decodable with query complexity and running time N°(). This improves over
prior work [GKO™18] that only gave query complexity N¢ with rate that is exponentially
small in 1/e.

We obtain our result by taking the base code to be the intersection of an efficient (poly-time)
high-rate globally list recoverable code and a high-rate locally correctable code. Assuming
both codes are linear, we have that the intersection is a high-rate code that is both! The
result of [HRW17a] already guarantees that this tensor product is approximately locally list
recoverable (in the local correction version), and we use the fact that the tensor product of
a locally correctable codes is also locally correctable [Vid15] to remove the ‘approximately’
modifier.?

e A combinatorial lower bound showing the limitations on the list recoverability of high-rate
tensor codes. Specifically, we show that when the rate of the base code is high, every t-wise
tensor product of this code has output list size doubly-erponential in t. This means that
taking ¢ to be more than loglog N leads to superpolynomial output list size, precluding the
possibility of efficient list recovery.

Instantiating this appropriately, this implies in turn that there is a base code such that for
every tensor power with block length N, the product of the query complexity and output list
size for local list recovery is at least N*(1/10glog N) " Thig implies in turn that we cannot use
arbitrary tensor codes to obtain capacity-achieving locally list decodable codes with query
complexity and output list size N°(1/108logN) “ o Jocally correctable codes approaching the
GV bound with query complexity N o(1/loglog N) - We note that in contrast, it could be that
for every base code, there is a tensor power with block length N for which local correction
can be done with query complexity O(1).

A key observation that we use is that a high-rate code has many codewords with pairwise-
disjoint supports. We combine this along with other linear-algebraic arguments to design a
list recovery instance for the tensor product of a high-rate code, which has many codewords
that are consistent with it.

Finally, we note that the recent work [KRSW18] has shown that high-rate multiplicity codes are

3To eliminate ‘garbage’ we also use the fact that the tensor product is locally testable [Vid15].



Code |2 L List-decoding Time | Notes
Folded  Reed-Solomon | NOU/¢%) (1/e)001/e) NO/e)
/  multiplicity = codes
[GRO8a, Koplh, GW13,
KRSW18]
Folded AG subcodes via | (1/¢)°0/<) | O(1/e) O:(N),c>1 Construction is
SES [GX12] Monte Carlo
Folded AG subcodes via | (1/¢)00/<) | o(log(® (N)) O:(N),ec>1
SD [GX13, GK16a] for any ¢ > 1
Tensor of code from | N°oW) o(log!® (N)) O.(N1+o(D) Decoding is
[GX13] +  expander for any ¢ > 1 randomized
tricks [HRW17a)
Corollary 1.2 No) o(log'® (N)) O (N1+o(1) Decoding is

for any ¢ > 1 deterministic

Table 1: A summary of parameters achievable by explicit (1 — p — e, L)-list decodable codes of rate
p, alphabet X, and block length N. Above, SES stands for subspace evasive set, while SD stands

for subspace design.

also genuinely (non-approximately) locally list recoverable in the local correction version with NV o(1)
query complexity. However, these codes do not suffice for our GV bound application, as this
application requires the codes to also be locally testable, and we do not currently know a local
testing procedure for multiplicity codes. Moreover, we do not know how to derandomize the local
list recovery procedure for multiplicity codes.

Below we give formal statements of our results. For formal definitions

decoding in the following theorem statements, see Section 2.

of the various notions of

Source Decoding model Decoding time Restriction on rate
[ZP81] Global unique decoding | 200VN) p < 0.02

[GI04] Global unique decoding | N¢ ¢ > 1 p<10~*

[Rud07] Global unique decoding | N€¢ ¢ > 1 p <0.02
[HRW17a] Global unique decoding | Randomized N!0 p <0.02

Corollary 1.3 | Global unique decoding | Deterministic N1toM | p < 0.02
[GKO™18] Local decoding N¢ p < exp(—1/e)
Corollary 1.6 | Local decoding No@) p <0.02

Table 2: A summary of parameters achieved by binary codes of block length N approaching the
GV bound. Decoding time refers to either running time in global unique decoding model or query
complexity in local decoding model.



1.3.1 Deterministic near-linear time global list recovery

Our first main result shows that the tensor product of an efficient (poly-time) high-rate globally
list recoverable code is globally list recoverable in deterministic near-linear time.

Theorem 1.1 (Deterministic near-linear time list recovery of high-rate tensor codes). The following
holds for any §,a > 0, and s = poly(1/6,1/a). Suppose that C C F" is a linear code of relative
distance & that is (c, £, L)-globally list recoverable deterministically in time T. Then C®t C F™' s

3 3
(a- s_t2,€, L' 'Lt)—globally list recoverable deterministically in time n' - T - Ls" L

In the theorem statement, one should think of all parameters 9§, «, L,t, and consequently also s,
as constants (or more generally, as slowly increasing/decreasing functions of n). In that case,
the theorem says that if ¢ C F" is («,¥, L)-globally list recoverable deterministically in time
T = poly(n), then the t-iterated tensor product C®* of length N := n’ is (Q(«), £, L°M)-globally
list recoverable deterministically in time O(n! - T') = n!tO(1) = N1+01/1),

Applying the expander-based distance amplification method of [AEL95, AL96, GI02] on the codes
given by the above theorem, we obtain the first capacity-achieving list recoverable (and in particular,
list decodable) codes with deterministic near-linear time global list recovery algorithms.
Corollary 1.2 (Deterministic near-linear time capacity-achieving list recoverable codes). For any
constants p € [0,1], v > 0, and £ > 1 there exists an infinite family of codes {Cn}n, where Cn has
block length N, alphabet size NoW | rate p, is encodable in time N1t gnd is (1—p—n,¢, No(l))—
globally list recoverable deterministically in time N1to()

Applying the random concatenation method of [Tho83, GI04], the above corollary yields in turn

constant-rate codes approaching the Gilbert-Varshamov bound with deterministic near-linear time

global unique decoding algorithms.

Corollary 1.3 (Deterministic near-linear time unique decoding up to the GV bound). For any

constants p € [0,0.02] and v > 0 there ezists an infinite family of binary linear codes {Cn}n, where

Cn has block length N, 71’ate p, is encodable in time Nt and is globally uniquely decodable
1

deterministically from %f_p)_w—fmction of errors in time N1to()

1.3.2 Local list recovery

Our second main result shows that if the base code is both globally list recoverable and locally
correctable, then the tensor product is (genuinely) locally list recoverable (in the local correction
version). For the precise definition of local list recovery, please see Section 2.3.

Theorem 1.4 (Local list recovery of high-rate tensor codes). The following holds for any §,a > 0,
and s = poly(1/9,1/a). Suppose that C C F" is a linear code of relative distance 6 that is (o, ¢, L)-
globally list recoverable, and locally correctable from (§/2)-fraction of errors with query complexity
Q, andt > 3. Then C®t C F*' s (a-s_t3,€, Lstg’logt LY -locally list recoverable with query complexity
nP) . QO(t) . LstS-logtL‘

Remark 1.5. A reader may notice the list sizes guaranteed in Theorem 1.1 and Theorem 1.4
are slightly different (namely, an L' term in the exponent of Theorem 1.1 becomes a log’ L term
in Theorem 1.4). This difference results from our derandomization techniques for the global list
recovery algorithm, which we do not need to employ in the local list recovery case.



Once more, applying the expander-based distance amplification method of [AEL95, AL96, GI02,

GKO™18], as well as the random concatenation method of [Tho83, GI04, GKO™18], the above

theorem yields constant-rate codes approaching the Gilbert-Varshamov bound that are locally cor-

rectable with query complexity N°(1),

Corollary 1.6 (Local correction up to the GV bound). For any constants p € [0,0.02] and v > 0

there exists an infinite family of binary linear codes {Cn}n, where Cn has block length N, rate
“1

p, is encodable in time Nt and is locally correctable from HQf_p)_w-fmction of errors with

query complexity N°W.

1.3.3 Combinatorial lower bound on output list size

Our final main result shows a nearly-tight combinatorial lower bound on output list size for list
recovering high-rate tensor codes.

Theorem 1.7 (Output list size for list recovering high-rate tensor codes). Suppose that C C F™ is
a linear code of rate 1 — v, and that C®' C F™' s (0,4, L)-list recoverable. Then L > o

The above bound can be instantiated concretely as follows.

Proposition 1.8. For any d > 0 and £ > 1 there exists L > 1 such that the following holds for any
sufficiently large n. There exists a linear code C C F" of relative distance 6 that is (2(6), ¢, L)-list
recoverable, but C®t C F" is only (0,2, L)-list recoverable for L' > exp((20)~(=3/2) . \/log L).

Finally, we also obtain a nearly-tight lower bound of N®(1/leglogN) on the product of query com-
plexity and output list size for locally list recovering high-rate tensor codes.

Proposition 1.9. For any § > 0 and sufficiently large n there exists a linear code C C F" of
relative distance 8 such that the following holds. Suppose that C®t C FN s (%,Z,L)—locally list
recoverable with query complezity Q. Then Q - L > N%s(1/loglogN) 4

2 Preliminaries

For a prime power ¢ we denote by F, the finite field of ¢ elements. For any finite alphabet ¥ and
for any pair of strings x,y € ™, the relative distance between x and y is the fraction of coordinates
i € [n] on which x and y differ, and is denoted by dist(z,y) := |{i € [n] : x; # y;}| /n. For a
subset Y C 3", we denote by dist(z,Y’) the minimum relative distance of a string y € Y from .
For a positive integer £ we denote by (%) the collection of all subsets of X of size £ and by ( <E£)
the collection of all nonempty subsets of % of size at most ¢. For any string x € X" and tuple

S e ( Ee)n we denote by dist(x,S) the fraction of coordinates ¢ € [n] for which z; ¢ S;, that is,

dist(x,S) := |{i € [n] : ; & S;}| /n. For a string z € ¥" and a subset T C [n], we use z|r € BI7!
to denote the restriction of x to the coordinates in 7. Throughout the paper, we use exp(n) to
denote 2™ and whenever we use log, it is base 2, unless noted otherwise. We use the notation
Oc(+), () to indicate that € is constant.

4Here and throughout, subscripts in asympotic notation indicate that the implied constant may depend on the
subscripted variable(s).



2.1 Error-correcting codes

An error-correcting code is simply a subset C C 3". We call 3 the alphabet of the code, and n its
block length. The elements of C' are called codewords. If F is a finite field and ¥ is a vector space
over IF, we say that a code C' C X" is F-linear if it is an F-linear subspace of the F-vector space ¥".
If ¥ =T, we simply say that C' is linear.

% %. The relative
distance dist(C') of C' is the minimum § > 0 such that for every pair of distinct codewords ¢y, c2 € C
it holds that dist(c, ca) > 6. We denote by A(C) := dist(C) - n the (absolute) distance of C.

The rate of a code is the ratio p := , which for F-linear codes equals

The best known general trade-off between rate and distance of codes is the Gilbert-Varshamov bound,
attained by random (linear) codes. For z € [0, 1] let

H(x) = 2log,(q — 1) + wlog,(1/2) + (1 — 2) log,(1/(1 — z))

denote the g-ary entropy function.

Theorem 2.1 (Gilbert-Varshamov (GV) bound, [Gil52, Var57]). For any prime power q, § €
(0,1 — %), and p € (0,1 — Hy(5)), a random linear code C C Fy of rate p has relative distance at
least § with probability 1 — exp(—n).

Corollary 2.2. For any p € [0,1] and v > 0, and prime power q > oH2(1=p=N/7 g random linear
code C C Iy of rate p has relative distance at least 1 — p — ~y with probability 1 — exp(—n).

An encoding map for C' is a bijection E¢ : ¥¥ — C, where |S|¥ = |C|. We call the elements in
the domain of Ec messages, and k the message length. We say that C' is encodable in time T' if an
encoding map for C can be computed in time 7. For a code C C X" of relative distance § and a
given parameter o < §/2, we say that C is decodable from a-fraction of errors in time T if there
exists an algorithm, running in time 7', that given a received word w € X", computes the unique
codeword ¢ € C (if any) which satisfies dist(c,w) < a.

Fact 2.3 (Reed-Solomon codes, [RS60, BW]). For any prime power q and integers k < n < q, there
exists a linear code C C Fy of rate p := k/n and relative distance at least 1 — p that is encodable

and decodable from 1_Tp—fmctz'on of errors in time poly(n,logq).

Let C C F™ be a linear code of dimension k. A generating matrix for C' is an n x k matrix G such
that Im(G) = C. A parity-check matrix for C' is an (n — k) x n matrix H such that ker(H) = C.
The dual code C+ C F™ is given by

Ct={yeF"|(y,¢)=0YceC}.
It is well-known that (CL)J' = (', and that a matrix G is a generating matrix for C' if and only if

GT is a parity-check matrix for Ct.

2.2 List recoverable codes

List recovery is a generalization of the standard error-correction setting where each entry w; of
the received word w is replaced with a list S; of ¢ possible symbols of . Formally, for « € [0, 1]

and integers ¢, L we say that a code C' C X" is («, ¢, L)-list recoverable if for any tuple S € (Ee)n



there are at most L different codewords ¢ € C' so that dist(c, S) < a. We say that C is (a, L)-list
decodable if it is (a, 1, L)-list recoverable.

Theorem 2.4 ([Gur01], Theorem 5.3). For any prime power q, o € (0,1 — %), p€(0,1-Hy(a)—
1/log,(L + 1)), a random linear code C C Fy of rate p is (o, L)-list decodable with probability
1 —exp(—n).

Theorem 2.5 ([Gur0l], Lemma 9.6). For any prime power q, integers 1 < { < q and L > ¢,
a € (0,1), and p € [0, 1] which is at most

1
log q

q
(1= @) - log(q/0) — Ha(a) — Ha(t/q) - — 1
(1 0) - loa(a/) ~ Hafo) ~ Halt/0) ot .
a random linear code C C Fy of rate p is (a, ¥, L)-list recoverable with probability 1 — exp(—n).
Corollary 2.6 ([HRW17b], Corollary 2.2). For any p € [0,1], v > 0, and £ > 1, and for sufficiently
large prime power q, a random linear code C' C Fy of rate p is (I—p—n,¢, qo(e/'”)-list recoverable
with probability 1 — exp(—n).

We say that C'is («, £, L)-list recoverable in time T if there exists an algorithm, running in time T,
that given a tuple S € (%)n, returns all codewords ¢ € C (if any) which satisfy dist(c, S) < a. The
following theorem from [GX13, GK16b, HRW17a] gives a family of high-rate linear codes which are
efficiently list recoverable with constant alphabet size and nearly-constant output list size.

Theorem 2.7 ((HRW17b], Theorem A.1). There exists an absolute constant by so that the following
holds. For any~v >0,42>1,q> (/7 that is an even power of a prime®, and integer n > gt/
there exists a linear code C' C Fy of rate 1 —~ and relative distance Q) that is (Q(~?), £, L)-list

q(¢/7)-exp(log™ n) ‘

recoverable for L = q Moreover, C' can be encoded in time poly(n,logq) and list

recovered in time poly(n, L).

2.3 Local codes

Locally testable codes. Intuitively, a code is said to be locally testable [FS95, RS96, GS06] if,
given a string w € X", it is possible to determine whether w is a codeword of C, or rather far
from C, by reading only a small part of w. For our purposes, we shall also require an additional
tolerance property of determining whether w is sufficiently close to the code.

Definition 2.8 (Tolerant locally testable code (Tolerant LTC)). We say that a code C C X"
is (@, a, B)-tolerantly locally testable if there exists a randomized algorithm A that satisfies the
following requirements:

e Input: A gets oracle access to a string w € 3.
e Query complexity: A makes at most () non-adaptive queries to the oracle w.
e Completeness: If dist(w, C') < a, then A accepts with probability at least %

e Soundness: If dist(w,C) > 8, then A rejects with probability at least %
Remark 2.9. The definition requires 0 < a < § < 1. The above success probability of % can be
amplified using sequential repetition, at the cost of increasing the query complexity. Specifically,
amplifying the success probability to 1 — exp(—t) requires increasing the query complexity by a
multiplicative factor of O(t).

5That is, ¢ is of the form p? for a prime p and for an integer .
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Locally correctable codes. Intuitively, a code is said to be locally correctable [BFLS91, STVO01,
KTO00] if, given a codeword ¢ € C that has been corrupted by some errors, it is possible to decode
any coordinate of ¢ by reading only a small part of the corrupted version of c.

Definition 2.10 (Locally correctable code (LCC)). We say that a code C' C X" is (Q, «)-locally
correctable if there exists a randomized algorithm A that satisfies the following requirements:

e Input: A takes as input a coordinate 7 € [n], and also gets oracle access to a string w € X"
that is a-close to a codeword ¢ € C.

e Query complexity: A makes at most () non-adaptive queries to the oracle w.

e Output: A outputs ¢; with probability at least %
Remark 2.11. The definition requires o < dist(C)/2. The above success probability of 2 can be
amplified using sequential repetition, at the cost of increasing the query complexity. Specifically,
amplifying the success probability to 1 — exp(—t) requires increasing the query complexity by a
multiplicative factor of O(t).

Locally list recoverable codes. The following definition from [GL89, STV01, GKO™18] gener-
alizes the notion of locally correctable codes to the setting of list decoding/recovery. In this setting,
the local list recovery algorithm is required to output in an implicit sense all codewords that are
consistent with most of the input lists.

Definition 2.12 (Locally list recoverable code). We say that a code C' C X" is (Q, «, €, ¢, L)-locally
list recoverable if there exists a randomized algorithm A that satisfies the following requirements:

e Input: A gets oracle access to a string S € ( Eé)n. This oracle, on input ¢ € [n], returns the
set S;. B

e Query complexity: A makes at most () non-adaptive queries to the oracle S.

e Output: A outputs L randomized algorithms Ay,..., A, where each A; takes as input a
coordinate i € [n], makes at most @) queries to the oracle S, and outputs a symbol in X.

e Completeness: For any codeword ¢ € C' which satisfies dist(c, S) < a, with probability at
least 1 — ¢ over the randomness of A, the following event happens: there exists some j € [L]
such that for all i € [n],

) 2
Pr4;(5) = i) 2 -, (1)
where the probability is over the internal randomness of A;.

e Soundness: With probability at least 1 — ¢ over the randomness of A, the following event
happens: for every j € [L], there exists some ¢ € C such that for all i € [n],

Pr{A;(i) = ¢ >

)

[SCEN )

where the probability is over the internal randomness of A;.

We say that A has preprocessing time Ty if A outputs the description of the algorithms A;,..., Ar,
in time at most Tpe, and has running time 7" if each A; has running time at most T". As before, we
say that the code C'is (Q, o, €, L)-locally list decodable if it is (Q, «, €, 1, L)-locally list recoverable.

11



Remark 2.13. The above definition of locally list recoverable code differs from that given in
[HRW17a, Definition 4.5] in two ways. First, our definition requires that the local algorithms
Aq, ..., Ar in the output list of A locally decode codeword coordinates as opposed to message coor-
dinates. Second, following [GKO™18], we require an additional soundness property that guarantees
that with high probability, each local algorithm in the output list locally decodes a true codeword.
These two requirements will be crucial for our GV bound local correction application (Corollary
1.6).

2.4 Tensor codes

In this paper we study the list recovery properties of the high-rate tensor product codes, defined
as follows.

Definition 2.14 (Tensor product codes). Let C; C F™, Cy C F™ be linear codes. Their tensor
product code C7 ® Cy C F™"1*™2 consists of all matrices M € F™*™2 guch that all the rows of M are
codewords of Cy and all the columns are codewords of C;.

The following are some well-known facts about the tensor product operation, and its effect on the
classical parameters of a code.

Fact 2.15. Suppose that C; CF™ Cy CF™ are linear codes of rates p1, p2 and relative distances
01, 09 respectively. Then the tensor product code C1 ® Co C F™M*"2 g q linear code of rate p1 - pa
and relative distance 61 - d2.

Moreover, if C1,Cy are encodable in times T1,Ts, respectively, then C1 ® Cy is encodable in time
n1Ts + noTy, and if C1,Cy are uniquely decodable from aq,as-fraction of errors in times 11,15,
respectively, then C1 @ Cy is uniquely decodable from (aq - a2)-fraction of errors in time niTo +noTh.

For a linear code C, let C®! := C and C®' := C@C®(~1 . By induction on t we have the following.
Corollary 2.16. Suppose that C' C F" is a linear code of rate p and relative distance §. Then the
tensor product code C®! C F™" is a linear code of rate p' and relative distance 6°.

Moreover, if C is encodable in time Tone then C! is encodable in time t - n'~' - Tone, and if C®t
is uniquely decodable from a-fraction of errors in time Tye. then C® is uniquely decodable from
al-fraction of errors in time t - n'"1 - Tyee.

For a pair of matrices G; € F™**1 and Gy € F2*F2_their tensor product G1 ® Gy is the (ny-ng) X
(k1 - k2)-matrix over F with entries

(G1® G2)(i17i2)7(j17j2) = (Gl)ihjl ) (G2)i27j2
for every 11 € [nﬂ, 19 € [TLQ}, jl S [kl], and jg < [kQ]

Fact 2.17. Suppose that G1,Ga are generating matrices of linear codes Chy C F" Cy C F"2,
respectively. Then the tensor product G1 ® Go is a generating matriz of C1 ® Cs.

12



3 Deterministic near-linear time global list recovery

3.1 Deterministic near-linear time list recovery of high-rate tensor codes

In this section we prove Theorem 1.1, restated below, which shows that the tensor product of an effi-
cient (poly-time) high-rate globally list recoverable code is globally list recoverable in deterministic
near-linear time.

Theorem 1.1 (Deterministic near-linear time list recovery of high-rate tensor codes). The following
holds for any §,a > 0, and s = poly(1/6,1/a). Suppose that C C F" is a linear code of relative
distance & that is (c, £, L)-globally list recoverable deterministically in time T. Then C®t C F™' s

3 3
(a- s_tz,ﬁ, L' 'Lt)—globally list recoverable deterministically in time n' - T - Ls" L
Theorem 1.1 follows by applying the lemma below iteratively.
Lemma 3.1. The following holds for any 0, a, &', dgec, 04, € (0,1), and 5 = poly(1/8,1/c,1/ddec, 1/04..)-

dec dec

Suppose that C C F™ is a linear code of relative distance 0 that is («, £, L)-globally list recoverable
deterministically in time T, and C' C F" is a linear code that is (o, 4, L")-globally list recoverable
determanistically in time T". Suppose furthermore that C,C" are uniquely decodable deterministically

from dqec, 04 -fraction of errors in times Tgec, Tjy., Tespectively.

Then C @ C' C F™™ s (o/ /5,0, (L')¥E/@)*) globally list recoverable deterministically in time

(L/)EL/(QI)Q en - (n, . (T + Tdec) + n- T(/lec + T/) :

Before we prove the above lemma, we first show how it implies Theorem 1.1.

Proof of Theorem 1.1. We start with the code C, and iteratively tensor with a new copy of C' for
t — 1 times. Specifically, we initially set C' := C, and at each step we apply Lemma 3.1 with the
code C’ being the code constructed so far, and the code C being a new copy of C.

On each iteration, we can set in Lemma 3.1 dqec := min{a, 6/2} and Tye. := T since the code C can
be uniquely decoded from d4ec-fraction of errors by running the list recovery algorithm for C' on the
received word, and returning the codeword from the output list that is closest to the received word.
Moreover, by Corollary 2.16, on the i-th iteration we can set &8y, := 6%, and T}, =i -n""! - T.

We conclude that on each iteration we can apply Lemma 3.1 with 5 := s for s = poly(1/§,1/a).

In the above setting of parameters, we have that the list recovery radius of C®! is at least a =
/st = a/st”, and that the output list size is at most L := L& /8" < [0t Finally, on the i-th
iteration the running time is increased by an additive factor of ' (T + Tgec) + 1T, = O(i-n'-T),
and then by a multiplicative factor of at most L - n, yielding a total running time of at most

t—1 .

. ~ t— 3
N 06 -n'-T)- (Ln) < 0t
i=1

So the desired conclusion holds by slightly enlarging the size of the polynomial s. O

13



We now proceed to the proof of Lemma 3.1. Our plan is to derandomize the approximate local list
recovery algorithm for high-rate tensor codes of [HRW17a]. Recall that an approximate local list
recovery algorithm (local correction version) is a randomized algorithm A that outputs a collection
of (without loss of generality, deterministic) local algorithms A; satisfying the following: for any
codeword c that is consistent with most of the input lists, with high probability (over the randomness
of A) one of the local algorithms A; locally corrects most of the coordinates of c.

As observed in [HRW17a], an approximate local list recovery algorithm naturally gives a probabilistic
near-linear time global list recovery algorithm as follows. First run the algorithm A to obtain the
collection of local algorithms A;. Then for each A;, output a codeword that is obtained by applying
Aj on each codeword coordinate, and then uniquely decoding the resulting word to the closest
codeword. The guarantee now is that any codeword that is consistent with most of the input lists
will be output with high probability.

To derandomize the probabilistic global algorithm described above, we note that the preprocessing
algorithm A in [HRW17a] produces the collection of local algorithms A; by choosing a random
subset of rows in the tensor product,® that is chosen uniformly at random amongst all subsets
of the appropriate size. We then observe that this subset can be alternatively chosen using a
randomness-efficient sampler without harming much the performance. Finally, since the sampler
uses a small amount of randomness (logarithmic in the blocklength of C'), we can afford to iterate
over all seeds and return the union of all output lists. This gives a deterministic near-linear time
global list recovery algorithm that outputs all codewords that are consistent with most of the input
lists.

3.1.1 Samplers

We start by defining the appropriate samplers we use.

Definition 3.2 ((averaging) sampler). An (n,7,y)-sampler with randomness r and sample size m
is a randomized algorithm that tosses r random coins and outputs a subset I C [n] of size m such
that the following holds. For any function f : [n] — [0, 1], with probability at least 1 — n over the
choice of I,

|Eier [f ()] — Eiep [f (@)]] < -

We shall use the following construction from Goldreich [Goll1].
Theorem 3.3 ([Golll], Corollary 5.6). For any n,v > 0 and integer n, there exists an (n,n,7y)-
sampler with randomness log(n/7), sample size O (1/(ny*)), and running time poly(logn,1/n,1/7).

In what follows, let I" denote the (n,n,~)-sampler promised by the above theorem, where we set

!

n:= Ofl . 5deci')’5dec and v := o/ - 76‘6“226&“. Let 7 :=log(n/v) < log(n-5/a’) and m := O(1/(ny?)) <
L-5/(a’)? denote the randomness and sample size of I', respectively (assuming that 5 is a sufficiently
large polynomial).

5In [HRW17a], the role of columns and rows is swapped.
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3.1.2 Randomness-efficient algorithm

We first describe a randomness-efficient global list recovery algorithm A for C'® C” that is obtained
by replacing the choice of a uniform random subset of rows made in [HRW17a] with a sample from
I". We will later observe that the randomness can be eliminated by iterating over all seeds of I' and
returning the union of all output lists.

The algorithm A behaves as follows. First, it uses I' to sample a subset of m rows [ = {i1,...,in} C
[n]. Then for k = 1,...,m, it runs the list recovery algorithm A’ for C* on the ij-th row Sg;, yx 3
let £, L. .....L, C C' denote the lists output by A’ on each of the rows in I. Finally, for

117 7120 " im

any choice of codewords ¢} € L] ,

¢ € C ® C' that is obtained as follows.

¢y € Lj,...,c, € L; , the algorithm A outputs a codeword

127 ’ m

For each column j € [n/], the algorithm A runs the list recovery algorithm A for C' on the j-th
column S \[n]x{j}; let £1,Ls,...L, € C denote the lists output by A on each of the n’ columns.

Then the algorithm A chooses for each column j € [n/] the codeword ¢; € L£; whose restriction

/ /

to I is closest to ((c})j,(ch)j---,(c,);) (i-e., the restriction of ¢}, ¢y, ..., ¢, to the j-th column).

Finally, the algorithm A sets the value of each column j € [n/] to ¢;, and uniquely decodes the
resulting word ¢ to the nearest codeword ¢ € C'® C’, assuming there is one at distance at most
ddec - 04 If dist(¢, S) < o'/5, then A includes ¢ in the output list £. The formal description is

dec®

given in Algorithm 1.

Algorithm 1 The randomness-efficient global list recovery algorithm A for C'® C”. The algorithm

receives as input oracle access to S € ( <F e)nm . It uses the sampler I' as promised by Theorem 3.3,

the list recovery algorithm A for C, and the list recovery algorithm A’ for C".

function A(S e (E@ )
Sample I = {i1,...,im} C [n] of size m using sampler T
for k=1,...,m do
Run the list recovery algorithm A’ for C* on the ix-th row S|(;, yx [, and let £; C C’ be
the list of codewords output by A’.
end for
Initialize & < 0 € " L + (.
for every choice of codewords ¢} € L,
for j € [n/] do
Run the list recovery algorithm A for C' on the j-th column S|, (;3, and let £; C C
be the list of codewords output by A.
Choose a codeword ¢; € L; for which ¢;|r is closest to ((c});, (¢5);,- -, (c},);) (breaking
ties arbitrarily).
Set the j-th column of ¢y to c;.
end for
Uniquely decode ¢y from (0dec - 9, )-fraction of errors (using Fact 2.15), and let ¢ € C®@C’

)nxn'

cyeLi,...,cp, €L do

127 ’m

dec

be the resulting codeword (if it exists). If dist(¢,.S) < o'/s, add ¢ to L.
end for
return £

end function
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3.1.3 Output list size, randomness, and running time

The output list size is at most the number of choices of ¢} € £, d, € £},...,d, € L], which is
(L')y™ < (L)E5/(@)? " and the randomness is 7 < log (n - §/a’). As to running time, the algorithm
A invokes the sampler T, followed by m invocations of the list recovery algorithm A’ for C’, and
(L")™ - n/ invocations of the list recovery algorithm A for C'. Furthermore it chooses the codeword
¢j € L; with ¢;|7 is closest to ((c});,- .., (¢),);) ' times, which adds an additional L - m - n’ steps.
Finally, it invokes (L")™ times the unique decoding algorithm for C'® C’ which can be implemented
to run in time n - T, + n’ - Tyec by Fact 2.15. Thus the total running time is at most

poly(logn,m) +m - T' + (LY -n' - T+ L-m-n" + (L") (n-Thee + 1+ Taec)

< (L)H O (0 (T + Taee) + 10 Thoe + T') .

where the inequality holds for a sufficiently large polynomial s.

3.1.4 Correctness

Next we establish the following.
Claim 3.4. Suppose that ¢ € C ® C' has dist(¢, ) < o'/5. Then with probability at least 2/3, the
codeword ¢ 1is included in L.

Note that the above claim in particular implies that there are at most O((L')™) codewords ¢ € C®C’
with dist(¢,5) < o//s. Indeed, if M denotes the number of such codewords, Claim 3.4 promises
that the expected size of £ is at least (2/3) - M. As |£| is always at most (L), we conclude
(2/3)- M < (L')™.

To prove the above claim, it is enough to show that with probability at least 2/3 over the choice of
I = {i1,...,im}, there exists a choice of ¢ € L} ,cy € L} ,..., ¢, € L] such that at the iteration

227 ’m
corresponding to ¢}, ¢, ..., ¢, the word ¢q satisfies that dist(¢o, ¢) < ddec - 0)0.- Once we establish

rm
this, the unique decoding algorithm for C'® ¢ will successfully decode ¢ from ¢.

For a row i € [n], let ¢ be the codeword in £ that is closest to the i-th row of ¢ (breaking ties
arbitrarily), that is, the codeword ¢; € L] for which dist(¢;, ¢|(;}x[5/)) is minimal. We will show that
with probability at least 2/3 over the choice of I = {i1,...,im}, at the iteration corresponding to
the choice of &, € L] ,¢;, € Lf,, ..., ¢, € L], the word ¢y will satisfy that dist(co,¢) < dgec - 0y

117 ec’

Following [HRW17a], to establish the above, we show that with high probability over the choice of
I, a large fraction of the columns j € [n/] are “good”, in the sense that ¢y and ¢ agree on all of
these columns at the iteration corresponding to the choice of ¢;, € L] , &, € L] ,...,¢,, € L; . In
what follows, let ¢1,¢s. .., ¢, denote the columns of ¢.

Definition 3.5 (Good column). Let I = {i1,...,im} C [n] be a subset of m rows. We say that a
column j € [n'] is good with respect to I if it satisfies the following properties:

1. The codeword ¢ is consistent with all but an a-fraction of the input lists on column j, that
is, diSt(éj, S‘[n}x{]}) <a.

2. Let £; denote the list of all codewords in C' that are consistent with all but an a-fraction of
the input lists on column j. Then for any ¢ € £; \ {¢;} it holds that dist(c|r, ¢j|1) > 6/2.
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3. dist (51, (&), - - -+ (63,,)5)) < 6/4.

Claim 3.6 below shows that at the iteration corresponding to the choice of ¢;, € 5“,022 €
[,32, s G, € L] _» Co and ¢ agree on all of the good columns. Claim 3.7 complements this by
showmg that w1th probability at least 2/3 over the choice of I, at least a (1 — dgec - 04, )-fraction
of the columns are good with respect to I. The combination of these claims yields the desired
conclusion.

Claim 3.6. Let I = {i1,...,im} C [n] be a subset of m rows, and suppose that a column j € [n/]
18 good with respect to I. Then at the iteration corresponding to the choice of ¢, € L) ,é, €

L Cin, € L] it holds that Colin)x ()} = -

(PR

71

Proof. By Property (1) in the definition of a good column, ¢ is consistent with all but an a-fraction
of the input lists on column j, and so ¢; € £;. By Property (3),

dist (5j|[, ((éh)ja N (ézm)])) < 5/4
On the other hand, by Property (2) for any other codeword ¢ € £L; we have that

dist (C’], ((éil)j, oy (éim>j)) Z diSt (6j‘[, C’[) — diSt (5]"[, ((éi1)j7 ey (ézm)ﬂ) > 5/4

Thus, ¢; is the codeword in L£; whose restriction to I is closest to ((¢i);,...,(¢i,,);j), and so
the algorithm A will set cj = ¢; at the iteration corresponding to the choice of ¢, € L] Gy €
Li,,... ¢, €L; . Consequently, the j-th column of & will be set to the j-th column of ¢. O

Claim 3.7. With probability at least 2/3 over the choice of I, at least a (1 — dec - 04,.)-fraction of
the columns are good with respect to I.

For the proof of the above claim we shall also use the notion of a “good row”.
Definition 3.8 (Good Row). A row i € [n] is good if the codeword ¢ is consistent with all but an
o/-fraction of the input lists row 4, that is, dist(¢] (i <, Slgiy <) < @

We claim that with high probability over the choice of I, a large fraction of the rows in I are good.

Claim 3.9. With probability at least 0.9 over the choice of I, at least a (1 — %) -fraction of
the rows in I are good.

Proof of Claim 3.9. For i € [n], let f(i) := dist(C|{;}xn1, Slfiyx[n/)), and note that by the sampling
property of I', with probability at least 0.9 over the choice of I we have that

d - Odec * 0"

dec

Eier [f(1)] < Eiep [f(4)] + v = dist(¢, ) + < o - S ’

where the last inequality holds by assumption that v = o’ - % and dist(¢,S) < o -

(which holds assuming that 5 is a suﬂiciently large polynomial). An averaging argument yields that

in this case, for at least a (1— o 6‘1“ dec) fraction of the rows i € I it holds that dist(¢|¢;yx[n/]» S|y x[n1])
f@) <. O

dec

5-0dec0);
24

Finally, we provide the proof of Claim 3.7.

Proof of Claim 3.7. We will show that each of the three properties in the definition of a good

column holds for at least a (1 — %)-fraction of the columns with probability at least 0.9 over
the choice of I. The claim will then follow by a union bound.
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/

Property (1): Assuming that dist(¢, S) < % (which once more holds assuming that § is a

sufficiently large polynomial), an averaging argument implies that for at least a (1— %)—fraction
of the columns j € [n/] it holds that dist (¢;, S|px 1) < a.

Property (2): Fix j € [n/] and ¢ € £; \ {¢;}, and note that dist(c,¢;) > 6 since C has relative
distance §. For i € [n], let
. 1, if C; = C; i
) = )
0, otherwise.

and note that by the sampling property of I', with probability at least 1 — %1 . % over the

choice of I we have that
dist(c|s, ¢j|r) = Eier [f(i)] = Eigpm) [f(2)] — v = dist(c, ;) —v > §/2,

where the last inequality follows by choice of v < §/2. Hence, by a union bound, with probability
at least 1 — 0.1 - % over the choice of I, we have dist(c|7, ¢j|1) > 6/2 for all c € £; \ {¢;}.

Finally, by an averaging argument we conclude that with probability at least 0.9 over the choice of
I, at least a (1 — %)—fraetion of the columns j € [n/] satisfy Property (2).

Property (3): By Claim 3.9, with probability at least 0.9 over the choice of I = {i1,...,im},

at least a (1 — %)—fraetion of the rows in I are good, where for a good row i, € I we have
that ¢[g;,yx[n € £}, , and so ¢, = ¢[g;, yx[n/]- Assuming this is the case, we have that ¢ agrees with
(Giyy.-.,Ci,,) on at least a (1 - %)—fraction of the points in I x [n'], and so by averaging for at

least a (1—%)—fraction of the columns j € [n/] it holds that dist (¢;|7, ((¢i,)j, - -, (Gin)j)) < /4.
O

3.1.5 Deterministic algorithm

Lastly, to obtain a deterministic global list recovery algorithm, we simply iterate over the ran-
domness of I', and output the union of all output lists. This increases the running time by a
multiplicative factor of 2" = n - 5/a’. Moreover, Claim 3.4 guarantees that any codeword that is
consistent with all but (¢//5)-fraction of the input lists will be output in one of the invocations,
and consequently will be included in the final output list (which is of size at most (L)¥L/ (o)? by
the same claim).

3.2 Deterministic nearly-linear time capacity-achieving list recoverable codes
In this section we prove the following lemma, which implies Corollary 1.2 from the introduction.

Lemma 3.10. For any constants p € [0,1], v > 0, and £ > 1 there exists an infinite family of
codes {Cn}n that satisfy the following.
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o Cy is an Fa-linear code of block length N and alphabet size N°O.

o Cn has rate p and relative distance at least 1 — p — 7.

e Cnis(1—p—n,¢, No(l))-globally list recoverable deterministically in time N+,
o Cy is encodable deterministically in time N1to(1),

To prove the above lemma, we first use Theorem 1.1 to obtain deterministic nearly-linear time
high-rate list recoverable codes, and then use the Alon-Edmonds-Luby (AEL) distance amplification
method [AEL95, AL96] to turn these codes into deterministic nearly-linear time capacity-achieving
list recoverable codes. Specifically, we shall use the following version of the AEL method for list
recovery from [GI02] that roughly says the following. Given an efficient “outer” code C of rate
approaching 1 that is list recoverable from a tiny fraction of errors, and a small “inner” code C’
that is a (possibly non-efficient) capacity-achieving list recoverable code, they can be combined to
get a new code Cagr, that on the one hand, inherits the tradeoff between rate and error correction
that C’ enjoys, and on the other hand, is almost as efficient as C' is.

Lemma 3.11 (Distance amplification for list recovery, [GI02], Lemma 6). There exists an absolute
constant by such that the following holds for any §,c,y > 0 and t > (§ - o - y) ™%,

Suppose that C C (XP)" is an outer code of rate 1 — v and relative distance § that is (o, ¥, L)-
globally list recoverable in time T, and C' C X! is an inner code of rate p and relative distance
1—p— that is (1 — p — v, 0, £)-globally list recoverable in time T'. Then there exists a code
Capr C (Y™ of rate p—~ and relative distance at least 1 — p— 2~ that is (1 —p—2v,¢, L)-globally
list recoverable in time T + n - (T’ + poly(t,logn)).

Moreover,

o If C,C" have encoding times Tonc, Toyes
(Tene + poly(t,logn)).

o If C,C'" are F-linear then so is Capr.
Remark 3.12. Lemma 6 in [GI02] is stated for the special case of ¢/ = 1, and for a more specific
choice of list recovery radii and running times. Also, it does not mention explicitly relative distance,
encoding time, and linearity. However, these can be deduced from the proof of the lemma, combined
with the expander graph construction described in [KMRS17, Lemma 2.12] (See also [GKOT18,
Lemma 5.4] for a similar transformation for the setting of local list recovery.)

respectively, then Cagr, has encoding time Tene + 1 -

Next we prove Lemma 3.10, based on Theorem 1.1 and Lemma 3.11.

Proof of Lemma 3.10. We shall first apply Theorem 1.1 on a suitable base code C to obtain a
deterministic nearly-linear time high-rate list recoverable code C’, and then use the transformation
given by Lemma 3.11 to obtain a deterministic nearly-linear time capacity-achieving list recoverable
code C”.

Base code C: The code C will be the efficient high-rate list recoverable code given by Theorem
2.7, in an appropriate setting of parameters.

Specifically, in what follows, we let 8 := (logloglog N)~°") (where the o(1) term in the exponent is
a sufficiently slowly decreasing function of N), and we choose the block length of C' to be N”, and
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the rate to be 1 —y3/4. As we will see in a moment, the rationale for these choices is that if we
raise C' to the tensor power of 1/3, Theorem 1.1 will yield a code of block length N with running
time N1TOW) = N1+o(1) and rate greater than 1 — ~.

Theorem 2.7 then guarantees, for any constant ¢ > 1, the existence of a linear code C' as above that
has relative distance (logloglog N)=°(), and is ((logloglog N)~°(M) ¢ exp exp((log log log N)°(1)))-
globally list recoverable in time N OB) provided that the alphabet size is sufficiently large even
power of a prime exp((logloglog N)"(l)). Also, as C is linear, it can be encoded in time quadratic
in its block length, that is, O(N??).

High-rate list recoverable code C’: Let C’ be the code obtained by raising C' to a tensor power
of 1/8 = (logloglog N)°™). Then C’ has block length N, alphabet size exp((log loglog N)°(1)), rate
at least 1 — /4, and relative distance exp(—(logloglog N)°()). Furthermore, by Theorem 1.1, it
is (exp(—(logloglog N)°M), ¢/, N°())-globally list recoverable deterministically in time N1TO®) =
NHe(D)  Morever, by Corollary 2.16, it can be encoded in time (1/8) - NA(1/B=1) . N28 — N1+o(1),

Capacity-achieving list recoverable code C”: Let C” be the code obtained by applying
Lemma 3.11 with the outer code being the code C” constructed so far, and the inner code being a
capacity-achieving list recoverable code D” of rate p++/4 and relative distance at least 1 —p—-/2.
(This code can be constructed by a brute-force search.)

Corollaries 2.2 and 2.6 guarantee the existence of a code D" as above that is (1 — p — v/2,,¢')-
globally list recoverable for some constant ¢/, provided that the alphabet size is a sufficiently large
constant prime power, and the block length is sufficiently large. To satisfy the conditions of Lemma
3.11, we further require that the block length of D" is sufficiently large exp((logloglog N)°()), and
that the alphabet size of C” is exp exp((logloglog N)°))—the size of D”—which can be achieved
by grouping together consecutive symbols of C’.

Lemma 3.11 then implies that C” is a code of block length N, alphabet size NoM) | rate p, and
relative distance 1 — p — v, that is (1 —p—~,¢, N 0(1))—globally list recoverable deterministically in
time N't°() (using brute-force decoding of inner code).

Finally, it can be verified that the encoding time is as claimed. Indeed, the encoding time of C’
is N1to() and the encoding time of D” is N°(1) (as the code is linear, it can be encoded in time
quadratic in its block-length, which is N 0(1))7 so Lemma 3.11 implies the desired result. Moreover,
observe that all codes in the process can be taken to be Fao-linear, and all transformations preserve
[Fo-linearity, so the final code can be guaranteed to be Fo-linear as well. O

3.3 Deterministic near-linear time unique decoding up to the GV bound

In this section we prove the following lemma, which implies Corollary 1.3 from the introduction.
Lemma 3.13. For any constants p € [0,0.02] and v > 0 there exists an infinite family of binary
linear codes {Cn}n, where C has block length N and rate p, and is globally uniquely decodable
_1(

deterministically from H21f_p)_’y—fr(zction of errors in time N1to(),
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Furthermore, there exists a randomized algorithm which, on input N, runs in time N1t gnd
outputs with high probability a description of a code Cyn with the properties above. Given the
description, the code Cn can be encoded deterministically in time Nito(),

To prove the above lemma, we rely on the following lemma from [Tho83, HRW17a|, which says that
one can turn a code that approximately satisfies the Singleton bound into one that approximately
satisfies the GV bound via random concatenation. In what follows let 0(z) := 1 — Ho(1 —2%71) for
z € [0,1].

Claim 3.14 ([GR10], Lemma 2.2). 0(x) < z for all x € [0,1].

Lemma 3.15 (Random concatenation, [HRW17c|, Lemma 7.3). There exists an absolute constant

by such that the following holds for any v > 0, p/ € [0,1], p € [O, W}, and t > 72'(1710_/)).

Suppose that C C (Fgl't)" is an Fa-linear code of rate p and relative distance 1 — p — Z—s, and

Cleon C " is a code obtained from C by applying a random linear code c C FL of rate p' on each
coordinate i € [n] of C independently. Then C.,, has relative distance at least H2_1(1 —p-p)—7
with probability 1 — exp(—n).

We shall also use the following lemma that states the effect of concatenation on list recovery
properties.

Lemma 3.16 (Concatenation for list recovery, [HRW17c], Lemma 7.4). Suppose that C' C (X¢")"
is (c, £, L)-globally list recoverable in time T, and Ceon C X is a code obtained from C by applying
a code C C St of rate p' on each coordinate i € [n] of C. Suppose furthermore that at least
(1 — ~)-fraction of the codes C® are (o, ¢',0)-globally list recoverable in time T'. Then Ceop is
((ae =) -, ¥, L)-globally list recoverable in time T +n - T".

Next we prove Lemma 3.13, based on Lemma 3.10 and the above Lemmas 3.15 and 3.16.

Proof of Lemma 3.13. We apply random concatenation on the deterministic nearly-linear time
capacity-achieving list recoverable code C' given by Lemma 3.10. By Lemma 3.15, the result-
ing code C' will approach the Gilbert-Varshamov bound with high probability, while by Lemma
3.16, the code C will also be nearly-linear time list recoverable (and in particular, list decodable)
with high probability. Thus, whenever the list decoding radius exceeds half the minimum distance
(which turns to be the case whenever the rate is smaller than 0.02), the code C can be uniquely
decoded from half the minimum distance in near-linear time by first running the list decoding al-
gorithm, and then choosing the codeword from the output list that is closest to the received word.
Details follow.

The code C: Let by be the absolute constant guaranteed by Lemma 3.15, and apply Lemma
3.10 with rate pg := m (noting that this is at most 1 since #(z) < x for all x € [0,1],
and @ is monotonically increasing in [0, 1]), proximity parameter vy := v2/bg, and input list size
o := 2Y/7. Lemma 3.10 then guarantees, for infinite number of N’s, the existence of an Fo-linear
code C of block length N, alphabet size NV o) rate po, and relative distance 1 — pg — 7, that is

(1 — po — 70, Lo, N°(M)-globally list recoverable deterministically in time N!*o(1),

The code C: Let C C FEN be a binary linear code obtained from C by applying a random linear
code C) C T of rate p/ := 0~ (p + ~/2) on each coordinate i € [n] of C' independently (as in the
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statement of Lemma 3.15). Then the code C has rate p, and by Lemma 3.15 it also has relative
distance at least H, L(1—p)—~ with probability 1 —exp(—N). Moreover, by Theorem 2.4, each C'(*)
is (Hy '(1—p' —~),2Y/7)-list decodable with probability 1 — o(1), so with probability 1 — exp(—N)
this property holds for at least (1 — 2 /bg)-fraction of the C(*)’s. Lemma 3.16 implies in turn that
the code C is (&, N 0(1))—globally list decodable in time N1+o() (using brute-force decoding of inner
codes C™) for

a=(1-po—2v*/bo)- Hy'(1—p/ —7).

Decoding: Next assume that the list decoding radius & exceeds the desired decoding radius, i.e.,

Hy'(1—p)—~
1202 )

(1—po—29%/bo) - Hy (1= p' =) >
where pg = W and p’ := 0~!(p+ ~/2). It was shown in [Rud07, Section 4.4] that this is
indeed the case whenever p < 0.02 and ~ is a sufficiently small constant.

Assuming that (2) holds, one can globally uniquely decode C up to half the minimum distance in
time N1+°() by list decoding C, and outputting the codeword in the output list that is closest to
the received word. O

4 Local list recovery

4.1 Local list recovery of high-rate tensor codes

In this section we prove the following lemma, which implies Theorem 1.4 from the introduction.
Lemma 4.1. The following holds for any 6, a,e > 0 and s = poly(1/d,1/a). Suppose that C C F"
is a linear code of relative distance & that is («, ¥, L)-globally list recoverable, and (Q,d/2)-locally

~ 3
correctable, and t > 3. Then C®' C F" is (Q,a-s" &, ¢, L*" 198" L.1og(1/¢))-locally list recoverable
for
- . 3
Q=n* (QlogQ) - L*" & L . log*(1/e).

Moreover, if C is globally list recoverable in time poly(n), locally correctable in time T, and globally
decodable for (5/2)-fraction of errors in time poly(n), then the local list recovery algorithm for C®
3

has preprocessing time poly(n)-L*" 18" L.log?(1/¢) and running time poly(n)- (T log T)t-(s*" log® L).

The above lemma relies on the following lemma from [HRW17a], which says that the tensor prod-
uct of a high-rate globally list recoverable code (which is not necessarily locally correctable) is
approximately locally list recoverable. Approximate local list recovery is a relaxation of local list
recovery, where the local algorithms in the output list are not required to recover all the codeword
coordinates, but only most of them. Formally, a S-approximately (Q, «, €, ¢, L)-locally list recoverable
code C' C X" satisfies all the requirements of Definition 2.12, except that the requirement (1) is
replaced with the relaxed condition that

Pr [Aj(i) =¢] >1- 5, (3)

1€[n]
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where the probability is over the choice of uniform random i € [n],” and the soundness requirement
is eliminated.

Lemma 4.2 (Approximate local list recovery of high-rate tensor codes, [HRW17b], Lemma 4.1).
The following holds for any ,a, B, > 0 and s = poly(1/6,1/a,1/8). Suppose that C C F" is
a linear code of relative distance § that is (o, £, L)-globally list recoverable. Then C®' C F™ s

2
B-approzimately (n - (s logt L), a - 57 e, €, L5" 18" L . log(1/¢))-locally list recoverable.

Moreover, if C is globally list recoverable in time poly(n), then the approzimate local list recovery

2
algorithm for C® has preprocessing time log(n) - L*" 198'L .log(1/¢) and running time poly(n) -
(s log' L).

To turn the approximate local list recovery algorithm given by the above lemma into a local list
recovery algorithm we shall use the fact that the tensor product of a locally correctable code is
also locally correctable with slightly worse parameters. A similar observation was made in [Vid15,
Proposition 3.15.], but for completeness we provide a full proof below in Section 4.1.1.

Lemma 4.3 (Local correction of tensor codes). Suppose that C C F" is a linear code that is

(Q, )-locally correctable. Then C®' C F™' s ((O(Qlog Q))t, al)-locally correctable.

Moreover, if C is locally correctable in time T, then the local correction algorithm for C®t runs in
time (O(TlogT))t.

To guarantee the soundness property we shall also use the following lemma which says that high-
rate tensor codes are tolerantly locally testable. We prove this lemma in Section 4.1.2, based on a
robust local testing procedure for high-rate tensor codes given in [Vid15].

Lemma 4.4 (Tolerant local testing of high-rate tensor codes). Suppose that C C F" is a linear
code of relative distance 5, and t > 3. Then C® C F™ is (n2-6-O0W 600 (5/2)!)-tolerantly locally
testable.

Moreover, if C' is globally decodable from (0/2)-fraction of errors in time T, then the tolerant local
testing algorithm for C®' runs in time T -n - 690,

Finally, we show a general transformation that turns an approximately locally list recoverable
code that is also locally correctable and tolerantly locally testable into a (genuinely) locally list
recoverable code.

Lemma 4.5. Suppose that C C X" is a [-approximately (Q,«,e,l, L)-locally list recoverable
code that is also (Qcorr,y)-locally correctable and (Qiest, B,7)-tolerantly locally testable. Then C
is (Q, a, 2,4, L)-locally list recoverable for

Q~ = maX{Q “Qtest - O(|L’ lOg(\L’/@), Q- Qcorr}-

Moreover, if the approzimate local list recovery algorithm has preprocessing time The and running
time T, and the local correction and tolerant local testing algorithms run in times Tiest, Teorr, TESPEC-
tively, then the local list recovery algorithm has preprocessing time Tpre + T - Trest - O(|L| log(|L| /<))
and running time T - Teopy.

" A simple averaging argument shows that in the case of approximate local list recovery, each of the local algorithms
Ai,..., AL can be assumed to be deterministic.
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Proof. First note that by Remark 2.9, we may assume that the tolerant local testing algorithm Ayest
fails with probability at most €/|L|, at the cost of increasing the query complexity and running
time by a multiplicative factor of O(log(|L|/¢)).

The local list recovery algorithm A first runs the approximate local list recovery algorithm A, let
A1, Ay, ..., AL be the (deterministic) output local algorithms. Then for any j = 1,...|L|, the
local list recovery algorithm A runs the tolerant local testing algorithm Ayet on Aj, and outputs
Acorr(A;) if and only if the test passes, where Acorr is the local correction algorithm.

It can be verified that query complexity, output list size, and running times are as claimed. For
completeness, suppose that ¢ € C satisfies dist(c,S) < a. Then with probability at least 1 — ¢
the approximate local list recovery algorithm A will output some A; for which dist(4;,¢) < B.
Consequently, the tolerant local testing algorithm Ages; will accept A; with probability at least
1 —e. So we conclude that with probability at least 1 — 2e the local algorithm Agom(A4;) will be
included in the output list of A, and furthermore, by properties of Acorp it will be consistent with
the codeword c.

For soundness, suppose that Aor(A;) is not consistent with some codeword ¢ € C. Then by
properties of Acorr, it holds that dist(A;, C') > . But in this case the tolerant local testing algorithm
Atest will reject A; with probability at least 1 —¢/|L|. So by union bound, with probability at least
1 — ¢, each local algorithm in the output list of A is consistent with some codeword ¢ € C. O

Next we prove Lemma 4.1 based on the above transformation and Lemmas 4.2, 4.3, and 4.4.

Proof of Lemma 4.1. By Lemma 4.3 the tensor product code C®! is ((O(Qlog Q))t, (6/2))-locally
correctable, and by Lemma 4.4 it is (n? - =91 %t (§/2)")-tolerantly locally testable for some
absolute constant by. Moreover, by Lemma 4.2 the tensor product code C®* is (6%?)-approximately

3
(n-(s" log' L), -5 /2, ¢, L*" 108" L.1og(1 /¢))-locally list recoverable. Finally, Lemma 4.5 implies
~ 3
that C® is (Q,a- s, e, ¢, L% 18" L . log(1/e))-locally list recoverable for

Q =n®- (QlogQ)' - L* "% I . log2(1/e).

Running times follow similarly. O

4.1.1 Local correction of tensor codes — proof of Lemma 4.3

Lemma 4.3 can be easily deduced from the following lemma using induction: specifically, take C’
to be the code constructed thus far (that is, C®7 for some j < t) and take C to be a fresh copy.
Lemma 4.6. Suppose that C C F*, C' C F" are linear codes that are (Q,a), (Q',/)-locally
correctable, respectively. Then C @ C' CF™™ is (Q - O(Q'log Q"), a - &')-locally correctable.

Moreover, if C,C" are locally correctable in times T, T’, respectively, then the local correction algo-

rithm for C @ C" runs in time T - O(T" logT").

Proof. First note that by Remark 2.11, we may assume that the local correction algorithm A’ for
(' fails with probability at most 1/6, at the cost of increasing the query complexity and running
time by some multiplicative constant by. Similarly, we may also assume that the local correction
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algorithm A for C fails with probability at most 1/(6b9Q’), at the cost of increasing the query
complexity and running time by a multiplicative factor of O(log @’).

Let w € F™™ be a string that is (o - o/ )-close to some codeword ¢ € C' ® €. Recall that the local
correction algorithm A for C ® C” is given as input a codeword coordinate (i,7) € [n] x [7/] in the
tensor product code C' ® C’, is allowed to query the received word w at every coordinate of C' ® C’,
and must produce a guess for ¢; j, the codeword value indexed by (3, j).

To this end, the local correction algorithm A for C'® C” first runs the local correction algorithm A’
for C" on input j € [n/], let J = {j1,...,4m} C [n'] be the set of query locations for m := by - Q'.
Next for each query location j, € J, the algorithm A obtains a guess for the symbol at position
(4, jr) by running the local correction algorithm A for C' on input ¢ with oracle access to the column
jr. Let v, be the guess for the symbol at position (7, j,) produced by A. At this point we have
candidate symbols (v1,...,v,,) for all positions in {i} x J. Finally, the algorithm A responds with
the output of A’ on query locations ji, ..., j, and values v1,...,v,. The formal description of the
local correction algorithm A is given in Algorithm 2.

Algorithm 2 The local correction algorithm A for C' ® C'.
function A((i, ) € [n] x [n/])
> A receives oracle access to a matrix w € F™*",
Run the local correction algorithm A’ for C’ on input j, let J = {j1,...,jm} C [n'] be the
query locations for m = by - Q.
for r=1,...,m do
Run the local correction algorithm A for C' on input ¢ and oracle access to the j.-th
column w’[n]x{jr} .
Let v, < A(37).
> v, is a candidate for the symbol at position (i, j,) € [n] x [n/].

end for

> At this point, we have candidate symbols (v, ..., v,,) for every position in {i} x J.
Let v be the output of A’ on query locations ji,...,J, and values vy, ..., Up.
Return: v

end function

The algorithm A invokes the algorithm A’ once, followed by m = O(Q’) invocations of the algorithm
A. Thus, the query complexity of A is

O(Q) +m-0(Q 1ogQ") = Q- 0(Q'log Q'),
and the running time is
OT)Y+m-0O(T-logQ)=0(T)+T-0(Q" log Q") =T - O(T" log T").

(In the above, we used that query complexity is always at most time complexity, hence Q' < T".)
As for correctness, recall that by assumption the received word w is (« - o’)-close to the codeword
c € C®C'. Letus call a column “good” if w and ¢ are a-close on this column, and note that
by Markov’s inequality, at least (1 — o')-fraction of the columns are good. Furthermore, by our
assumptions on each good column the local correction algorithm A for C' succeeds with probability

25



at least 1 — %, and so by union bound, with probability at least 5/6 the values (v1,...,v,) will
be computed correctly on each good column. Conditioned on this, the local correction algorithm
A’ for C' computes v correctly with probability at least 5/6, so the total success probability is 2/3.

O]

4.1.2 Tolerant local testing of high-rate tensor codes — proof of Lemma 4.4

The proof of Lemma 4.4 relies on the following robust local testing procedure for high-rate tensor
codes from [Vid15] which is a local testing procedure with the property that local view on words
far from the code is far on average from an accepting view.

Theorem 4.7 (Robust local testing of high-rate tensor codes, [Vid15, Theorem 3.1]). Suppose that
C C F"™ is a linear code of relative distance d, and t > 3. Then for any w € F™', the expected
relative distance of w from C®? on a random axis-parallel plane is at least 601 - dist(w, C®).

Proof of Lemma 4.4. Say we are given a string w € F"" and we need to test if it is close to a
codeword of C®. Let 7 > §°®) be some threshold parameter to be chosen later. The test is to
choose a random axis-parallel plane P in F"" and find if there is a codeword ¢ € C®2 which is
T-close to w|p. If yes, then accept, else reject. Clearly this test makes only n? queries. Also, by
applying Corollary 2.16 to the code C®2 when 7 < (§/2)? this can be implemented in O(T - n)
time.

To show completeness, let w € F"" be some string which is a-close to a codeword ¢ € C®! for
a > 6°®) to be chosen later. Since individual points on a random axis-parallel plane are uniform
over F”t, by Markov inequality, the probability that w|p is 7-far from ¢|p € C®? is at most a/7.
So the probability that the test rejects w is at most py := a/7.

To show soundness, let w € F™ be some string which is (§/2)!-far from any codeword ¢ € C®'.

Then by Theorem 4.7, the expected relative distance of w|p from C%? is at least §°® . Thus the

probability that the test rejects w is at least p; := 501“_);7.

Next observe that we can choose 7 > 690 and o > 501 sufficiently small so that py < p;. Finally
to get the acceptance and rejection probabilities to 2/3 as in the definition of tolerant locally
testable codes, we repeat the above local test 621 times and accept a string if it is accepted in at
least P O’QLP L_fraction of the tests. By Chernoff bound, the new test will have the required soundness
and completeness. ]

4.2 Capacity-achieving locally list recoverable codes

In this section we prove the following lemma which shows the existence of capacity-achieving locally
list recoverable codes. An analogous lemma was proven in [HRW17b, Lemma 5.3], however only
for local decoding message coordinates, and without the soundness property. The fact that we are
able to locally correct codeword coordinates, as well as guarantee the soundness property, will be
crucial for our GV bound local correction application.

Lemma 4.8. For any constants p € [0,1], v > 0, € > 0, and £ > 1 there ezists an infinite family
of codes {Cn} N that satisfy the following.
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o Cy is an Fa-linear code of block length N and alphabet size N°O.
o Cn has rate p and relative distance at least 1 — p — 7.

o Cy is (No(l), 1—p—n,e,¥, No(l))-locally list recoverable with preprocessing and running time
No(l).

e Cy is encodable in time N1to(l),

As in the proof of Lemma 3.10, we first use Lemma 4.1 to obtain high-rate locally list recoverable
codes, and then use the Alon-Edmonds-Luby (AEL) distance amplification method [AEL95, AL96]
to turn these codes into capacity-achieving locally list recoverable codes. However, this time we
shall use the following version of the AEL method for local list recovery from [GKO™18].

Lemma 4.9 (Distance amplification for local list recovery, [GKO™ 18], Lemma 5.4.). There ezists
an absolute constant by such that the following holds for any §,a,y > 0 and t > (§ - o - ).

Suppose that C' C (3P is an outer code of rate 1 —~ and relative distance § that is (Q,«, e, ¢, L)-
locally list recoverable, and C' C ¥t is an inner code of rate p and relative distance 1 — p — v that
is (1 —p—, ', £)-globally list recoverable. Then there exists a code Capr, C (XY™ of rate p— and
relative distance 1 — p — 2+ that is (Q - poly(t),1 — p — 2, e, ¢, L)-locally list recoverable.

Moreover,

o If the local list recovery algorithm for C has preprocessing time Tpre and running time T', and
C' can be globally list recovered in time T', then the local list recovery algorithm for Cagr
has preprocessing time Tpre + Q - (T + poly(t,logn)) and running time T + @ - poly(t) - (T +
poly(logn)).
e If C,C" have encoding times T,T', respectively, then Cagr, has encoding time T + n - (T' +
poly(t,logn)).
e If C,C'" are F-linear then so is Cxpr.
To apply Lemma 4.1, we shall also need a high-rate base code that is both globally list recoverable
and locally correctable. We obtain such a code by intersecting the high-rate globally list recoverable
codes given by Theorem 2.7 with the high-rate locally correctable codes given by the following
lemma.

Lemma 4.10 (High-rate locally correctable codes). For any -, > 0, and integer N where q := NP
is a prime power, there exists a code C that satisfies the following.

o Uy is an Fy-linear code of block length N and alphabet size NOBA=OWD,

e Cn has rate 1 — v and relative distance Q(v - f3).

o Oy is (NP - (vB)=O0W/B) Q(y - B))-locally correctable in time NP - (y3)~C1/8).
e Cn is encodable in time poly(N).

We prove the above lemma in Section 4.2.1, based on the high-rate locally correctable codes of
[KSY14]. Next we prove Lemma 4.8, based on Lemmas 4.1, 4.9, and 4.10.

Proof of Lemma 4.8. The proof is similar to that of Lemma 3.10, with the main difference being
that now we also need to take care that the base code will also be locally correctable. Specifically,
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we shall first apply Lemma 4.1 on a suitable high-rate base code C that is both globally list
recoverable and locally correctable to obtain a high-rate locally list recoverable code C’, and then
use the transformation given by Lemma 4.9 to obtain a capacity-achieving locally list recoverable
code C".

Base code C':  The code C will be the intersection of the efficient high-rate globally list recoverable
code given by Theorem 2.7 with the high-rate locally correctable code given by Lemma 4.10, in an
appropriate setting of parameters.

Specifically, let g := ( where the o(1) term in the exponent is a sufficiently slowly

Togtog o (
decreasing function of N, i.e., § is a function that is slightly larger than 1/loglog N, e.g., %),
and we choose the block length of C' to be N®, and the rate to be 1 — y3/4. The code C will be
constructed in turn as D; N Dy, where D; is the high-rate globally list recoverable code given by
Theorem 2.7, and Ds is obtained using the high-rate locally correctable code given by Lemma 4.10,
and both codes D1, Do have block length NP and rate 1 — ~vB/8. Details follow.

The code D;: Let £/ > 1 be a constant to be chosen later on, and let Dy be the linear code guaran-
teed by Theorem 2.7 of block length N?, rate 1 —+3/8, and relative distance (loglog N)~°() | that is
((loglog N)=°M) ¢’ exp exp((loglog N)°M))-globally list recoverable. Note that such a code exists
provided that the alphabet size is sufficiently large even power of a prime ¢ := exp((loglog N)°()).

The code Dy: The code Dy will be constructed in turn as the concatenation of the high-rate
locally correctable code D) given by Lemma 4.10 with an efficiently encodable and decodable linear
code DY obtained using Fact 2.3. The purpose of the concatenation is to reduce the alphabet size
of D), to that of Dy, as well as make the code D, linear.

We first describe the code D). Suppose that N A is a power of ¢ (which holds for infinite number
of N’s). Lemma 4.10 guarantees the existence of an F,-linear code D} of length N” - (1 — v3/16),
alphabet size ¢® for a = (log N)'T°(M) | rate 1 — v3/16, and relative distance (loglog N)~°(1), that
is (N9 (loglog N)~°M)-locally correctable.

Next we describe the code DJ. The code DJ will be an efficiently encodable and decodable linear

code of length ﬁ%/w - a, alphabet size ¢, rate 1 — v3/16, and relative distance (loglog N)_"(l).

The code D} can be obtained in turn by taking the Reed-Solomon code from Fact 2.3 of length

izgﬁé * Togleg - alphabet size ¢'°e1°8 N (noting that ¢'°81°e N > log? N > a), rate %, and

relative distance (loglog N )_0(1), and concatenating it with another Reed-Solomon code of length
-loglog N, alphabet size ¢, rate 1 — v3/32, and relative distance (loglog N)=°(),

1
1-vB/32

Finally, by concatenating D), with D} we obtain a linear code Dy of length N? alphabet size ¢ =
exp((loglog N)°M), rate 1—~3/8, and relative distance (loglog N)~°1), that is (NO(ﬁQ), (loglog N)~°(M))-
locally correctable.

We conclude that C' := D;NDs is a linear code of block length N?, alphabet size exp((loglog Ny,
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rate 1—v/3/4, and relative distance (loglog N)~°() that is ((loglog N)~°M, ¢’ exp exp((loglog N)°M))-
globally list recoverable, and (N©*)_ (loglog N)~°M)-locally correctable.

High-rate locally list recoverable code C’: Let C’ be the code obtained by raising C' to a ten-
sor power of 1/8 = (loglog N)°"). Then C’ has block length N, alphabet size exp((loglog N)°M),
rate at least 1 — /4, and relative distance exp(—(loglog N)°(")). Furthermore, by Lemma 4.1, it
is (N°M) exp(—(loglog N)°M), ¢, ¢’ N°M)-locally list recoverable.

Capacity-achieving locally list recoverable code C”: Let C” be the code obtained by ap-
plying Lemma 4.9 with the outer code being the code C’ constructed so far, and the inner code
being a capacity-achieving globally list recoverable code D” of rate p + v/4 and relative distance
at least 1 — p — /2.

Corollaries 2.2 and 2.6 guarantee the existence of a code D" as above that is (1—p—~/2, ¢, ¢')-globally
list recoverable for some constant ¢/, provided that the alphabet size is a sufficiently large constant
prime power, and the block length is sufficiently large. To satisfy the conditions of Lemma 4.9, we
further require that the block length of D" is sufficiently large exp((loglog N )0(1)), and that the
alphabet size of C" is exp exp((loglog N)°))—the size of D”—which can be achieved by grouping
together consecutive symbols of C”.

Lemma 4.9 then implies that C” is a code of block length N, alphabet size N°()| rate p, and
relative distance 1 — p — «, that is (N"(l), 1—p—,¢¢, No(l))—locally list recoverable.

Finally, it can be verified that running times are as claimed (using brute-force encoding and de-
coding of inner code D”), and that all codes in the process can be taken to be Fa-linear, and
all transformations preserve Fo-linearity, so the final code can be guaranteed to be [Fa-linear as
well. .

4.2.1 High-rate locally correctable codes — proof of Lemma 4.10

Lemma 4.10 is a consequence of the following theorem from [KSY14], summarizing the parameters
of multiplicity codes.
Theorem 4.11 (Multiplicity codes, [KSY14], Lemmas 3.5 and 3.6, and [Kopl4]). The following

. : d+6-
holds for any integers s,d, m, and for any prime power ¢ > max{10 - m, =>*,12- (s +1)}. There

exists an Fy-linear code C of block length ¢, alphabet size q(m+£71), relative distance at least
- d 2 .

6 :==1— 5, and rate at least (1 - %) (1 =)™, that is (O(s™ - q),d/10)-locally correctable.
Moreover, C' can be locally corrected in time O(q/0™), and encoded in time poly (qm, (mtz_l))
Proof of Lemma 4.10. We set the code Cp to be the code given by Theorem 4.11 with the following
parameters. We choose ¢ := NP to be the field size (which exists whenever ¢ is a prime power),
and choose m = 1/8. Note that indeed ¢ = N. We choose s = 2m?/vy, § = ~/(2m), and
d=s-q-(1-9).
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The alphabet size of the code is

m—+4s—1

q( m ) < NBmEs)™ < N (r8)O0/P)

)

the relative distance is at least § > Q(v - 8), and the rate is at least

(1-5)-0-0m= (=) (- 50)">1-0

Furthermore, C is locally correctable from Q(~)-fraction of errors with query complexity
O(s™ - q) < NP - (y8)91/7),

as required.

Finally, it can be verified that running times are as required. O

4.3 Local correction up to the GV bound

In this section we prove the following lemma which implies Corollary 1.6 from the introduction.
Lemma 4.12. For any constants p € [0,0.02] and v > 0 there exists an infinite family of binary
linear codes {Cn}n, where Cn has block length N and rate p, and is locally correctable from

—1 _ _
M—fmction of errors with query complexity N°W.

Furthermore,
e The local correction algorithm for Cx runs in time N°) .

o There exists a randomized algorithm which, on input N, runs in time N 1+o(1) gnd outputs with
high probability a description of a code Cy with the properties above. Given the description,
the code Cn can be encoded deterministically in time N0,

Similar to Lemma 3.13, the proof of the above lemma relies on the random concatenation Lemma
3.15, as well as the following lemma that is an analogue of Lemma 3.16 for the setting of local list
recovery.

Lemma 4.13 (Concatenation for local list recovery). Suppose that C' C (79" is (Q, a,e,(, L)-
locally list recoverable, and Ceon C B is a code obtained from C by applying a code C C Xt of
rate p' on each coordinate i € [n] of C. Suppose furthermore that at least (1 — ~)-fraction of the
codes C9 are (o/, 0, 0)-globally list recoverable. Then Ceon is (Q - t, (a —7) - &, &, ¢, L)-locally list
recoverable.

Moreover, if the local list recovery algorithm for C has preprocessing time Tye and running time
T, and each C9 can be globally list recovered in time T', then the local list recovery algorithm for
Ceon has preprocessing time Tyre + @ - T' and running time T + Q - T".

We prove the above lemma in Section 4.3.1. Finally, we shall also use the following lemma which
shows that a locally list decodable code (satisfying the soundness property) is also locally cor-
rectable.
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Lemma 4.14. Suppose that C C X" is a code of relative distance § that is (Q, «, 0.1, L)-locally list

decodable for o < 6/2. Then C is ( (Q-L- (61/°2g Z) ) )—locally correctable.

Moreover, if the local list decoding algorithm has preprocessing time Tyre and running time T', then

the local correction algorithm runs in time Thre + O (T -L- (;;)zgiig)g)

Proof. We first run the local list decoding algorithm, and then choose a local corrector from the
output list that is sufficiently close to the received word (which can be checked via sampling).

Specifically, let A be the local list decoding algorithm for C', by Remark 2.11 we may assume that
both the completeness and soundness properties of A hold with success probability 1 — 10 instead
of g at the cost of increasing the query complexity and running time by a multlphcatlve factor of

O(logn).

On oracle access to w € ¥" and input coordinate ¢ € [n], the local correction algorithm A, for
C first runs the local list decoding algorithm A for C, let Aj,..., Ar be the local algorithms in
the output list of A. Then for each j = 1,..., L, the algorithm A, runs A; on a random subset

8 € [n] of O (57
the decoded values differ from the corresponding values of w. Finally, the algorithm Agq finds
some A; for which §; < 6/2 (if such A; exists), and uses A; to locally correct the input coordinate
1. Clearly, the query complexity and running time of Acor are as claimed. Next we show that Acorr
satisfies the required local correction guarantee.

)2> coordinates, and computes the fraction §; of coordinates in S; on which

Let ¢ € C be the (unique) codeword which satisfies that dist(w, c¢) < a. We shall show below that
with probability 0.9 — o(1), there exists some A; that computes ¢ and satisfies that §; < /2, and
on the other hand, with probability 0.9 — o(1), any A; which does not compute c satisfies that
d; > 6/2. This will imply in turn that the algorithm Aco will succeed in decoding the input

coordinate correctly with probability 0.8 — o(1) > % as required.

We first show that with probability 0.9 — o(1), there exists some A; that computes ¢ and satisfies
that 6; < 6/2. To see this note that by the completeness property of A, and since dist(w, c) < a,
with probability at least 0.9 over the randomness of A there exists some A; that computes c. In
this case, by union bound with probability 1 — o(1) it holds that each decoded coordinate of A; in
S; equals to the corresponding coordinate in c. Furthermore, by Chernoff bound with probability
1 —o(1) it holds that w and c differ on S; by at most g—fraction of the coordinates. Consequently,
with probability 0.9 — o(1) it holds that §; < 6/2.

Next we show that with probability 0.9 — o(1), any A; which does not compute c satisfies that
d; > 6/2. For this note that by the soundness property of A, with probability at least 0.9 over
the randomness of A, any such A; computes some codeword ¢ € C'\ {c}. As above, by union
bound with probability 1 —o(1) it holds that for any such A;, each decoded coordinate of A; in S;
equals to the corresponding coordinate in ¢’. On the other hand, since C' has relative distance §
and dist(w, ¢) < «, we have that dist(w,c) > § —a =§/2+ (§/2 — a), and so by Chernoff bound
with probability 1 —o(1) for any such A; it holds that w and ¢ differ on S; by more than %—fraction
of the coordinates. Consequently, with probability 0.9 — o(1) it holds that ¢; > §/2 for any such
Aj.

O]
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Next we prove Lemma 4.12, based on the above lemma and Lemmas 4.8, 3.15, and 4.13.

Proof of Lemma 4.12. The proof is similar to that of Lemma 3.13. As in Lemma 3.13, we apply
random concatenation on the capacity-achieving locally list recoverable code C' given by Lemma
4.8. By Lemma 3.15, the resulting code C' will approach the Gilbert-Varshamov bound with
high probability, while by Lemma 4.13, the code C will also be locally list recoverable (and in
particular, locally list decodable) with high probability. Lemma 4.14 then implies that whenever
the list decoding radius exceeds the desired local correction radius, then the code C' can also be
locally corrected from this radius. Details follow.

The code C: As in Lemma 3.13, let by be the absolute constant guaranteed by Lemma 3.15,
and apply Lemma 4.8 with rate pg := W’ proximity parameter o := 72/(4bp), and input
list size £y := 2'/7. Lemma 4.8 then guarantees, for infinite number of N’s, the existence of an
Fy-linear code C' of block length IV, alphabet size NV 0(1), rate pg, and relative distance 1 — pg — 7o,

that is (No(l), 1— po—,0.1, 4y, No(l))—locally list recoverable.

The code C: Let C C IF%N be a binary linear code obtained from C by applying a random linear
code C) C Y of rate p’ := 6~ (p + v/4) on each coordinate i € [n] of C independently. Then
the code C has rate p, and by Lemma 3.15 it also has relative distance at least Hy Y1 —p)—~/2
with probability 1 — exp(—N). Moreover, by Theorem 2.4, each C) is (H;l(l —p —7),2Y7)-
list decodable with probability 1 — o(1), so with probability 1 — exp(—N) this property holds for
at least (1 — ~2/(4bg))-fraction of the C(V’s. Lemma 4.13 implies in turn that the code C is
(No(l), @,0.1, No(l))—locally list decodable for

a=(1—po—~°/(2b0)) - Hy'(1—p' — ).

Local correction: Next assume that the local list decoding radius & exceeds the desired local
correction radius, i.e.,

Hy'(1-p)—~

(1—po—~*/(2b0)) - Hy'(1 = p' =) > 5 :

(4)

where pg := m and p’' := 0~1(p + v/4). It was shown in [Rud07, Section 4.4] that this is

indeed the case whenever p < 0.02 and « is a sufficiently small constant.

~ —1
Assuming that (4) holds, Lemma 4.14 implies that C'is locally correctable from M—ﬁaction
of errors with query complexity N°().

Finally, it can also be verified that running times are as claimed (using brute-force encoding and
decoding of inner codes C'¥). t
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4.3.1 Concatenation for local list recovery — proof of Lemma 4.13

Proof of Lemma 4.13. The local list recovery algorithm A for Con will run the local list recovery
algorithm A for C, and answer the queries of A by globally list recovering the C?’s corresponding
to the queries of A.

In more detail, on oracle access to a string of input lists S € (?) tn, the local list recovery algorithm
A for Crcon runs the local list recovery algorithm A for C, and whenever A asks for some coordinate
i € [n], the algorithm A globally list recovers the i-th block of S of length ¢ from «’'-fraction of
errors, and feeds the messages corresponding to the first £ codewords in the output list as an answer
to the query of A. Let Ay,..., Ar be the resulting output local algorithms of A. Then A outputs
L local algorithms Ay, ..., A; where each algorithm flj is defined as follows.

To locally correct the r-th coordinate in the k-th block of Ceoy, of length ¢ (that is, a coordinate of
the form (k —1)-t+47 € [tn] where 1 <k <n and 1 <7 < t), the algorithm A; runs the algorithm
A; on input coordinate k. As above, whenever A; asks for some coordinate i € [n], the algorithm
flj globally list recovers the i-th block of S of length ¢ from o/-fraction of errors, and feeds the
messages corresponding to the first ¢ codewords in the output list as an answer to the query of
Aj. Let 0 € ¥t be the output symbol of Aj. Then the algorithm flj outputs the r-th symbol of

k(o) € Bt

Clearly, query complexity, output list size, and running times of A are as claimed. The soundness
of A follows from the soundness of A: with probability 1 — € over the random choices of A, the
local algorithms Ay, ..., Ay are implicitly computing codewords ci,...,cr € C. In this favorable
event, the local algorithms 1211, el Aj are implicitly computing the codewords ¢1,...,¢r € Ceon,
where each ¢; is obtained from c; by the concatenation.

To see that the completeness property holds as well note that if dist(¢,5) < (a—7) - o/ for some
¢ € Ceon, then by Markov’s inequality for at most an (o —~)-fraction of i € [n] it holds that the i-th
block of S of length ¢ is inconsistent with the i-th block of ¢ of length ¢ by more than an o/-fraction
of the coordinates. Moreover, since at least a (1 — )-fraction of the codes C®) are (o, ¢, )-list
recoverable, list recovery of the C(V’s fails on at most an a-fraction of the blocks. Completeness
then follows since C' is locally list recoverable from an a-fraction of errors. O

5 Combinatorial lower bound on output list size

In this section, we first provide a combinatorial lower bound on the output list size for list recovering
a high-rate tensor product C®?, even in the noiseless setting. In particular, we show that the output
list size must be doubly-exponential in . From this, we are able to deduce certain corollaries
demonstrating that our algorithms nearly achieve optimal parameters.

Recall that given vectors v; € F" vy € F™2, ... vy € F™ their tensor product v; ® v9 ® - -+ ® vy is
the t-dimensional box whose value in the (i1, 2, ...,4) € [n1] X [ng] X - -+ X [n¢] coordinate is given
by the product
(v1 R+ 'Ut)il,ig,...,it = (01)11 : (U2)i2 T (Ut)z't .
T

For the special case of t = 2, the tensor product « ® v can be thought of as the outer product uv" .
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We also record the following standard fact regarding tensor products.
Fact 5.1. Let uy,...,u, € F™ andvy,..., v, € F" be sets of linearly independent vectors. Then
the collection {u; @ vj | i € [t1],j € [t2]} is linearly independent in F™1>"2.

For completeness, we provide the brief proof.

Proof. Suppose «;; € F are such that Ziew j€lta]
all i € [t1], j € [ta]. Viewing u; ® v; as the outer products uiv]T we find that for all £ € [n;] and
le [ng],

D> i) =0

i€[t1] j€(to]

a; ju; @ v; = 0; we wish to show «a; ; = 0 for

Thus, for all k € [n;], we find

Z Z ozi,j(ui)k Uj =0.

Jj€E[t2] \i€[t1]
As vy,..., v, are linearly independent, this implies that for all j € [t2] and k € [n4],
Z ai,j(ui)k = O
i€[t1)

which is the same as saying that for all j € [ta],
Z Q; jU; = 0.
1€[t1]

As uq,...,uy, are linearly indpendent, we find a; ; = 0 for all 7 € [t;] and j € [ta]. O

5.1 Output list size for list recovering high-rate tensor codes

In this section we prove Theorem 1.7 from the introduction, which we restate here for convenience.
Theorem 1.7 (Output list size for list recovering high-rate tensor codes). Suppose that C C F™ is
a linear code of rate 1 — v, and that C®" C F™' s (0,4, L)-list recoverable. Then L > o

To prove this theorem, we first prove the following proposition. Informally speaking, we iteratively
apply the Singleton bound to conclude that linear codes of rate 1 —« contain about 1/ codewords
with pairwise disjoint supports. Recall that, for a vector v € ™, the support of v is Supp(v) = {i €

[n] | vi # 0}
Proposition 5.2. Let C C F" be a subspace of dimension k, and let r be a positive integer. Suppose
that

(1-3) n+1<k. (5)

Then there exist non-zero vectors ci,...,c, € C' such that for all i # j, Supp(c;) N Supp(c;) = 0.
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Proof. Let m :=n — k + 1, and note that Condition (5) is equivalent to
(r—=1m<k-—1.

Take a basis for C of the form (e1,u1),..., (ex,ux), where e; € FF is the ith standard basis vector,
and ug,...,u, € F* % are vectors. For j =1,...,r — 1, we can find a nontrivial linear combination
of the vectors u(;_1).m41,- -, Uj.m summing to zero, as they are a (multi-)set of m =n —k+1
vectors lying in F"~%. Taking this linear combination of (EG—1)m41s U(G—1)mt1)s - - - » (€oms Ujom),
we obtain a nonzero vector whose support is contained in the interval {(j — 1) -m+1,...,j-m};
denote this vector by ¢;. In this manner, we obtain r — 1 nonzero vectors ci,...,c,—1 € C with
pairwise disjoint support. Finally, we may add the vector ¢, := (ex, uy) to this collection, yielding
r vectors, as desired. ]

Next we prove Theorem 1.7, based on the above proposition.

Proof of Theorem 1.7. Let r := 1/, and recall wish to come up with ¢ codewords in C® that
are contained in the output list for appropriately chosen input lists.

In order to accomplish this, we first use Proposition 5.2 to obtain a subset C’ C C' of r nonzero
codewords with pairwise disjoint support. We then consider the subset C” C C®! containing all
tensor products ¢; ® ca ® -+ ® ¢; of ¢ (not necessarily distinct) codewords ¢1,...,¢ € C’, and
our main observation is that all these r! tensor products are also nonzero with pairwise disjoint
support. Finally, we let B C F be an arbitrary subset of size ¢, and consider the subset C C C'®?
containing all linear combinations of codewords in C” with coefficients in B. Since all codewords
in C" are nonzero with pairwise disjoint support, they are in particular linearly independent, so
the set C' contains ¢ distinct codewords in C®t.

Moreover, since codewords in C” have pairwise disjoint support, for each coordinate (iy,...,i) €
[n]t, there is at most one codeword ¢ € C” for which Ci,...i; is nonzero. Therefore this is the only
term which can contribute nontrivially to the value in the (i1,...,4) coordinate of a codeword in
C. So we can let the corresponding input list Si1,...i; contain all £ multiples of ¢;, .. ;, by elements
in B. Details follow.

The set C’. Since C has rate 1 — ~, it has dimension k& = (1 — v)n, and so Proposition 5.2
guarantees the existence of a subset C’ C C of r = 1/ nonzero codewords with pairwise disjoint
support.

The set C”. Next we let
C"={a1®cu® - Qc¢|a,c,....,c.€C'}

be the subset of C®! containing all tensor products of ¢ (not necessarily distinct) codewords in C’.
Since all codewords in C’ are nonzero, their t-wise tensor products are nonzero as well.

To see that all codewords in C” have pairwise disjoint support, suppose that c = ;@2 ®... Q¢ €
C”, and (iy,42,...,it) € Supp(c). Then

0 # Ciyig,ie = (€1)iy - (€2)iy -+ ()i
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so we must have that (c1)i,, (¢2)iy, - - -, (¢t)i, are all nonzero. We conclude that

Supp(c) € Supp(c1) x Supp(cz) x - -+ x Supp(ct).

Now, suppose that c=c¢1 ®...®ct, ¢ = ¢} ® ... ® ¢, are a pair of codewords in C” with ¢; # ¢
for some j € [t]. Since all codewords in C’ have pairwise disjoint support it must hold that
Supp(c;) N Supp(c;) = 0, and we conclude that Supp(c) N Supp(c’) = 0.

The set C. Now, let B C F be an arbitrary subset of size ¢, and let

ézz{ D Bec

ceC”

8. € Bfor all c € C’"}

be the subset of C®! containing all linear combinations of codewords in C” with coefficients in B.
Since all codewords in C” are nonzero with pairwise disjoint support, they are in particular linearly
independent in F"t,8 so the set C' contains ¢ distinct codewords in C®?.

Input lists. Finally, we wish to define input lists S;, . ;, for any coordinate (i1,...,i:) € [n]" so
that for any codeword ¢ € C, and for any coordinate (i1, ...,7) € [n]’, it holds that ¢;, i, € Siy. ;-

To this end, we observe that since codewords in C” have pairwise disjoint support, for each coordi-
nate (i1, ...,i) € [n]’, there is at most one codeword ¢ € C” for which ¢;, _;, is nonzero. Therefore
this is the only term which can contribute nontrivially to the value in the (i,...,4;) coordinate of
a codeword in C. So we can define the corresponding input list Sii, iy @S

Sivyie =48 ¢iy,...it | B € B}

if such a codeword c exists, and as S;, . ;, = {0} otherwise. Note that each set S;, _;, has size at
most £, and that they satisfy the required property.

This yields a set of ¢ codewords from C® that are contained in the output list for the input list
tuple S defined above, proving the theorem. O

5.2 Concrete lower bound on output list size

In this section, we demonstrate a setting of parameters that yields Proposition 1.8 from the intro-
duction, restated below.

Proposition 1.8. For any d > 0 and £ > 1 there exists L > 1 such that the following holds for any
sufficiently large n. There exists a linear code C C F" of relative distance 6 that is ((6), ¢, L)-list
recoverable, but C®t C F™ s only (0, £, L')-list recoverable for L' > exp((26)~(*=3/2). \/log L).

We use the following result on the list-recoverability of random linear codes from [RW18].

8This also follows from the fact that all codewords in C" are linearly independent together with Fact 5.1.
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Theorem 5.1 ([RW18], Corollary 3.3). There exists an absolute constant by so that the following
holds. For any v > 0, £ > 1, and a prime power ¢ > %/, a random linear code C' C Fy of rate
11—~ is (), ¥, L)-list recoverable for

(080)/~ 2
= (5) e (%)
v v

Proof of Proposition 1.8. Let C' C Fy be the linear code given by Theorem 5.1 of rate 1 — 20
and ¢ = (90/%) that is (Q(6), ¢, L)-list recoverable for L = exp((log?¥)/8%), or equivalently, ¢ =
exp(83/2 - \/log L). By Corollary 2.2, we may further assume that the code C has relative distance
at least . Now, by Theorem 1.7 we have that L' > £(20)™" = exp((26)~(=3/2) . \/log L). O

with probability 1 — exp(—n).

5.3 Lower bound for local list recovering

We now prove Proposition 1.9 from the introduction, restated below.

Proposition 1.9. For any § > 0 and sufficiently large n there exists a linear code C C F" of
relative distance & such that the following holds. Suppose that C® C FN s (%,2,L)—local1y list
recoverable with query complezity Q. Then Q - L > N%(1/loglogN) 9

We first recall Lemma 4.14 (restated below in a shorter form) which says that a locally list decodable
(and in particular locally list recoverable) code with output list size L and query complexity @ is
also locally correctable with query complexity roughly @ - L.

Lemma 5.3. Suppose that C C X" is a code of relative distance § that is (Q, «, 0.1, L)-locally list

decodable for o < §/2. Then C' is (O(Q L %),a) -locally correctable.

So to prove Proposition 1.9, it is enough to show a lower bound on the query complexity for local
correcting C®!, assuming that the output list for list recovering C®? is small. To show such a lower
bound, we first observe that for any linear code C, the (absolute) distance of C* is a lower bound
on the query complexity for local correcting C.

Lemma 5.4. Suppose that C C F™ is a linear code that is (Q, %)—locally correctable. Then Q >
A(CH) —2.

We prove the above lemma in Section 5.3.1. To apply this lemma to C®* we further observe that
the tensor product preserves the dual distance of the base code.

Lemma 5.5. Suppose that C; C F™, Cy C F™ are linear codes, and that Cf, Cj have distances
A1, Ao, respectively. Then (C1 ® Cz)* has distance min{A1, As}. In particular, if C C F" is a
linear code, and C+ has distance A, then (C®*)* has distance A for any t > 1.

We prove the above lemma in Section 5.3.2. We now proceed to the proof of Corollary 1.9.

Proof of Proposition 1.9. Let C' C F" be a random linear code of rate 1 — 2§. By Corollary 2.2, for
sufficiently large field size, the code C will have relative distance at least § with high probability.

9Here and throughout, subscripts in asympotic notation indicate that the implied constant may depend on the
subscripted variable(s).

37



Moreover, since C- has rate 26, by the same corollary we also have that C- has relative distance
at least 1 — 36 with high probability (note that C* is also a random linear code). We conclude for
any sufficiently large n the existence of a linear code C' C F™ of rate 1 — 26 and relative distance at
least & such that C has relative distance at least 1 — 3.

Next observe that for the code C®* to be ( ,%, 0.1,2, L)-locally list recoverable, it in particular
must be (0,2, L)-list recoverable, so the lower bound from Theorem 1.7 implies that L > 21/(20)"
Now, if 21/(20)" > N then we have that Q-L> 21/(20)" > N, and we are done. So we may assume

that 21/(29)" < N which implies in turn that ¢ = Os(loglog N) and n = NVt = N%s(1/loglog N)

Moreover, as we have assumed we have a (Q, %, 0.1,2, L)-local list recovery algorithm for C®? we

also have a (@, %, 0.1, L)-local list decoding algorithm for C®!. Lemma 5.3 then promises that we

have a (O(Q - L - wt/lgg_%), %)—local correction algorithm for C®!. Now, by Lemma 5.5 we have

that (C®*)* has (absolute) distance at least (1 — 35)n, and consequently Lemma 5.4 implies that

2
O(Q L tlog‘NlQ> >(1-30n—2= NQs(1/loglog N)
(6'/2 = )
This implies Q - L > N%(1/loglogN) a5 desired. O

5.3.1 Dual distance is a lower bound on query complexity — proof of Lemma 5.4

First, we recall the standard fact that (absolute) dual distance A implies that the uniform distri-
bution over the code is (A — 1)-wise independent.

Fact 5.6 ([ABISG6]). Suppose that C C Fy! is a linear code, and that C* has (absolute) distance A.
Then for all1 <141 <--- <ig<n withs <A, and all ay,...,as € Fy,

1
chg[cil:al/\-~-/\C¢S:aS]ZE.

In what follows let A := A(CL), and let g denote the alphabet size of C. Now, making use of Yao’s
principle, it suffices to show a distribution D over vectors w at absolute distance at most 1 from
C such that the following holds. For any deterministic algorithm making at most A — 2 queries to
its input w sampled according to D, the probability that it correctly computes ¢ is at most 1/3,
where ¢ is the unique codeword in C at absolute distance at most 1 from w. We will in fact show
that no deterministic query algorithm can correctly compute ¢; with probability greater than 1/q.

Let D denote the distribution that samples ¢ € C' uniformly at random and then sets ¢; = 0. Let
A be a deterministic algorithm making at most A — 2 queries, and let j1,...,js € [n] denote the
queries made by A, where we assume s < A — 2. Note that querying 1 does not help A, as it will
always read 0. Hence, without loss of generality, 1 ¢ {ji,...,Js}.

Now, by Fact 5.6, for any b1, ...,bs,a € Fy,

Prlci =a,cj, =by,...,cj, =b “H)
Pr [e1 = alcj, =b1,...,¢j, =bg] = r[crg 'a’i]l L, : ’ijs 5] _ 4 — ==
ceC rlcj, =0b1,...,¢j, = by q q
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Additionally, observe that the distribution of the tuple (¢j,,...,c;,) is the same if ¢ is a uniformly
random codeword from C' or if it is sampled according to D.

Hence, if we think of the query algorithm as implementing a (deterministic) function g : Fy — F,
from the responses to its queries to its guess for cj, regardless of the responses by, ...,bs to the
queries, we have

P =g(by,...,b L=b1,...,w; =bs] =—

U)GI'Z‘) [Cl g( 1 ) s)|wj1 1 ,U)] 8] q )

where ¢ is the unique codeword in C for which dist(c,w) < 1. That is, the query algorithm will

not be able to guess ¢; with probability greater than 1/q, as claimed.

5.3.2 Tensor product preserves dual distance — proof of Lemma 5.5

First note that we clearly have that A((C; ® Co)*) < min{Aj, As}: for example, the matrix
whose first column is a vector from Cj- of weight A; and all other columns are 0 gives a matrix in
(C1 ® Cy)* of weight Ay, and similarly a matrix in (C; ® Co)* of weight Ay can be constructed.
We now establish the opposite inequality of A((C; ® C)1) > min{Ay, As}.

It is well-known (and not hard to show) that the (absolute) distance of a code C' is the minimum
number of linearly dependent columns in a parity-check matrix for C'. Furthermore, by duality we
have that if G is a generating matrix for C' then G7 is a parity-check matrix for C*+. We conclude
that the distance of C* is the minimum number of linearly dependent rows in a generating matrix
for C.

Let G1, G2 be generating matrices for C1, Cs, respectively, and note that by the above, any collection
of t1 < A1,ts < Ag rows of G1, Go, respectively, are linearly independent. Next recall that G1 ® Go
is a generating matrix for C; ® Cy, and so it suffices to show that for any ¢ < min{A;, As}, any
collection of ¢t rows of G; ® G are linearly independent.

Let uy,us,...,up, and vi,vs,...,v,, denote the rows of G, Ga, respectively, and note that each
row in G ® Gy is of the form u; ® v; for some i € [n4],j € [no]. Fix t < min{A;, Az}, and suppose
that u;;, ® vj, Ui, ® Vjy, ..., u;, ®vj, is a collection of ¢t rows of G; ® G2. Then by the above we
have that both collections w;,, us,,...,u; and vj,,v),,...,v; are linearly independent (ignoring
duplications). Fact 5.1 implies in turn that the collection u;; ® vj,, ui, ® vj,, ..., u;, @ vj;, are also
linearly independent which concludes the proof of the lemma.
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