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This issue This issue features Swastik Kopparty and Shubhangi Saraf’s column, “Local Testing
and Decoding of High-Rate Error-Correcting Codes.” Warmest thanks to the authors for their
fascinating, exciting column!

Future issues And please stay tuned to future issues’ Complexity Theory Columns, for articles
by Neeraj Kayal and Chandan Saha (tentative topic: arithmetic circuit lower bounds); Stephen
Fenner and Thomas Thierauf (tentative topic: related to the STOC 2016 quasi-NC bipartite perfect
matching algorithm of Fenner, Gurjar, and Thierauf); Srinivasan Arunachalam and Ronald de Wolf
(tentative topic: quantum machine learning); and Ryan O’Donnell and John Wright (tentative
topic: learning and testing quantum states).

2016–2017 As this issue reaches you, the 2016–2017 academic year will be starting. For those of
you who are faculty members, I wish you a theorem-filled year, including the treat of working on
research with bright graduate and undergraduate students. For those you who are students (bright
ones, of course—you’re reading this column!), if you are not already working with a faculty member
on research and would like to, don’t be shy! Even if you’re a young undergraduate, it makes a lot
of sense to pop by your favorite theory professor’s office, and let him or her know what has most
interested you so far within theory, if something has (perhaps a nifty article you read by Kopparty
and Saraf?), and that you find theory thrilling, if you do (admit it, you do!), and that you’d love
to be doing theory research as soon as possible and would deeply appreciate any advice as to what
you can do to best make that happen. You may well be surprised at the happiness it brings faculty
to meet with and help students on their paths to research, e.g., even if the faculty member doesn’t
feel that you currently have the right course background for theory research, the faculty member
will probably outline what courses you most need to take and when to take them, and may well



warmly invite you to immediately start attending the local theory group meetings—perhaps even
to read a paper and then present it at such a meeting.

However, especially at schools with large numbers of undergraduate CS majors, you can’t rely
on a professor coming to you and reaching out. The wise thing is to yourself take a deep breath
and be bold and visit a theory faculty member at your school... and with luck start the ball rolling
on what could become a lifelong joyous ride.



Guest Column: Local Testing and Decoding of High-Rate
Error-Correcting Codes1

Swastik Kopparty2 and Shubhangi Saraf 3

Abstract

We survey the state of the art in constructions of locally testable codes, locally decodable
codes and locally correctable codes of high rate.

1 Introduction

This aim of this article is to survey some recent developments surrounding locally testable codes,
locally decodable codes and locally correctable codes of constant rate. “Local” codes, which
are error-correcting codes equipped with “local” algorithms, have a long history of interaction
with complexity theory, with notable applications to interactive proofs, probabilistically-checkable
proofs (PCPs), hardness amplification, private information retrieval, and algebraic complexity the-
ory [LFKN92, Sha90, BFLS91, AS98, ALM+98, CKGS98, STV01]. In the late 1980s and early
1990s as the locality properties of some classical codes were being understood and harnessed for
the first time in some important complexity theory applications, it became clear that a deeper
understanding of locality in codes would be an interesting and fruitful pursuit.

Let Σ be a finite alphabet. A code of length n over the alphabet Σ is simply a subset C of Σn,
and its elements are called codewords. A code C can be used to represent data; letting k = log|Σ| |C|,
one can choose a bijection E : Σk → C (called the encoding map). Then the representation of the
string s ∈ Σk is E(s). The blowup in the size of the representation is measured by the rate R,
defined by R = k/n.

For our purposes, the advantage of using such a representation is to protect data from errors.
We will work with the (relative) Hamming distance on Σn, which is defined by ∆(x, y) = 1

n · |{i ∈
[n] | xi 6= yi}|. The error-correcting ability of a code can be measured by its minimum distance δ,
which is defined by:

δ = min
x,y∈C,x6=y

∆(x, y).
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Given any r ∈ Σn which is promised to be at most ρ-close to some codeword c ∈ C (where ρ < δ/2),
that c is uniquely determined. Finding that c is the algorithmic problem of decoding the code C.
Closely related to this problem is the algorithmic problem of determining if any arbitrary r is within
distance ρ of some codeword c.

In recent years, it has been of great interest to understand what algorithmic problems on codes
can be solved locally. This brings us to the following three key definitions.

1. A code C is called locally testable with q queries if there is a randomized algorithm T , which
when given oracle access to r ∈ Σn, makes at most q queries to r, and has the following
behavior4:

• If r ∈ C, then Pr[T accepts] = 1,

• Pr[T rejects] ≥ 1
4 ·∆(r, C).

2. A code C is called locally correctable from ρ-fraction errors with q queries if there is a ran-
domized algorithm D, which when given oracle access to r ∈ Σn such that ∆(r, c) < ρ for
c ∈ C, and given i ∈ [n], makes at most q queries to r and has the following behavior:

• Pr[D outputs ci] ≥ 0.9.

3. A code C along with an encoding map E : Σk → C is called locally decodable from ρ-fraction
errors with q queries, if there is a randomized algorithm D, which when given oracle access
to r ∈ Σn such that ∆(r, E(s)) < ρ for s ∈ Σk, and given j ∈ [k], makes at most q queries to
r and has the following behavior:

• Pr[D outputs sj ] ≥ 0.9.

The difference between LDCs (locally decodable codes) and LCCs (locally correctable codes) is
that an LDC allows recovery of a coordinate of the original data s, while an LCC allows recovery
of a coordinate of the original codeword c. Informally, we will call a code which is either locally
testable, locally decodable or locally correctable with o(k) queries a “local” code.

The most basic example of a local code is the Hadamard code. Here Σ = F2 (the field of 2
elements) and n = 2k. The n coordinates are indexed by vectors v ∈ Fk2. Given a message s ∈ Fk2,
the v coordinate of the encoding E(s) is given by:

(E(s))i = 〈s, v〉.

Let us quickly see how to locally correct this from 0.01-fraction errors using just 2 queries. Given
r ∈ Σn which is 0.01-close to the codeword c, if we want to recover the v coordinate of c, we
do the following: pick w uniformly at random from Fk2, and output rw + rv+w. We have that
Prw[rw 6= cw] ≤ 0.01 and Prw[rv+w 6= cv+w] ≤ 0.01. Thus with probability at least 0.98, both those
events do not occur, and in that case we have that the output of the algorithm equals:

rw + rv+w = cw + cv+w = 〈s, w〉+ 〈s, v + w〉 = 〈s, v〉 = cv.

4The constant 1/4 in the requirement on the rejection probability was just chosen for concreteness. Given a
code which is locally testable with the 1/4 replaced by ε, one can amplify the rejection probability by independent
repetition O(1/ε) times and make it satisfy the definition with the constant 1/4.



Hadamard codes are also locally testable, via a simple 3-query test: sample v, w ∈ Fk2 uniformly at
random, and check that rv + rw = rv+w. The analysis of this test is quite a bit more difficult than
for local decodability, and we do not prove it here.

The focus of this survey is local codes in the constant rate regime. For a long time, the only
known family of local codes in this regime were constant-variable Reed-Muller codes over large
fields, which are codes based on low degree polynomials. These codes could achieve any constant
rate R < 1/2, constant distance δ, and local testability/correctability with about O(n− log(1/R))
queries, where n is the length of the code. Recently, a number of new constructions of local codes
of constant rate were discovered, based on a variety of different ideas. These codes improved the
rate-distance tradeoffs achievable by LTCs (locally testable codes) and LDCs, while also reducing
the query complexity significantly. Today we know:

• LTCs which can achieve any constant rate R < 1, any constant distance δ < 1−R, and with
query complexity O((log n)O(log logn)),

• LDCS and LCCs which can achieve any constant rate R < 1, any constant distance δ < 1−R,
and with query complexity O(2

√
logn log logn).

On the other hand, it is known that LDCs/LCCs with constant rate require query complexity at
least Ω(log n). For LTCs, there is no lower bound on query complexity known, and for all we know
LTCs with constant rate, constant distance and constant query complexity could exist!

In this survey, will discuss all known local codes in the constant rate regime. Finally, we will
also give one application, to the construction of PCPs for SAT with constant rate.

Remarks:

• Throughout this article, we only construct codes with large alphabets. In all cases the alpha-
bet size can be reduced to binary by the process of code concatenation with negligible loss of
parameters.

• For a code of length n and dimension k, expressing the query complexity in terms of n and k
are essentially equivalent since in the high rate regime n and k are within a constant factor
of each other. We use both in this article.

• We henceforth will not talk about LDCs in this article. All the LCCs we talk about are also
LDCs with the same query complexity for a suitable choice of encoding map.

• All the local testing and local correction algorithms we describe can also be made to run very
efficiently (in particular these are sublinear time algorithms). The running time is always
polynomial in the query complexity.

We will not discuss any of the many significant advances in the subconstant rate regime. For
locally testable codes and PCPs it is known that with just slightly subconstant rate one can have
constant query complexity [Din07, BS08a]. For locally decodable codes, it is known that constant
query complexity can be achieved for codes where n is subexponential in k [Yek08, Efr12, DGY11].
For locally correctable codes, nothing beyond the codes discussed in this survey is known.



2 Reed-Muller Codes

In this section we describe the classical Reed-Muller codes based on multivariate polynomials and
why they are locally testable and locally correctable.

Let q be a prime power, let m = O(1) be a fixed integer, and let δ ∈ (0, 1). Let d = (1−δ)·q. The
Reed-Muller code associated with these parameters is given by the space of functions f : Fmq → Fq
which are computed by polynomials of total degree at most d. By a well-known bound, often called
the Schwartz-Zippel lemma, on the number of zeroes of polynomials in product sets, this code has
distance δ.

When m = 1, these codes are also called Reed-Solomon codes, and they have a number of
wonderful properties. In particular, they achieve the optimal tradeoff between rate R and distance
δ (satisfying R+ δ = 1). Increasing m worsens the tradeoff, with the relationship R = 1

m!(1− δ)
m.

In particular, once m > 1, we must have rate < 1/2. Classically the advantage of increasing m
was that it reduced the alphabet size (as a function of the length of the code). But from our point
of view, a far more important advantage of increasing m is that it endows the code with local
properties.

The emergence of locality in Reed-Muller codes is based on the following simple observation:
the restriction of a degree d multivariate polynomial to a line is a degree d univariate polynomial.
The results here are due to [BFLS91, RS96, FS95].

Local Correction of Reed-Muller codes: Given a received word r : Fmq → Fq such that r
is close in Hamming distance to the codeword corresponding to the polynomial f(X1, . . . , Xm),
the classical local correction algorithm works as follows. Given a coordinate a ∈ Fmq , we want
to recover the “corrected” symbol at coordinate a, namely f(a). The algorithm picks a random
direction b ∈ Fmq and looks at the restriction of r to coordinates in the line L = {a + bt | t ∈ Fq}.
With high probability over the choice of b, r and f will agree on many positions of L. Now f |L is
simply the vector consisting of evaluations of the univariate polynomial Q(T ) = f(a+bT ) ∈ Fq[T ],
which is of degree ≤ d. Thus r|L gives us q “noisy” evaluations of a polynomial Q(T ) of degree
≤ (1− δ) · q; this enables us to recover Q(T ). Evaluating Q(T ) at T = 0 gives us P (a), as desired.
Notice that this decoding algorithm makes q queries, which is O(n1/m).

Local testing of Reed-Muller codes: The local tester for Reed-Muller codes is quite natural
given the above discussion. Given a received word r : Fmq → Fq, one picks a line ` uniformly at
random in Fmq , and tests that the restriction r|` is computed by a degree d univariate polynomial.

To show that this is a local tester, we would at the very least need the following local charac-
terization to hold: a function f : Fmq → Fq is of degree at most d if and only if for every line ` in
Fmq , the restriction f |` is of degree at most d. The only if direction was noted above, and holds for

all d. The if direction turns out to be true, but only for d ≤ (1− 1
p) · q, where p is the characteristic

of Fq. We refer the reader to [FS95] for a proof. In particular, if q is a prime, then the above local
characterization holds for all d < q. At the other extreme, if q = 2`, then the local characterization
holds only when d < q/2 – this seems quite unfortunate, but will be turned to our advantage in a
later section.

Next we describe how how one deduces the local testability of Reed-Muller codes from the local
characterization. The strategy for this proof originated in [BLR93], and it was greatly clarified by
Kaufman and Sudan [KS08].



Given a function r which fails the local test with probability at most η, we want to show that
r is O(q2 · η)-close to some codeword f of the Reed-Muller code. How do we find a codeword
which r is close to? The idea is to define the function f : Fmq → Fq to be the “locally corrected
version” of r as follows. For each x ∈ Fmq , and each line L passing through x, and look at the
univariate polynomial QL,x of degree at most d (if any) which agrees with r|L\{x}, and let yL,x ∈ Fq
be the value of QL,x at the point x (i.e., yL,x is the unique value for r(x) (if any) that makes r|L a
univariate polynomial of degree at most d). Then f(x) is defined to equal the most popular value
of yL,x as L varies over all lines passing through x. Given this definition, one can show that f is
(2η)-close to r. The rest of the proof shows that if η < O( 1

q2
), then for every line L in Fmq , the

univariate function f |L has degree at most d (for a very illuminating proof of this, see [KS08]). By
the local characterization theorem, this means that f is a polynomial of total degree at most d,
and thus r is close to some codeword of the Reed-Muller code, as desired.

Summarizing, we see that Reed-Muller codes of length n are locally testable and locally cor-
rectable with query complexity nO(1/m). Thus for constant m, we get constant rate < 1

m! , constant
distance, and query complexity nβ for any constant β > 0. In particular, we only get locality
properties for rates < 1/2.

See also [RS97, AS03, STV01] for related results.

3 Lifted Reed-Solomon codes

In this section, we describe the Lifted Reed-Solomon codes of [GKS13]. These codes are very closely
related to Reed-Muller codes, and improve on them by achieving rate arbitrarily close to 1 (while
preserving their local testability and local correctability). These codes were discovered as part of a
long and beautiful line of research studying affine-invariant codes, which was initiated in [KS08].

Let q be a prime power, let m = O(1) be a fixed integer, and let δ ∈ (0, 1). Let d = (1−δ)·q. The
Lifted Reed-Solomon code associated with these parameters is the space of all functions f : Fmq → Fq
such that for everly line L = {a + bt : t ∈ Fq}, the restriction f |L (when viewed as a univariate
function from Fq → Fq) agrees with a polynomial of degree at most d.

An immediate observation is that any codeword f of the Reed-Muller code of m-variate polyno-
mials of degree d over Fq is also a codeword of the Lifted Reed-Solomon code. Are there any other
codewords? The local characterization theorem for Reed-Muller codes mentioned in the previous
section shows that when d ≤ (1− 1

p) · q, then there are none; for such d, Lifted Reed-Solomon codes

are precisely the same as Reed-Muller codes. However for d > (1 − 1
p) · q (i.e., for δ < 1/p) there

are more codewords in the Lifted Reed-Solomon code.
By design, Lifted Reed-Solomon codes have rich local structure, and this quite easily implies

their local correctability and local testability. The local correction algorithm is exactly as in the
case of Reed-Muller codes: to recover the value at the point a, one queries a random line L through
a, decodes that to the nearest univariate polynomial of degree at most d, and outputs the value of
that univariate polynomial at a. The local testing algorithm is also exactly as in the case of Reed-
Muller codes: one queries a random line and tests if it agrees with a polynomial of degree at most
d. The analysis of this local test again goes via a local characterization in terms of restrictions
to lines. However in this case, the local characterization doesn’t need to be proved: the local
characterization is precisely the definition of Lifted Reed-Solomon Codes! The reduction from the
local testing to the local characterization works exactly as in the case of Reed-Muller codes, and
this gives the full analysis of the local tester.



What remains to understand is the rate and the distance of Lifted Reed-Solomon codes. The
distance turns out to be δ − o(1): this follows from the fact that for any function f of the Lifted
Reed-Solomon code with α-fraction nonzero values, with 1−o(1) probability over a randomly chosen
line L, the restriction f |L will have (α± o(1))-fraction nonzero values. However, if f is a codeword
of the Lifted Reed-Solomon code, f |L is a polynomial of degree (1− δ)q, and thus must have either
0-fraction or at least δ-fraction nonzero coordinates.

Finally we come to the rate, which is the most interesting. If the characteristic p is constant,
then it turns out that there are significantly more codewords in the Lifted Reed-Solomon code than
there are in the Reed-Muller code: so many more that the rate of the Lifted Reed-Solomon code
can approach 1.

Let us demonstrate in the case m = 2 and when Fq is of characteristic 2. Which functions
f : F2

q → Fq lie in the Lifted Reed-Solomon code? This question is given a complete answer
in [GKS13] in terms of the polynomial representation f(X,Y ) =

∑
0≤i,j<q aijX

iY j . Here we are
interested in showing that the dimension is large, and so it will suffice for us to show that there
are many linearly independent elements in the code. To do this, we will study when a monomial
g(X,Y ) = XiY j lies in the code. Note that if we restrict g to a line `(T ) = (α1T + α0, β1T + β0),
we get the function

g|`(T ) = (α1T + α0)i(β1T + β0)j

=
∑
r≤i

∑
s≤j

αr1α
i−r
0 βs1β

j−s
0

(
i

r

)(
j

s

)
T r+s.

This function will equal a univariate polynomial of degree at most d at all points of Fq if, when we
reduce it mod T q − T , we see no monomials of degree > d. Reducing the above polynomial mod
T q−T amounts to replacing T r+s in the above expression with T r+s (mod∗ q) (where a (mod∗ q) = 0
if a = 0 and a (mod∗ q) = b ∈ {1, . . . , q−1} if a 6= 0 and a = b (mod q−1)). This will happen if i, j
satisfy the following criterion: for every r ≤ i, s ≤ j, if5

(
i
r

)
6= 0 mod 2 and

(
j
s

)
6= 0 mod 2, then

r + s (mod∗ q) ≤ d. Via Lucas’ theorem (which gives a characterization of when
(
a
b

)
= 0 mod 2,

we deduce that the monomial XiY j lies in the code if (i, j) lies in the set:

S = {(i, j) | ∀r ≤2 i, j ≤2 s, r + s (mod∗ q) ≤ d},

where a ≤2 b means that set of coordinates that equal 1 in the binary representation of a is a subset
of the set of coordinates that equal 1 in the binary representation of b. Finally, an analysis of the
set S shows that its size is ≥ (1− εδ) · q2, where εδ → 0 as δ → 0. Thus the dimension of the lifted
Reed-Solomon is at least (1 − εδ) · q2. Thus the rate of the Lifted Reed-Solomon code is at least
1− εδ.

A similar phenomenon happens for general m. Setting parameters suitably, we get for every
β > 0, codes with arbitrarily large length n, distance δ, rate 1 − εδ that are locally testable and
locally correctable with O(nβ) queries.

See also [Guo13] and [GK14] for related results.

4 Multiplicity Codes

In this section, we describe the multiplicity codes of [KSY14] and why they are locally correctable.
These codes are another family of codes very closely related to Reed-Muller codes - they are

5This is where the characteristic is playing a role.



polynomial based codes and they build upon and extend the classical Reed-Muller codes. Just like
the family of Lifted Reed-Solomon codes, multiplicity codes also improve upon Reed-Muller codes
by achieving rate arbitrarily close to 1 and being locally correctable with O(nβ) queries (and time)
for arbitrary small constant β.

We first introduce the simplest example of multiplicity codes, which already achieves a better
rate than than any choice of Reed-Muller codes described earlier, while being locally self-correctable
with sublinear queries.

Construction of bivariate Multiplicity codes: Let q be a prime power, let δ > 0 and let
d = 2(1 − δ)q (which is twice what it was in the Reed-Muller example). The multiplicity code of
order 2 evaluations of degree d bivariate polynomials over Fq is the code defined as follows. The
coordinates are indexed by F2

q (so n = q2) and the codewords are indexed by bivariate polynomials
of degree at most d over Fq. However the alphabet will now be F3

q . The codeword corresponding
the polynomial P (X,Y ) is the vector

C(P ) = 〈(P (a),
∂P

∂X
(a),

∂P

∂Y
(a))〉(a)∈F2

q
∈ (F3

q)
q2 .

In words, the a coordinate consists of the evaluation of P and its partial derivatives ∂P
∂X and ∂P

∂Y at
a. Because two distinct polynomials of degree at most d can agree with multiplicity 2 on at most
d/2q-fraction of the points in F2

q , this code has distance δ = 1−d/2q. Since the alphabet size is now
q3, the message length k equals the number of q3-ary symbols required to specify a polynomial of
degree at most d; this is clearly

(
d+1

2

)
/3. Thus the rate of this code is (

(
d+1

2

)
/3)/q2 ≈ 2(1− δ)2/3.

Summarizing the differences between this multiplicity code with the family of Reed-Muller codes
described earlier: (a) instead of polynomials of degree (1− δ)q, we consider polynomials of degree
double of that, (b) instead of evaluating the polynomials, we take their “order-2” evaluation. This
yields a code with the same distance, while the rate improved from < 1/2 to nearly 2/3.

Local Self-Correction of bivariate Multiplicity codes: Given a received word r ∈ (F3
q)
q2

such that r is close in Hamming distance to the codeword corresponding to P (X,Y ), we will show
how to locally self-correct. Given a point a ∈ F2

q , we want to recover the “corrected” symbol

at coordinate a, namely (P (a), ∂P∂X (a), ∂P∂Y (a)). Just as in the example of Reed-Muller codes, the
algorithm picks a random direction b = (b1, b2) ∈ F2

q and looks at the restriction of r to coordinates
in the line L = {a + bt | t ∈ Fq}. With high probability over the choice of b, we will have that
r|L and C(P )|L agree in many locations. Our intermediate goal will be to recover the univariate
polynomial6 Q(T ) = P (a + bT ). The important observation is that for every t ∈ Fq, the a + bt
coordinate of C(P ) completely determines both the value and the 1st derivative of the univariate
polynomial Q(T ) at the point t; indeed, by the chain rule we have:

(Q(t),
∂Q

∂T
(t)) = (P (a + bt), b1

∂P

∂X
(a + bt) + b2

∂P

∂Y
(a + bt)).

Thus our knowledge of r|L gives us access to q “noisy” evaluations of the polynomial Q(T ) and its
derivative ∂Q

∂T (T ), where Q(T ) is of degree ≤ 2(1−δ)q. It turns out that this is enough to recover the

6Unlike in the Reed-Muller case, here there is a distinction between recovering Q(T ) and recovering C(P )|L. It
turns out that recovering C(P )|L given only r|L is impossible.



polynomial Q(T ). Evaluating Q(T ) at T = 0 gives us P (a). Evaluating the derivative ∂Q
∂T (T ) at T =

0 gives us the directional derivative of P at a in the direction b (which equals b1
∂P
∂X (a) + b2

∂P
∂Y (a)).

We have clearly progressed towards our goal of computing the tuple (P (a), ∂P∂X (a), ∂P∂Y (a)), but
we are not yet there. The final observation is that if we pick another direction b′, and repeat the
above process to recover the directional derivative of P at a in direction b′, then the two directional
derivatives of P at a in directions b,b′ together suffice to recover ∂P

∂X (a) and ∂P
∂Y (a), as desired.

This algorithm makes 2q queries, which is O(k1/2).

General Multiplicity codes: The basic example of a multiplicity code above already achieves
rate R > 1/2 while allowing local decoding with sublinear query complexity. To get codes of rate
approaching 1, we modify the above example by considering evaluations of all derivatives of P up to
an even higher order. In order to locally recover the higher-order derivatives of P at a point a, the
decoding algorithm will pick many random lines passing through a, try to recover the restriction
of P to those lines, and combine all these recovered univariate polynomials in a certain way. To
reduce the query complexity to O(kβ) for small β, we modify the above example by considering
multivariate polynomials in a larger number of variables m. The local decoding algorithm for this
case, in order to locally recover at a point a ∈ Fmq , decodes by picking random lines passing through
a; the reduced query complexity occurs because lines (with only q points) are now much smaller
relative to a higher dimensional space Fmq . Increasing both the maximum order of derivative taken
and the number of variables simultaneously yields multiplicity codes with the arbitrarily large rate
< 1, constant distance, which are locally correctable with query complexity O(nβ) for arbitrary
constant β > 0.

See also [Kop15, Kop14] for related results.

5 Tensor codes

The tensor product is a general operation on codes which produces long codes out of short codes
(with some loss in the rate and distance). It turns out that the tensored codes also admit non-
trivial local testers. The remarkable aspect here is that one can produce locally testable codes by
starting with any code and tensoring it. This phenomenon was first discovered by Ben-Sasson and
Sudan [BSS06], and further investigated by a number of works, culminating with an analysis by
Viderman [Vid15] which was flexible enough to produce LTCs of arbitrarily high rate and query
complexity O(nβ) for every constant β > 0.

Let F be a field, and let D be a finite set. Let C be a linear code contained in FD (thus each
codeword has length |D|, and each codeword can be viewed as a function from D to F).

We define the tensor power of C, denoted C2 to be the set of all functions f : D × D → F
such that: (1) for each x ∈ D, f(x, ·) ∈ C, and (2) for each y ∈ D, f(·, x) ∈ C. Informally, the
codewords of C2 are those two-dimensional arrays such that each row-restriction and each column
restriction lies in C. One defines the m’th tensor power similarly, in terms of m-dimensional arrays.

The following properties of tensor powering are easy to check. Let R denote the rate of C and
let δ denote the distance of C. (1) the rate of Cm equals Rm, (2) the distance of Cm equals δm.

There is a natural local test for the tensor code C2, which arises from the definition of the code.
Given a received word r : D2 → F, one picks a uniformly random row or column and checks that r
restricted to that row or column is a codeword of C. Clearly every codeword of C2 passes this test
with probability 1. If this test passes with high probability, then many rows and many columns of



r are codewords of C. One can then show (using simple linear algebra) that there is a codeword
of C2 which is consistent with these rows and columns (and thus close to r). This shows that the
above test indeed is a local test for C2.

For larger m, such a simple analysis does not seem to work. Instead, we first analyze a different
“planes-based” test for the case m = 3, which will have a key “robustness” property. We will then
reduce the case of general m to the case of m = 3 by recursion (the feasibility of this recursion
relies on the robustness of the test).

Now fix m = 3. The following test is very natural. Given a received word r : D3 → F, one picks
a uniformly random 2-dimensional plane P in D3 (i.e., either {x} × D × D, or D × {y} × D, or
D ×D × {z}), and checks that r|P is a codeword of C2. Again, every codeword of C3 passes this
test with probability 1. The key claim for us is that this is a robust local test, namely:

∆(r, C3) ≤ O(δ3) · EP [∆(r|P , C2)].

In other words, if r is far from C3, then for many planes P , r|P is far from C2. This lets us reduce
the question of testing proximity to C3 to the question of testing proximity to C2, and lends itself
very nicely to a recursion. So for example local testing of C9 = (C3)3 reduces to local testing of
(C3)2 = C6 = (C2)3, which reduces to local testing of (C2)2, which can be done with |D|4 queries.
More generally, C3i (which has length |D|3i) can be tested with with |D|2i queries. If we started
with a code C with distance Ω(1) < δ � 1

3i
and rate � 1− 1

3i
, then for sufficiently large constants

i the code C3i can have arbitrarily high rate, constant distance, block-length n and can be locally
tested with nβ queries for constant β > 0. This gives the desired high-rate locally testable codes.

Viderman’s analysis [Vid15] of the robust local test goes via an insightful analysis of the kinds
of errors in a received word. For a given r, the point (x, y, z) is called fixable if there is a value
α ∈ P such that for every plane P containing (x, y, z) (there are exactly three such planes), the
codeword of C2 closest to r|P takes the same value value α at (x, y, z). Otherwise the point (x, y, z)
is called unfixable; this is indicative of some large scale dischord and deep-rooted resentment within
the received word - two huge planes have different opinions about what should be the true value at
(x, y, z). The crux is then to argue that the unfixable points are all contained in very few planes.
This uses the crucial property that if we have two planes P, P ′, and two codewords of C2, g defined
on P and h defined on P ′, and if g|P and h|P ′ disagree at one point, then they must disagree on δ|D|
points. This is because the g|P∩P ′ and h|P∩P ′ are both codewords of C. For details, see [Vid15].

6 Constant rate PCPs for SAT

One of the early motivations for the study of local testing and local decoding was the strong
connection between these notions and the notion of probabilistically checkable proofs. In this
section we describe an application from [BSKK+13] of the previous results on testing of tensor
codes back to the theory of PCPs. The main result is a construction of constant rate PCPs for
SAT.

A PCP is a format for writing witnesses for NP languages so that the validity of the witness can
be checked locally. The famous PCP theorem [AS98, ALM+98] states that for any NP language L,
there is a randomized polynomial time verifier V (x, π) such that:

• the proof length (i.e., the length of π) is polynomial in the length of x,

• V (x, π) makes only constantly many queries into the proof π,



• if x ∈ L, then there exists a proof π such that V (x, π) always accepts,

• if x 6∈ L, then for every candidate proof π′,

Pr[V (x, π′) accepts] < 0.5

This theorem is nontrivial even if we allow the proof length to be arbitrary, and we bound the
number of queries made by V into π by any sublinear function of the length of x! We will focus
on making the proof length linear (or near-linear) in the length of x, while making the query
complexity sublinear.

Below we consider a particular NP language, Grid-CSP, and show how to give a PCP with short
proof length for this language.

Definition 6.1 (Grid-CSP). Let a be an integer and let n = a2. We have a collection of n variables
(vi,j)1≤i,j≤a, which we view as arranged on an a × a grid. For each (i, j) ∈ [a], we have a 5-ary
predicate Ci,j : {0, 1}5 → {0, 1}.

Our goal is to find an assignment to the variables so that for all (i, j) ∈ [a]× [a],

Ci,j(vi,j , vi−1,j , vi+1,j , vi,j−1, vi,j+1) = 1.

(For the edge cases i = 1 or a, or j = 1 or a, we assume that Ci,j is always 1).

The classical NP witness for Grid-CSP is simply a satisfying assignment for the vi,j . We will
begin by seeing how classical polynomial-based codes can give a Õ(

√
n)-query probabilistically

checkable witness of size O(n log n) for this problem. We will then describe some ideas that go into
the construction of PCPs for general SAT instances of size n where the size of the witness is O(n),
thus achieving constant rate.

We remark that a construction of a polylog(n)-query PCP (of polynomial rate) for arbitrary
NP languages can be given along these lines. There are two changes: one needs to work with
higher dimensional grids (dimension nearly log n), and one needs to consider a slight variation of
the Grid-CSP which is more amenable to efficient reductions from general NP complete problems.7

A key component in the construction of the PCP for grid-CSP is the notion of a low-degree
extension. Let p be a prime of size approximately 10a, and let us view [a] as a subset of Fp. Given
an assignment in {0, 1}n to the variables (vi,j)i,j∈[a], we consider the polynomial f(X,Y ) ∈ Fp[X,Y ]
of degree ≤ a− 1 in each variable such that f(i, j) = vi,j . Then the entire evaluation table of f on
Fp × Fp is called the low-degree extension of v.

The first part of the PCP will be the low-degree extension of a satisfying assignment v. We will
augment this with some further information that will allow us to quickly check that the first part
really is the low-degree extension of a satisfying assignment v.

Let r : Fp × Fp → Fp be a given function. It is supposed to be the low-degree extension of a
satisfying assignment. We want to perform some low-query test on r, such that if the test passes
with high probability, it must mean that there exists a satisfying assignment to the given Grid-CSP.
Our test will actually have a stronger property: if the test passes on r with high probability, it
means that r is close to the low-degree extension of a satisfying assignment.

The verifier’s test will have three subtests.
7With the Grid-CSP problem as currently defined, a SAT formula of size m can be reduced to a Grid-CSP problem

of size m2, and the PCP we construct shows that it can be tested using Õ(m) queries, which is trivial for the original
SAT formula. Nevertheless, there is a slight variation of Grid-CSP which does allow for more size-efficient reductions
from SAT, and it is this variation that gets used in the constant rate PCP constructions.



1. In r passes the first subtest with high probability, it will mean that that r is close to some
polynomial f with individual degrees at most a− 1.

2. If r passes the second subtest with high probability, it will mean that f is {0, 1}-valued on
[a]× [a]. Note that we are performing queries on r, but we are deducing properties of f .

3. If r passes the third subtest with high probability, it will mean that f |[a]×[a] is a satisfying
assignment to the given Grid-CSP with high probability.

We now describe how to perform the different subtests.
The first subtest is exactly the local testing problem for the code of evaluations of polynomials

with individual degree at most a − 1 in each variable. This code is a tensor code: it is the 2-wise
tensor product of Reed-Solomon codes. By the testability of tensor codes, this code is locally
testable with a queries, and (by definition of local testing) this local test achieves what the first
subtest is supposed to achieve.

The second and third subtests will follow a similar framework. To check that the values of f on
[a]× [a] are 0 or 1, consider the polynomial g(X,Y ) = f(X,Y )2 − f(X,Y ). We wish to check that
g vanishes on [a]× [a]. To check that the constraints are satisfied, we first interpolate a polynomial
Q(X,Y,B1, B2, B3, B4, B5) with individual degrees at most (a − 1, a − 1, 1, 1, 1, 1, 1) such that for
all i, j ∈ [a] and all b1, b2, b3, b4, b5 ∈ {0, 1}, we have:

Q(i, j, b1, b2, b3, b4, b5) = 1− Ci,j(b1, b2, b3, b4, b5).

Then consider the polynomial h(X,Y ) = Q(X,Y, f(X,Y ), f(X − 1, Y ), f(X + 1, Y ), f(X,Y −
1), f(X,Y + 1)). We wish to check that h vanishes on [a]× [a].

Summarizing, we want to check that a certain polynomial vanishes on a set of the form S × S.
In our setting we do not have oracle access to the polynomial, but as we see below we do have
access to a noisy version of it. Suppose r is δ-close to f . Then the function g̃ : Fp×Fp → Fp defined
by:

g̃(x, y) = r(x, y)2 − r(x, y)

is δ-close to g. Similarly, the function h̃ : Fp × Fp → Fp defined by:

h̃(x, y) = Q(x, y, r(x, y), f(x− 1, y), f(x+ 1, y), f(x, y − 1), f(x, y + 1)),

is 5δ close to h. Note that we can access the value of g̃ and h̃ at any point in Fp × Fp.
The test for vanishing of a polynomial P (X,Y ) on S × S given access to a noisy version P̃ :

Fp×Fp → Fp can be done in two ways: one based on the sum-check protocol (following [LFKN92]),
and the other based on the Combinatorial Nullstellensatz (following Ben-Sasson-Sudan [BS08a]).
We briefly describe the Combinatorial Nullstellensatz approach. The underlying theorem is the
following.

Theorem 6.1 (Combinatorial Nullstellensatz [Alo99]). Let P (X,Y ) be a polynomial of degree at
most d in each variable. Let S be a set. Then P vanishes on S×S if and only there exist polynomials
A(X,Y ) and B(X,Y ) with degrees at most d in each variable such that

P (X,Y ) = A(X,Y ) ·
∏
s∈S

(X − s) +B(X,Y ) ·
∏
s∈S

(Y − s). (1)



This motivates the following probabilistically checkable proof that P vanishes on the set S×S:
write down the evaluation tables of the polynomials A(X,Y ) and B(X,Y ) given by the previous
theorem. The verifier can check that (1) these evaluation tables given by the prover, Ã and B̃, are
close to polynomials of degree at most d in each variable, and (2) verify that the identity:

P̃ (X,Y ) = Ã(X,Y ) ·
∏
s∈S

(X − s) + B̃(X,Y ) ·
∏
s∈S

(Y − s) (2)

holds for a random point (x, y) ∈ Fp × Fp. If these checks both pass with high probability, then
we conclude that there exist polynomial A,B such that Equation (1) holds with high probability
when we substitute a random (x, y) ∈ F2

p into it. By the low-degreeness of P,A,B, we conclude
that Equation (1) holds identically, and thus that P vanishes on S × S.

This concludes the description of the polynomial-based PCP for Grid-CSP. The verifier accesses
O(a) Fp-ary symbols from the proof, leading to a query complexity of O(a log p) = O(

√
n · log n).

The length of the PCP is O(p2) Fp-ary symbols, which is O(n · log n) bits long. This was almost
a constant rate PCP, but we missed for the trivial reason that the bits of our original satisfying
assignment were treated as Fp-ary symbols, thus losing a O(log p) = O(log n) factor in the length!

This motivates the constant rate PCP construction of [BSKK+13]: the idea is to replace the
large-alphabet polynomial codes with a small alphabet code. In order that boolean constraints
can be captured by operations on the code, we would like the code to be amenable to algebraic
operations such as pointwise addition and pointwise multiplication: this suggests that we use
algebraic-geometric codes (AG codes) [Sti93]. Having decided to work with AG codes, a new issue
arises. What is the analogue of the operation x 7→ x + 1 in the setting of AG codes? For Reed-
Solomon codes, we used a highly underrated property: if f(X) is a codeword of the Reed-Solomon
code, then so is f(X + 1). The appropriate generalization is an automorphism of the AG code - a
permutation σ of the coordinates so that for any codeword of the code f , f ◦ σ is also a codeword
of the code f . Using AG codes with a transitive automorphism group in place of the Reed-Solomon
codes above, one gets a constant rate PCP for a Grid-like CSP with O(

√
n) query complexity.

Furthermore, one can reduce any SAT instance to an instance of this Grid-like CSP with only a
constant factor blow-up in the instance size. This gives a PCP for SAT with constant rate and
O(
√
n) query complexity. The query-complexity can be further reduced to O(nβ) for constant

β > 0, while reducing the rate to a smaller constant, using higher dimensional tensors. For details,
see [BSKK+13].

7 Locally Correctable Expander Codes

In this section we describe the expander based construction by [HOW15] of high-rate locally cor-
rectable codes with polynomially small query complexity and decoding time. This is another very
different construction of a family of codes with rate approaching 1 and with query complexity O(kβ)
for arbitrary small constant β.

7.1 Construction of locally correctable expander codes

Expander Codes: Let G be a d-regular expander graph on n-vertices that is also a Ramanujan

graph. Thus the expansion parameter is λ where λ ≤ 2
√
d−1
d . Let Cin be an inner code of block

length d. Then the expander code of length N = nd arising from G and Cin, which we denote by



C = CN (Cin, G), is the following: First consider the bipartite graph H which is the double cover
of G, in other words H has n left vertices and n right vertices (each side is a copy of the vertex set
of G) and vertex u on the left is joined to vertex v on the right if and only if (u, v) is an edge of G.
The codewords of C are all assignments of symbols to the edges of H so that for every vertex v in
H, the assignment restricted to the edges incident to that vertex forms a codeword of Cin.

We now describe the specific choice of inner code that will be used in the construction of the
high-rate expander based LCCs.

The inner code: Let ε > 0 be given. Let C0 be a linear code over some alphabet Σ with the
following properties: The block length of C0 is d (d will be chosen to be a sufficiently large constant).
Moreover C0 has a smooth local reconstruction procedure8 with query complexity q0 = dε, rate
R0 > 1− ε and distance δ for some constant δ such that δ > 10 1√

d
. The multiplicity codes defined

earlier satisfy these parameters. Additionally one can construct codes based on affine geometries
that also satisfy these parameters (see [HOW15]).

The final code and its parameters: Now consider the code C = CN (C0, G) which is the
expander code of length N = nd arising from a d-regular Ramanujan graph on n vertices G and the
inner code C0 as described above. Then as long as d is chosen to be a sufficiently large constant,
C will be locally correctable with query complexity O(N ε), rate r ≥ 1 − 2ε and distance at least
δ2/2, and the local correction algorithm can tolerate ρ fraction of errors, where ρ is a small positive
constant (independent of n).

7.2 Algorithm for local correction and sketch of analysis

On input a codeword edge (u, v) and given query access to a ρ-corrupted codeword c, the algorithm
for local correcting of c to recover (u, v) will proceed in two steps. In the first step the algorithm
identifies about q′ ≈ N ε/2 edges of the graph such that the true value at those edges would determine
the value of the codeword at (u, v), and such that the distribution of each of these edges is extremely
close to uniform (and in particular independent of the choice of edge (u, v)). In the second step
the algorithm decodes the true value of the codeword at each of those q′ locations with very high
probability, so that almost surely it gets the value of all of them correctly and hence can decode
the true value at i with high probability. We elaborate on the two steps below.

(Step 1:) To decode edge (u, v), the algorithm invokes the smooth decoder for the inner code C0

at the vertex u. The decoder identifies q0 edges emanating from the vertex u such that they are a
decoding set for (u, v), and each edge is distributed as a uniformly random edge out of u. Say those
edges are (u, v1), (u, v2), . . . , (u, vq0). For each such (u, vi), the algorithm uses the smooth decoder
for C0 at the vertex vi to identify q0 edges emanating from the vertex vi that are a decoding set for
(u, vi) and such that each of the edges is distributed as a uniformly random edge out of vi. Now for
each of the q2

0 edges identified so far, we repeat the above process and keep going until eventually
we identify a q0-ary tree of depth L (for some suitable parameter L). Observe that the distribution
of each leaf is the same as that of the end point of a random walk of length L starting at u. The
parameter L is chosen suitably large so that this distribution is extremely close to uniform and so

8i.e., each coordinate of a codeword can be recovered by making few uniformly random queries to the remaining
coordinates of the codeword.



that the number of leaves, qL0 , is about N ε/2. (By the choice of parameters of the code, this can be
done.) Note also that by the way the tree was generated, the true values of codeword symbols at
the leaves determines the root (u, v).

(Step 2:) For each leaf (which is distributed almost uniformly), the algorithm decodes each of
these with very high probability. It does this as follows. Fix a leaf (u′, v′). First the algorithm
identifies a q0-ary tree T of depth L rooted at (u′, v′) just as in step 1. The true values at the
leaves of this tree determine (u′, v′), but now we are in the setting where ρ fraction of the edges
are corrupted and we want to show that we can still decode the true value at (u′, v′) with high
probability. There are two main observations.

1. One can prove a Chernoff-like bound on the number of corruptions on any path from root
to leaf in the tree T . One first shows that for every path, the total fraction of errors one
can encounter on any path is at most some small constant γ < 1/2, where γ is not much
larger than ρ, and this holds with very high probability. By a union bound this must hold
for every path with high probability. Thus the true codeword and the ρ-corrupted codeword
are “pretty close” on every path of T . This motivates the following distance function. For
any two labelings T1 and T2 of T , define δ(T1, T2) to be the maximum over all paths p from
root to a leaf in the tree of δ(p1, p2) where p1 is the labeling of path p in T1 and p2 is the
labeling of path p in T2, and δ(p1, p2) is just the fractional Hamming distance between these
strings. Thus if T1 is the labeling of T arising from a true codeword and T2 is the labeling
arising from a ρ-corrupted codeword, then with high probability δ(T1, T2) ≤ γ, where γ is
some small constant less than 1/2.

2. For any two distinct codewords c1, c2 which have different values assigned at (u′, v′) (the root
of the tree), there will be a entire path from root to leaf in T where the codewords differ
at every location. Thus if T1 and T2 are the labelings of the trees cooresponding to these
codewords then δ(T1, T2) = 1. This fact is actually quite easy to prove : since the roots
differ, and since the children of the root determine the root, one of the children must differ.
Continuing in this manner, it is easy to see that there is an entire path on which the labelings
differ. By the previous item, and a simple triangle inequality, the labelings for ρ-corrupted
versions of c1 and c2 would also have very large distance.

Once we have the above two items, it is easy to see that information theoretically the decoding
problem can be solved - the value at (u′, v′) must be the unique α ∈ Σ for which there is a codeword
that assigns α to (u′, v′) and such that the codeword and the given labeling have distance at most
γ in the tree metric defined. It can be shown that the running time can be made efficient as well.

8 Locally Correctable Codes with Subpolynomial Query Com-
plexity

In this section we describe the construction by [KMRS16] of high-rate locally correctable codes with
subpolynomially small query complexity and decoding time. More precisely these codes have rate
approaching 1 that are locally correctable from a constant fraction of errors with query complexity
exp(
√

log n · log log n).



8.1 Construction of the codes

There are two main components in the construction of these codes. In the first component one
constructs high-rate locally correctable codes with subpolynomially small query complexity, but
with subconstant fractional distance and hence tolerating only a subconstant fraction of errors.
In the second component one shows how to take such a code and amplify its distance using a
technique of Alon and Luby [AL96] to make it a constant, without hurting the rate and query
complexity by too much. These codes are first constructed over a very large alphabet (of size
roughly exp exp(

√
log n · log logn) ).

High-rate LCCs with subpoly query complexity and subconstant distance: To construct
such codes we use multiplicity codes [KSY14] in the non-standard regime of super-constant number

of variables. By choosing the number of variables of the underlying polynomials to bem =
√

logn
log logn ,

we can suitably also set the remaining parameters (such as degree of polynomials and order of
derivatives) so that one obtains a code CM of length nM such that its relative distance is δM ≥
Ω
(√

log logn
log3 n

)
, rate is rM ≥ 1 − 1

logn , alphabet size is exp
(
exp

(√
log n · log logn

))
, and such that

CM is locally correctable from τM ≥ 1
10 · δM errors with query complexity 2O(

√
logn·log logn).

Distance Amplification: Let τ > 0 and ε > 0 be any small constants. We will now transform
the code CM into a new code C of distance δ ≥ 2τ and rate ≈ 1− (2τ + ε) for any small constant
ε. The alphabet size will be exp

(
expO

(√
log n · log logn

))
, and C will be locally correctable from

τ fraction errors with query complexity 2O(
√

logn·log logn).
We describe now the transformation. One crucial ingredient will be the existence of combina-

torial objects called samplers which we now define. Let G = (U ∪ V,E) be a bipartite d-regular
graph with |U | = |V | = n. We say that G is an (α, γ)-sampler if the following holds for every
T ⊆ V : For at least 1− α fraction of the vertices s ∈ U it holds that

|E(s, T )|
d

− |T |
n
≤ γ.

The following lemma follows from the expander mixing lemma.

Lemma 8.1. For every α, γ > 0 and every sufficiently large n ∈ N there exists a bipartite d-

regular graph Gn,α,γ = (U ∪ V,E) with |U | = |V | = n and d = poly
(

1
α·γ

)
such that Gn,α,γ is an

(α, γ)-sampler.

Such samplers can also be very efficiently constructed.
In our code construction we will use a (τM , ε/2) sampler (for parameter ε > 0 as specified above

and τM being the error tolerance of the family of multiplicity codes) of degree d = poly
(

1
τM ·ε/2

)
on a bipartite graph with n left and right vertices. Let Gn,τM ,ε/2 be such a sampler.

We start with a codeword cMof length nM of the multiplicity code as described above. Pick a
parameter b = d(1− (2τ + ε)). We partition each codeword into n = nM/b blocks of length b (let
us call these blocks D1, D2, . . . , Dn) and encode each of them by a Reed-Solomon code of distance
2τ + ε. Thus each codeword of the Reed-Solomon code will have length d. Let the resulting string
be c′ and let B1, . . . , Bn be the resulting codewords of the Reed-Solomon code. We then apply a
pseudorandom permutation to the symbols of c′ as follows.



Let Gn,α,γ be the graph as defined above and let U = {u1, . . . , un} and V = {v1, . . . , vn} be the
left and right vertices of Gn,α,γ respectively. For each i ∈ [n] and j ∈ [d], we write the j-th symbol
of Bi on the j-th edge of ui. Then, we construct new blocks S1, . . . , Sn ∈ Σ = Σd

M , by setting the
j-th symbol of Si to be the symbol written on the j-th edge of vi.

Finally, we define the codeword c of C ⊆ Σn as follows: the i-th coordinate ci is the block Si,

reinterpreted as a symbol of the alphabet Σ
def
= Σd

M .

8.2 Sketch of the decoding algorithm and its analysis

We will first describe an algorithm A for correcting symbols of the outer multiplicity codeword cM
from a ρ-corrupted codeword c. Recall that each codeword symbol ci is actually a block Si, and
thus we are given as input a codeword with at most ρ fraction of the blocks being corrupted. It is
not difficult to see that the algorithm A can be modified to correct symbols of the final codeword
c by only a modest blow up in query complexity.

On input coordinate i, the algorithm A uses the local corrector AM for multiplicity codes as a
subroutine. Each time AM queries a coordinate j, A will try to compute it and give it as input to
AM . If it can succeed in doing this with probability at least τM (where τM is the error tolerance for
the underlying multiplicity code) for a random j, then AM will succeed in outputting the correct
value of the ith coordinate with high probability.

In order to compute the value of the jth coordinate, A does the following. It will try to recover
the entire block Dr which contains the jth multiplicity codeword symbol. To do this, it suffices
to recover the symbols of Br with at most τ + ε/2 fraction errors, since then A can decode the
corrupted Reed-Solomon codeword to the unique true underlying message which corresponds to Dr.
Now if only τ + ε/2 fraction of the neighbors of Br are corrupted, then by querying the neighbors
of Br, A can indeed find Br with at most τ + ε/2 fraction errors. Thus it suffices to show that
with high probability (at least 1− τM ), this is indeed the case. This follows immediately from the
choice of samplers.

9 High-rate locally testable codes with quasi-polylogarithmic
query complexity

In this section we describe the construction by [KMRS16] of high-rate locally testable codes with
quasi-polylogarithmic query complexity and testing time. More precisely we show how to construct
codes of rate approaching 1, of constant distance, that are locally testable with query complexity
(log n)O(log logn).

9.1 Construction of the codes

Here too (just as in the previous section where we described the construction of high-rate LCCs
with sub polynomial query complexity), there will be two main steps in the construction. In the
first step we construct high-rate LTCs but with only subconstant distance, and in the second step
we amplify the distance of the codes using a technique of Alon and Luby [AL96], while preserving
their local testability. In particular, starting with an LTC with relative distance δ, we can amplify
its relative distance to any 0 < δ′ < 1 while increasing the query complexity by a factor of poly(1/δ)
and decreasing the rate by a factor of only ≈ 1 − δ′. This technique is useful, since it is easier to



construct LTCs with small relative distance, and this technique allows us to transform such LTCs
into ones with better relative distance.

The second step is very similar to that described earlier for LCCs, and for details see [KMRS16].
The main novelty is in the first step where we give an improved construction of LTCs in the sub-
constant relative distance regime. More specifically, we show how to construct LTCs of high rate,
with relative distance 1/polylog(n), and query complexity (log n)O(log logn). Using the Alon-Luby
distance-amplification, this gives LTCs of high rate with constant relative distance and query
complexity (logn)O(log logn).

The construction of LTCs in the sub-constant relative distance regime uses an iterative strategy,
along the lines of the construction of Meir [Mei09] (which is itself inspired by the PCP and LTC con-
struction of [BS08b],9 and similar in spirit to several other classical, iterative, brave, yet moderate,
algorithms [Gol11]: the zig-zag product [RVW02], undirected connectivity in log-space [Rei08] and
the PCP theorem via gap amplification [Din07]). The main new ingredient in the iterative strategy
is again the Alon-Luby distance-amplification technique (but in a different setting of parameters).

9.1.1 The iterative construction

We now describe the iterative construction of high-rate LTCs with relative distance 1/polylog(n)
and query complexity (log n)O(log logn). The construction starts with a code of very small block
length, which can be tested simply by reading the entire received word. Then, the block length is
increased iteratively, while the rate, relative distance, and query complexity are not harmed by too
much.

More specifically, suppose we want to construct a code with block length n. We start with a
code of block length poly log n, rate 1 − 1

poly logn , and relative distance 1
poly logn . Then, in each

iteration, the block length and rate are (roughly) squared, the relative distance is maintained, and
the query complexity is increased by a factor of poly log n. Thus, after ≈ log log n iterations, we
obtain an LTC with block length n, constant rate, relative distance 1

poly logn , and query complexity

(log n)O(log logn), as required.

A single iteration. We now describe the structure of a single iteration. Suppose that, at the
beginning of the iteration, the code C has block length n, rate r, relative distance δ, and query
complexity q. We apply to C the following two operations:

• Tensor product: We replace C with its tensor product C2. The tensor product C2 is the
code that contains all n× n matrices M such that that all rows of M and all columns of M
are codewords of C.

The code C2 has block length n2, rate r2, relative distance δ2, and query complexity q ·
poly(1/δ).

• Distance amplification: We apply (a variant of) the Alon-Luby distance-amplification to
the code C2, and amplify the relative distance from δ2 to δ. The resulting code has block
length O(n2), rate (1− δ) · r2, relative distance δ, and query complexity q · poly(1/δ).

9In the constant query regime the LTC construction of Meir [Mei09] achieves the same parameters as that of
[BS08b]. However, it seems that the construction of [BS08b] inherently leads to a sub-constant rate and therefore is
not suitable for the current purpose.



We will not state the precise variation of the distance amplification here but we give a de-
scription in the next section after motivating the need for the variation.

The iteration ends after the distance amplification.

9.2 High level sketch of local testability

We need to show that the two operations of tensor product and distance amplification preserve
the property of local testability. The main challenge will be to ensure this for the tensor product
operation. The testability of the distance amplification operation can be shown by decomposing this
operation into simpler block-wise operations, and showing that each of these operations preserves
local testability.

The local testability of the tensor product. We need the tensor product to preserve the local
testability, i.e., to increase the query complexity by a factor of at most poly(1/δ). However, this does
not necessarily hold if C is an arbitrary code. In fact, there is a long line of research that attempts
to understand the conditions under which tensor product preserves the local testability [BS06,
Val05, CR05, DSW06, GM12, BV09, Vid15].

In order to resolve this issue, we use the following idea of [Mei09]. We say that a code C0

has property (�) if there exists a code D such that C0 is the tensor product D2. It follows from
[BS06, Vid15] that the tensor product operation roughly preserves the local testability of codes that
have property (�). Specifically, if C0 has property (�) and is locally testable with query complexity
q and has relative distance δ, then C2

0 is locally testable with query complexity q · poly(1/δ).
Hence, in order to make our construction go through, we maintain the invariant that our code

C has property (�) throughout the iterations. This requires us to show that a single iteration
preserves the property (�) of the code. To this end, first observe that the tensor product operation
clearly preserves the property (�). The more challenging part is to make sure that the distance
amplification preserves the property (�). In order to do so, we define a new operation, which we
called (�)-distance amplification, which amplifies the distance while preserving the property (�)
and the local testability.

The (�)-distance amplification. We conclude by describing how the (�)-distance amplification
works: Suppose that we are given a code C0 that has the property (�), and we wish to amplify
its relative distance to δ. By definition, there exists some code D such that C0 = D2. We apply
the Alon-Luby distance-amplification to D to obtain a new code D′ with relative distance

√
δ. We

now define the code C ′0 = (D′)2 to be the result of applying the (�)-distance amplification to C0.
Observe that C ′0 indeed has relative distance δ, and that it has the property (�), as required.

It remains to prove that the (�)-distance amplification preserves the local testability, i.e., that
this operation increases the query complexity by a factor of at most poly(1/δ). The testability
of the distance amplification operation can be shown by decomposing this operation into simpler
block-wise operations, and showing that each of these operations preserves local testability.
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