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Abstract

We show combinatorial limitations on efficient list de-
coding of Reed-Solomon codes beyond the Johnson and
Guruswami-Sudan bounds [Joh62, Joh63, GS99]. In par-
ticular, we show that for arbitrarily large fields FN , |FN | =
N , for any δ ∈ (0, 1), and K = N δ:

• Existence: there exists a received word wN : FN →
FN that agrees with a super-polynomial number of dis-
tinct degree K polynomials on ≈ N

√
δ points each;

• Explicit: there exists a polynomial time constructible
received word w′

N : FN → FN that agrees with a
super-polynomial number of distinct degree K poly-
nomials, on ≈ 2

√
log NK points each.

In both cases, our results improve upon the previous state
of the art, which was ≈ N δ/δ for the existence case [JH01],
and ≈ 2N δ for the explicit one [GR05b]. Furthermore, for
δ close to 1 our bound approaches the Guruswami-Sudan
bound (which is

√
NK) and implies limitations on extend-

ing their efficient RS list decoding algorithm to larger de-
coding radius.

Our proof method is surprisingly simple. We work with
polynomials that vanish on subspaces of an extension field
viewed as a vector space over the base field. These sub-
space polynomials are a subclass of linearized polynomials
that were first studied by Ore [Ore33, Ore34] in the 1930s,
and later by coding theorists. For us their main attraction is
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their sparsity and abundance of roots, virtues that recently
won them pivotal roles in probabilistically checkable proofs
of proximity [BSGH+04, BSS05] and sub-linear proof ver-
ification [BSGH+05].

1 Introduction

1.1 Combinatorial list decoding

A fundamental task associated with the use of error-
correcting codes is decoding, that is, recovering the origi-
nal codeword w, from the corrupted received word w′. In
list decoding, introduced independently by Elias [Eli57] and
Wozencraft [Woz58], we consider a relaxation of the above
task. We no longer demand that the codeword w be recov-
ered uniquely. Instead, we ask for a list of possible code-
words, and we call the recovery successful if w appears in
this list. The crucial point is that list decoding (with rela-
tively small lists) is possible even when the received word’s
agreement with the original word is so small that any hope
of recovering the original word uniquely is unrealistic.

Clearly, the size of the list is a crucial parameter of the
problem (to wit, the set of all codewords is a trivial solution
for unbounded list size). In order to quantify the number
of errors one can tolerate for list decoding and appreciate
the difference with unique decoding, let us consider a code
with block length N and distance d. Suppose the number
of errors in the transmission is guaranteed to be at most e.
Then, in the worst case, we can uniquely recover the orig-
inal message only if e is at most d−1

2 . Thus, even if d is
very close to N , we require that the two words agree on at
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least N − d−1
2 ≥ N

2 places. With list decoding we can, in
principle, tolerate substantially more errors.

Theorem 1.1 (Johnson bound [Joh62, Joh63, GS01])
Let C be a code with block length N and distance d. Then,
the number of codewords that agree with any word w′ on
more than

√

N(N − d) places is O(N2).

For example, if the code has distance 0.99N , then there
are only a polynomial number of words that agree with the
given word on more than N

10 places, that is, we have poly-
nomial size lists as long as the error is less than 0.9N . In
fact, a more precise form of the Johnson bound [GS01] im-
plies that if the error is less than 0.8N , then there are only
a constant number of such codewords. In contrast, unique
decoding is feasible only when the error is guaranteed to be
less than 0.495N .

Given a specific family of codes (in this paper, we shall
consider Reed-Solomon codes), we recall two fundamental
problems associated with list decoding:

• Combinatorial list decoding: Given code C of block-
length N and agreement parameter A ≤ N , estimate
the maximal number of distinct codewords that agree
with w′ on at least A entries, where the maximum is
taken over all (possibly corrupted) received words w′.

• Algorithmic list decoding: Devise an efficient algo-
rithm for C that on input w′ and agreement parameter
A, lists all words that agree with w′ on at least A en-
tries.

In order to solve the algorithmic list decoding problem
(for a specific code C and agreement parameter A) in worst-
case time T , at the very least we should have a combinato-
rial guarantee that there are no more than T codewords in
the list. In other words, lower bounds for the combinatorial
problem imply lower bounds for the algorithmic one.

Our main result (Theorem 2.1) is an improved lower
bound for the combinatorial list decoding problem for
Reed-Solomon codes (described next). This result implies
super-polynomial lower bounds on the running time of any
list decoding algorithm for Reed-Solomon codes for a suf-
ficiently small agreement parameter.

1.2 Reed-Solomon codes

Reed-Solomon codes, named after their inventors
[RS60], are an extensively studied family of error correct-
ing codes, heavily used in theoretical and practical settings.
The codewords of the Reed-Solomon (RS) code over a field
F are the evaluations of low degree polynomials at N dis-
tinct field elements. Bounding the degree of polynomials
by K yields a [N, K + 1, N − K]F code, i.e. a linear code
over alphabet F with block-length N , dimension K +1 and

distance N − K. The optimality of the RS codes (in terms
of dimension to distance tradeoff) and their many algebraic
properties contributed to the usefulness and ubiquity of RS
codes in coding theory and theoretical computer science. In
what follows we will restrict our attention to RS codes eval-
uated over the whole field of size N (i.e. F = FN ). Thus, in
the space of all possible received words {w : FN → FN},
the RS code we consider is the subset

RS[N, K] := {〈P (α) : α ∈ FN 〉 :

P is a polynomial with deg(P ) ≤ K}.

In this context, the pair of fundamental problems men-
tioned above boil down to:

• Combinatorial RS list decoding: Given field FN , de-
gree K and agreement parameter A ≤ N , bound the
maximum, over all w : FN → FN , of the number of
polynomials P ∈ RS[N, K] with agree(w, P ) ≥ A,
where agree(f, g) := |{x ∈ FN : f(x) = g(x)}|

• Algorithmic RS list decoding: Given FN , K, A and
received word w as above, efficiently produce the list
{P ∈ RS[N, K] : agree(P, w) ≥ A}.

Following a breakthrough by Sudan [Sud97], Gu-
ruswami and Sudan [GS99] presented a polynomial time
algorithm for solving the algorithmic RS list decoding prob-
lem for agreement parameter A >

√
KN . The Guruswami-

Sudan algorithm has found fascinating applications not only
to coding theory, but also to complexity theory and de-
randomization (see the surveys [GS02, Gur06] and point-
ers therein). Interestingly, the minimal agreement needed
for the Guruswami-Sudan list decoder to succeed coin-
cides with the Johnson bound stated above. Following
the list decoding algorithm of Guruswami-Sudan for Reed-
Solomon codes, list decoding algorithms for several other
codes have been discovered. Recent breakthroughs of Par-
varesh & Vardy [PV05] and Gurswami & Rudra [GR05b]
have lead to the design of codes (related to Reed-Solomon
codes) where efficient list decoding is possible well beyond
the Johnson bound. For Reed-Solomon codes itself, how-
ever, the Guruswami-Sudan decoder still provides the best
bounds. Since the recent revolution in the understanding of
list decoding started with Reed-Solomon codes, and subse-
quent developments have rested on it, and given the ubiq-
uity of RS codes in theory and practice, one would like to
obtain a precise understanding of their list decoding prop-
erties. In particular, we would like to know how big we
can allow the radius of the ball to be (or how small the
agreement can be) and still guarantee polynomially many
codewords in it. Additionally, lower bounds for list decod-
ing, especially when the received “bad” word w (that agrees
with many RS-codewords) can be produced in polynomial
time in N , have applications for hardness of approximating
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the minimum distance of a linear code [DMS99] and con-
structing error-correcting codes with improved parameters
[Xin03].

Prior to this work, there have been several attempts to
show combinatorial lower bounds on the agreement param-
eter for efficient list decoding. However, despite progress
on related combinatorial problems (such as RS list recov-
ery [GR05b] and RS list hitting [CW04], see Section 2.4),
the state of the art regarding the combinatorial RS list de-
coding problem was rather weak. Apart from the trivial
observation that list decoding to K agreements could pro-
duce superpolynomial size lists, the only bound followed
from a relatively straightforward combinatorial argument
due to Justesen & Høholdt [JH01] showing (only) for low
rates K = N δ (0 < δ < 1) that super-polynomially many
words agree with some received word on ≈ N δ/δ entries.
In this paper, we significantly improve on this state of affairs
and show that super-polynomial list size can be obtained for
much higher agreement, that at certain parameters even ap-
proaches the Johnson bound. Before describing our results,
we present a reformulation of the original argument and mo-
tivate the use of subspace polynomials in improving it.

1.3 Overview of our technique: viva sub-
space polynomials

Let us start by sketching an argument that shows that
for K = N δ (0 < δ < 1), at least 1

δ N δ agreements are
required for efficient list decoding. Consider all monic uni-
variate polynomials in X of degree T that have exactly T
roots in FN . There are exactly

(

N
T

)

polynomials. Of these,
at least

(

N
T

)

NT−K−1 have the same coefficients for mono-
mials of degree greater than K. Construct the received word
w by evaluating one of these polynomials P ∗ at all points in
FN . Now if P ′ is another such polynomial, then P ∗−P ′, a
polynomial of degree at most K, agrees with w on T places
(because P ∗ − (P ∗ − P ′) = P ′ has T roots). Thus, in or-
der to have polynomial size lists,

(

N
T

)

N−(T−K−1) must be
bounded by a polynomial. This implies that T > 1

δ N δ.
Let us abstract out what was important in the above argu-

ment: a large set of polynomials with many roots that agree
on their top coefficients. The key idea in our construction
is to start with sparse polynomials. The reason this helps
is that we lose fewer polynomials when we try to get their
top coefficients to agree. So are there sparse polynomials of
small degree that have many roots? This is where subspace
polynomials come in. Let us briefly describe what they are.
Fix a base field Fq and view its extentsion K = Fqm as a
vector space over Fq . Let L be a T element subspace of this
vector space. The subspace polynomial associated with L is
PL(X) =

∏

α∈L(X−α). It turns out that such polynomials

are sparse: only monomials of the form Xqi

have non-zero
coefficients. Thus, a fraction N− logq(T/K) of them have

the same top coefficients. This is much less than the factor
N−(T−K−1) that we had in the previous argument, however
since we require that the roots form a subspace, we do not
start with

(

N
T

)

polynomials but only as many as there are T
element subspaces of K. However, as we will see, the trade-
off between these numbers is favorable, and we do obtain a
better bound overall.

Subspace polynomials are a special class of linearized
polynomials. These are polynomials that represent Fq-
linear functions from K to K, and they are also sparse in
exactly the same way as subspace polynomials. These poly-
nomials were first studied by Ore [Ore33, Ore34] and have
important uses in the study of finite fields and applications
(see Berlekamp [Ber68] and Lidl and Niederreiter [LN97,
Chapter 3, Section 4]). Subspace polynomials recently
made their first appearance (to the best of our knowledge)
in the context of computational complexity in the construc-
tion of short PCPs and their related locally testable codes
due to Ben-Sasson, Goldreich, Harsha, Sudan and Vadhan
[BSGH+04]. They also play (several different) pivotal roles
in the short PCPs of [BSS05] and in sub-linear proof veri-
fication of [BSGH+05]. The properties of subspace poly-
nomials we exploit here are similar to those exploited by
the aforementioned works (but the context is completely
different)— their sparsity, their many roots and the fact that
they represent linear transformations over a vector space.

Paper organization In the next Section we state our main
result and discuss its corollaries in comparison to the previ-
ous state of the art. This is followed by a short proof of our
main Theorem.

2 The main result and its corollaries

We construct a large family of words from RS[N, K] that
reside in a ball of small radius. We will work in the field
Fqm , that is N = qm. K will be of the form qu for integer
u (0 ≤ u ≤ m). We start by stating our result in its general
form. Later, we specialize this general result and compare
it with the previous state of the art.

Theorem 2.1 (Main Theorem) Let q be a prime power
and m a positive integer. Let u and v be integers such that
0 ≤ u ≤ v ≤ m. Then, there is a family P ⊆ Fqm [X ] of
polynomials of degree qu and a word w : Fqm → Fqm such
that

1. |P| ≥ q(u+1)m−v2

;

2. for all P ∈ P , agree(w, P ) ≥ qv;

3. there exist scalars αu+1, αu+2, . . . , αv−1 ∈ Fqm such
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that for all x ∈ Fqm ,

w(x) = xqv

+

v−1
∑

i=u+1

αix
qi

.

By choosing q, m, u and v appropriately we can obtain
several interesting corollaries of this construction; we de-
scribe these corollaries below.

2.1 Low rate

As stated above, Justesen and Høholdt [JH01] obtained
a lower bound for the case, K = N δ (0 < δ < 1). Using
our main theorem we can show super-polynomial number
of codewords even with substantially larger agreement.

Corollary 2.2 (Low rate) Let δ, ρ ∈ (0, 1) be rational
numbers such that δ < ρ. Then, for infinitely many N ,
there is a word w : FN → FN , such that
∣

∣

∣
{P ∈ RS[N, N δ] : agree(w, P ) ≥ Nρ}

∣

∣

∣
≥ N (δ−ρ2) log2 N .

Proof: Let q = 2 and let m be large enough such that
u = δm and v = ρm are integers. Our claim follows im-
mediately from Theorem 2.1.

Comparison to earlier results: (See Figure 1) The pre-
vious state of the art for K = N δ, was that there are super-
polynomially many codewords if the agreement required is
Nδ

δ [JH01] (see [CW04] for a related argument). For in-
stance, for δ = 1

2 this quantity is 2
√

N . Corollary 2.2 im-
proves the super-polynomial lower bound on list size for
agreement as large as N

√
δ−ε for any ε > 0. (Note, how-

ever, that the previous arguments gave lists of size 2NΩ(1)

,
whereas our result only promises lists of size 2Ω(log2 N).)
As for upper bounds, the Johnson bound says that with
agreement greater than N (1+δ)/2 we obtain only polyno-
mially large lists. Once again, for δ = 1

2 , the Johnson
bound limits the number of codewords at agreement param-
eter N0.75, whereas Corollary 2.2 states that reducing the
agreement to N0.7 results in lists of size NΩ(log N).

Notice that when δ is close to 1, say δ = 1−γ (for some
small constant γ), then the Johnson bound ensures that there
are only O(N2) words with an agreement of more than
N1−γ

2 , whereas Corollary 2.2 shows that there are super-
polynomially many words if we relax the requirement to

only N1− γ
2 −

γ2

4 , (because (1 − γ
2 − γ2

4 )2 < 1 − γ, for
γ < 1

2 ).

2.2 Constant rate

Corollary 2.3 (Constant rate) Let r′ and r be positive in-
tegers such that r′ ≤ r ≤ 2r′. Let R = 2−r and R′ = 2−r′

.
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Figure 1. A comparison on double logarith-
mic scale, at N → ∞, of the new bound (solid
red line) with the Johnson-Guruswami-Sudan
upper bound (dotted blue) and the previ-
ous Justesen-Høholdt lower bound (dashed
green). The region where efficient list de-
coding algorithms exist is marked Easy and
where efficient list decoding is provably in-
feasible is marked Hard. The status of the un-
marked region (between the solid and dotted
lines) is still to be resolved.

Then, for infinitely many N , there is a word w : FN → FN ,
such that
∣

∣

∣
{P ∈ RS[N, RN ] : agree(w, P ) ≥ NR′}

∣

∣

∣
≥ N2r′−r.

Proof: This time we apply Theorem 2.1 with q = 2, m
large, u = m − r and v = m − r′.

Comparison to earlier results: No non-trivial bounds
were known for the case of high rate. In particular, the
counting arguments used for the case of low rate do not
say anything significant. [As before, there are at least
(

N
T

)

/NT−K codewords from RS[N, K] that all agree with
some word on T places. However, if we choose K = RN
for some constant R, then in order to make

(

N
T

)

/NT−K su-
perpolynomial, we need to restrict T to be K +O( N

log N ) =

RN(1 + o(1))].
As for the upper bounds for rate R, the Johnson bound

shows that the list size is O(N 2) when the agreement is
≥

√
RN . In contrast, Corollary 2.3 states that if the radius

is decreased to say R
1
2+εN (this corresponds to choosing

r′ =
(

1
2 + ε

)

r) then the list size cannot be bounded by
a fixed polynomial independent of R: it must be at least
N ε log( 1

R
).
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For the sake of completeness and due to the importance
of algorithmic RS list decoding, we explicitly state the fol-
lowing limitation to it. Recall that the Guruswami-Sudan al-
gorithm finds a list of all codewords with agreement at least
(NK)

1
2 with the received word. On the other hand it was

known that list-decoding to agreement K could encounter
superpolynomial sized lists. The following statement says
that one cannot get a significantly better list decoding algo-
rithm that works in as general as setting as the Guruswami-
Sudan algorithm.

Corollary 2.4 (Limits of RS algorithmic list decoding)
For all ε > 0, there is no polynomial time algorithm that,
for any N, K and received word w : FN → FN , produces a
list of all P ∈ RS[N, K] with agree(w, P ) > K

1
2+εN

1
2−ε.

Remark: Note however that the corollary produces coun-
terexamples for very low rates only. It may still be the case
that for high rates one can list-decode to large radii.

2.3 Explicit constructions

The lower bounds stated above imply the existence of a
word w in large agreement with many RS-codewords. How-
ever, we do not claim w can be constructed in polynomial
time in N (inspection of Part 3 of Theorem 2.1 reveals it can
be computed in quasi-polynomial time). Restricting our at-
tention to efficient and explicit constructions, we obtain the
following.

Corollary 2.5 (Explicit construction) Let δ ∈ (0, 1). Let
t and N be such that δt is an integer and q = N

1
t is a prime

power. Then, over the field FN , we have
∣

∣

∣
{P ∈ RS[N, N δ] : agree(w, P ) ≥ qN δ}

∣

∣

∣
≥ q(δt+1)(t−δt−1),

where w(x) = xqδt+1

for x ∈ FN .

Proof: We apply Theorem 2.1 with q = N
1
t , u = δt and

v = δt + 1. Note that since v = u + 1, the polynomial
P ∗(X) = Xqv

can be computed explicitly, as claimed.

Comparison to earlier results: The previous state of
the art, due to the recent result of Guruswami and
Rudra [GR05b], constructed an explicit word w with 2NΩ(1)

many codewords with agreement (2 − ε)N δ with w. For
appropriate choice of parameters, Corollary 2.5 can (for
example, setting t = b

√
log Nc) give an explicit w

with NΩ(
√

log N) codewords having agreement 2
√

log NN δ .
Thus, the agreement in our result is significantly larger than
that of [GR05b], but the number of codewords is signif-
icantly smaller. We stress that our results are not strong
enough for the application in [DMS99]: we do get a super-
polynomial number of words, but the application requires
2NΩ(1)

codewords with much larger agreement.

2.4 Other Related Work

There are a few results about problems related to the
combinatorial RS list decoding problem, that we now de-
scribe. Guruswami and Rudra [GR05b] prove that the
Guruswami-Sudan list decoding algorithm is optimal for
a more general problem called Polynomial-Reconstruction
and a related problem called List-Recovering of Reed-
Solomon codes. Cheng and Wan [CW04] prove that if
there is a polynomial time algorithm for list decoding of
Reed-Solomon codes up to some radius, then certain cryp-
tographic assumptions would be false. The results in this
paper make this statement vacuous over any fields where
our constructions apply. Kiayias and Yung [KY02] and
others have based cryptographic schemes on the hardness
of list decoding Reed-Solomon codes. Our work proves re-
sults in the direction of validating their assumptions.

3 The construction

We wish to show that there is a small ball that contains
many codewords. We do this in two steps. First (Proposi-
tion 3.4), we relate the existence of a small ball with many
codewords to the existence of a large family of polyno-
mials with coefficients satisfying certain properties. Then
(Lemma 3.5), by defining a suitable family of polynomials
and using a counting argument, we show that the required
large family of polynomials does exist.

As explained in the introduction, the key idea of our con-
struction is the use of sparse polynomials that have many
roots. Specifically, we work with polynomials whose roots
form subspaces in a field. In this section, we define these
polynomials formally and state the property that we need in
our construction.

We view K = Fqm as a vector space of dimension m
over the base field Fq. In the proof of Corollary 2.2, we
take q to be 2; however, in order to obtain good explicit
constructions in Corollary 2.5, we need to let q grow with
N .

Definition 3.1 (Subspace polynomials) Let L be a sub-
space of K viewed as a vector space over Fq. The subspace
polynomial for L is defined by

PL(X) =
∏

`∈L

(X − `).

We think of PL as a function from K to K, and for a set
S ⊆ K, use PL(S) to denote the image of S under PL, that
is, PL(S) = {PL(s) : s ∈ S}. The following proposition
appears as [Ber68, Theorem 11.31] (see also [BSGH+04,
Claim 8.15]). We include a proof for the sake of complete-
ness.
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Proposition 3.2 Let L be a subspace of K. Then, PL has
the form

Xqdim L

+

dimL−1
∑

i=0

αiX
qi

,

where αi ∈ K.

Proof: Let d = dim L, and consider the d + 1 Fq-linear
functions from K to K defined by fi(x) = xqi

for i =
0, 1, . . . , d. The set of all Fq-linear functions from L to K

form a K-vector space of dimension d. So, these d + 1
linear functions must have a non-trivial dependency (when
viewed as functions from L to K), that is, there exist scalars
α0, α1 . . . , αd ∈ K (not all zero) such that

∑d
i=0 αifi(x) =

0 for all x ∈ L. Thus, there is a non-zero polynomial of the
form

∑

i αiX
qi

in K[X ] of degree at most qd that vanishes
on L. We may assume that this polynomial is monic. But
since L has qd elements there is only one such polynomial
(and it degree must be qd), so it must be PL(X).

Definition 3.3 A family of polynomials P ⊆ K[X ] is said
to be an (a, k)-family if

1. each polynomial in P has at least ‘a’ roots in K, and

2. there is a polynomial P ∗ such that for all P ∈ P ,
P ∗ − P has degree at most k. We refer to the P ∗ as a
pivot for the family.

In the next proposition, we implement the first step of our
plan: relate the existence of a ball with many codewords to
the existence of a large (a, k)-family.

Proposition 3.4 Let a, k and r be positive integers. Then,
the following are equivalent.

(a) There is a word w : K → K and r polynomi-
als P1, P2, . . . , Pr of degree at most k such that for
i = 1, 2, . . . , `, agree(w, Pi) ≥ a.

(b) There is an (a, k)-family of polynomials of size r
whose pivot is the unique polynomial Pw of degree at
most qm−1 that agrees with the word w on all points
in K.

Proof: First, we show that (a) implies (b). Assume (a)
holds. Observe that Pi agrees with w at the point x if and
only if x is a root of the polynomial Pw − Pi. The required
(a, k) family is then {Pw − Pi}r

i=1.
Next, we show that (b) implies (a). Assume (b) holds,

and fix an (a, k)-family {Q1, Q2, . . . , Qr} with pivot Q∗.
Define w : FN → FN by w(x) = Q∗(x). Now, for i =
1, 2, . . . , r, let Pi = Q∗ − Qi. Note that w(x) and Pi agree
on x if and only if x is root of Q∗ − Pi = Qi. Since Qi has
at least a roots, w and Pi agree on at least a points. Also,

each Pi is a polynomial of degree at most k. Thus (a) holds.

In the light of the above, in order to establish Theo-
rem 2.1, it is enough to exhibit a large (qu, qv)-family of
polynomials whenever u ≤ v. We are now ready for the
second step of our plan: exhibit such a family of large size.
We need polynomials with many roots, say at least qv . Also
we need these polynomials to agree on all their coefficients
for monomials of degrees more than qu. We will concen-
trate on subspace polynomials corresponding to subspaces
of dimension approximately v. These polynomials have de-
gree Nv and the required Nv roots. Furthermore, by Propo-
sition 3.2, they are sparse: they have only v−u non-zero co-
efficients corresponding to monomials of degree more than
qu. By the pigeonhole principle a fraction at least N−(v−u)

of these polynomials have the same top coefficients. Our
main theorem will then follow by just counting the number
of subspaces of dimension v. We now present this argument
more formally.

Lemma 3.5 (Main lemma) Let u and v be integers such
that 0 ≤ u ≤ v ≤ m. Then, there is a (qu, qv)-family
P ⊆ K[X ] of size at least q(u+1)m−v2

. Furthermore, each
polynomial in P is a subspace polynomial of degree qv , and
the pivot of the family has the form

P ∗(X) = Xqv

+

v−1
∑

i=u+1

αiX
qi

.

Proof: Consider the subspace polynomials PL(X) where
L is a v-dimensional subspace of K. By Proposition 3.2,
these polynomials have the form

Xqv

+
v−1
∑

i=0

αiX
qi

,

where αi ∈ K. The number of subspaces of dimension v is

(qm − 1)(qm − q) · · · (qm − qv−1)

(qv − 1)(qv − q) · · · (qv − qv−1)
≥ qv(m−v),

and by the pigeonhole principle, for at least a fraction
q−m(v−u−1) of these subspaces, their subspace polynomi-
als have the same αi for i = u+1, u+2, . . . , v. Let this set
of at least qv(m−v)×q−m(v−u−1) = q(u+1)m−v2

subspaces
be L. Then,

P = {PL : L ∈ L}

is the required (qu, qv)-family.

Proof of Theorem 2.1 We combine Proposition 3.4 and
Lemma 3.5.
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4 Open problems

• The gap between the Johnson-Guruswami-Sudan
bound (of

√
NK) and our lower bounds should be

further reduced. However, it is not clear if subspace
and linearized polynomials are capable of showing
super-polynomial lower bounds close to the Johnson-
Guruswami-Sudan. Thus, we ask whether better list
decoding (with agreement A <

√
NK) is possible

if we restrict our attention only to subspace/linearized
polynomials.

• The proof of Theorem 2.1 uses a counting argument
to find a set of coefficients that appear in many sub-
space polynomials. One method for obtaining an ex-
plicit version of Corollary 2.2 (that is interesting in its
own right) would be by gaining a better understanding
of the coefficients of subspace polynomials.

• Recently, better constructions of list decodable codes
based on RS codes were presented by Parvaresh &
Vardy [PV05] and by Guruswami & Rudra [GR05a].
Could our techniques be useful in understanding the
limitations of these new codes? In particular, an es-
sential parameter in [PV05, GR05a] is the ”folding”
parameter (denoted M in [PV05] and m in [GR05a])
which is the number of field elements that comprise a
single alphabet symbol in their codes. When m = 1
one obtains standard RS codes, and as m increases so
does the efficient list-decoding radius (and the minimal
required agreement decreases). For large m [GR05a]
obtain efficient list decoding (with polynomial size
lists) arbitrarily close to the rate of the code. Thus,
we ask whether our techniques could imply combina-
torial lower bounds for folded RS codes with a small
number m > 1 of field elements per alphabet symbol?
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