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Abstract

In this paper, we construct large sequences and matri-
ces with the property that the contents of any small
window determine the location of the window, robustly.
Such objects have found many applications in practical
settings, from positioning of wireless devices to smart
pens, and have recently gained some theoretical inter-
est.

In this context, we give the first explicit construc-
tions of sequences and matrices with high rate and con-
stant relative distance. Accompanying these efficient
constructions, we also give efficient decoding algorithms,
which can determine the position of the window given
its contents, even if a constant fraction of the contents
have been corrupted.

∗Department of Mathematics, Rutgers University.
berkowitz@math.rutgers.edu
†Department of Mathematics & Department of Computer Sci-

ence, Rutgers University. Supported in part by a Sloan Fellowship
and NSF grant CCF-1253886. swastik@math.rutgers.edu

1 Introduction

A 1-dimensional “positioning pattern” is a sequence of
N symbols from some alphabet, with the property that
any window of n consecutive elements from the sequence
uniquely determines the position of the window. Simi-
larly, a 2-dimensional “positioning pattern” is an N×N
matrix of symbols from some alphabet, with the prop-
erty that any n × n (contiguous) window of elements
uniquely determines the position of the window. Posi-
tioning patterns have been classically studied in com-
binatorics under various names: de Bruijn sequences,
perfect maps, pseudorandom sequences and arrays, etc.
In recent years, these objects have found a number of
useful real-world applications, such as robot localiza-
tion [Sch01], camera localization [SZH+12], the Echo
Smartpen, and smart stylus’ [sty].

To see the utility of positioning patterns, let us
briefly describe the application from [sty]. We are given
a display device (such as a monitor or a laptop screen)
whose sole capability is display (in particular, it cannot
detect touch or the presence of a stylus/pen). The
smart stylus from [sty] is based on a combination of
software and hardware, and converts any such display
into one which can take input from the stylus. The
hardware component is a pen with a small camera at its
nib, which when brought near the screen of the display
device can view a small n × n window of the screen.
The software component sets the lower order bits of the
color attribute for each pixel on the screen according
to a positioning pattern. This ensures that the lower
order bits for any n× n window of the screen uniquely
determines the position of the window: thus one can
use the image from the pen camera to determine the
location of the pen, and this is just as good as having
a display that can detect the location of an associated
stylus.

A “robust positioning pattern” is a se-
quence/matrix of symbols, which allows such position
determination by reading a small window from the
pattern even if some errors occur while reading the
small window. Concretely, the sequence/matrix has
the property that the contents of the different windows
should be far apart from each other in Hamming



distance. Algorithmically, we would like to be able to
efficiently decode the position of the window, given the
corrupted contents of a window.

We are interested in constructing such robust posi-
tioning patterns and designing associated decoding al-
gorithms for them. Our motivation comes from both
practice and theory. Firstly, these problems are natu-
rally motivated by the applications of positioning pat-
terns given above, which rely on physical devices and are
thus prone to error. Secondly, this topic presents inter-
esting combinatorial and algorithmic challenges at the
confluence of error-correcting codes and combinatorial
sequence design, both of which are extensively studied
and have highly developed theories.

Our main results give explicit constructions of ro-
bust positioning patterns, along with associated decod-
ing algorithms. These constructions are the first to
achieve constant rate while being robust to a constant
fraction of errors, and are also the first to achieve robust-
ness to a constant number of errors with redundancy
within a constant factor of optimal.

1.1 Results

We begin with the 1 dimensional setting.
Let σ ∈ ΣN be a string. We let σ[i, j) denote

the substring σiσi+1 . . . σj−1. We will be interested
in substrings of the form σ[i, i + n), which we will
also call the “windows of length n”. We define the
window-n distance of σ to equal the minimum, over
distinct i, j ∈ [N − n+ 1] of

∆(σ[i, i+ n), σ[j, j + n)),

where ∆ denotes the Hamming distance.
The basic combinatorial problem here is to deter-

mine the length of the longest string with window-n dis-
tance at least d. The basic algorithmic problems here
are: (1) Encoding: to explicitly construct a long string
with window-n distance at least d, and (2) Decoding:
for this sequence, given a “received string” r ∈ Σn which
is within distance e of some window σ[i, i + n − 1], to
find i.

It is sometimes convenient to use the following
terminology. Define the window-n rate of σ to equal

logN
n log |Σ| . Define the window-n relative distance to be the

window-n distance divided by n.
It is clear that the length N of any sequence with

window-n distance d cannot be more than the size of the
largest error-correcting code C ⊆ Σn with minimum
distance d (since the n-windows of the sequence form
such an error-correcting code). Thus we have the
following rough upper bounds on the length of such a
sequence:

1. for d = δn (with δ > 0 a constant), we have
N ≤ |Σ|n(1−f(δ)), for some function f(δ) that goes
to 0 as δ goes to 0,

2. for d = O(1), |Σ| large, we have N ≤ |Σ|n
|Σ|Ω(d) ,

3. for d = O(1), |Σ| = 2, we have N ≤ 2n

nΩ(d) .

A simple application of the Lovasz Local Lemma
(suggested to us by Nathaniel Shar) shows that the
above upper bounds on N are essentially tight (non-
constructively); there exist strings in ΣN matching
the above bounds. A very nice result of Kumar and
Wei [KW92] shows that a random irreducible Linear
Feedback Shift Register Sequence matches the third of
the above upper bounds with high probability (this re-
sult holds for all d ≤

√
n). It is natural to ask if we

can match these bounds with explicit constructions and
efficient decoding algorithms.

Our main results for 1-dimensional sequences give
explicit constructions and efficient decoding algorithms
for sequences, essentially matching the above parame-
ters1.

Theorem 1. (1-Dimension, Large Σ, constant δ)
There exists an infinite sequence of n and alphabets
Σn (with |Σn| ≤ O(n)), such that for every R ∈ (0, 1),
there is a sequence σ ∈ ΣNn with:

1. the rate of σ is at least R,

2. the window-n relative distance of σ is at least
max(1− 3R, (1−R)/3)− o(1),

3. the i’th coordinate of σ can be computed in time
poly(n),

4. n-windows of σ can be decoded from a constant
fraction of errors in poly(n) time.

This theorem follows from Theorem 6.

Theorem 2. (1-Dimension, |Σ| = 2, constant δ)
There exists an infinite sequence of n such that for
every R ∈ (0, 1), there is a sequence σ ∈ {0, 1}Nn with:

1. the rate of σ is at least R,

2. the window-n relative distance of σ is at least
h(R)− o(1), (where h(R) > 0 ),

3. the i’th coordinate of σ can be computed in time
poly(n),

1We require a widely believed number theoretic conjecture to
attain the third set of parameters.



4. n-windows of σ can be decoded from a constant
fraction of errors in poly(n) time.

This theorem follows from Corollary 4.1.

Theorem 3. (1-D, Large Σ, constant distance)
There exists an infinite sequence of n and alphabets Σn
(with |Σn| = O(n)), such that for every constant d,
there is a sequence σ ∈ ΣNnn with:

1. Nn ≥ |Σn|n
|Σn|O(d) ,

2. the window-n distance of σ is at least d,

3. the i’th coordinate of σ can be computed in time
poly(n),

4. n-windows of σ can be decoded from Ω(d) errors in
poly(n) time.

This theorem follows from Theorem 6.
Our result for constant distance binary codes de-

pends on the existence of suitable Mersenne-like primes.
Such primes are widely believed to exist based on stan-
dard number theoretic heuristics.
Conjecture C: There exists a constant c and infinitely
many n such that there exists a prime between 2n−c ·n
and 2n − 1.

Note that this conjecture would be implied by the
existence of infinitely many Mersenne primes.

Theorem 4. (1-D, |Σ| = 2, constant distance)
Assume conjecture C. There exists an infinite sequence
of n such that for every constant d, there is a sequence
σ ∈ {0, 1}Nn with:

1. Nn ≥ 2n

nO(d) ,

2. the window-n distance of σ is at least d,

3. the i’th coordinate of σ can be computed in time
poly(n),

4. n-windows of σ can be decoded from Ω(d) errors in
poly(n) time.

The proof of this theorem is omitted from this
version of the paper.

In two dimensions, we consider matrices ΣN×N , and
consider n×n windows within it. All the definitions are
similar, and we omit them from this introduction. Our
main result gives efficient constructions of constant rate,
constant relative distance matrices over large alphabets.

Theorem 5. (2-D, Large Σ, constant δ) There
exists an infinite sequence of n and alphabets Σn (with
|Σn| ≤ O(n), such that for every R ∈ (0, 1), there is a
matrix σ ∈ ΣNn×Nn with:

1. the rate of σ is at least R,

2. the window-n relative distance of σ is at least
h(R)− o(1), where h(R) > 0,

3. the (i, j)’th coordinate of σ can be computed in time
poly(n),

4. (n×n)-windows of σ can be decoded from a constant
fraction of errors in poly(n) time.

The proof of this theorem is also omitted from
this version of the paper. These can then be used
to construct efficienctly encodable/decodable binary 2-
dimensional robust positioning patterns of high rate and
constant relative distance (we omit the formal theorem
statement). We believe that our techniques generalize
to higher dimensional positioning patterns too.

Our large alphabet constructions all use properties
of polynomial-based error-correcting codes (especially
using their cyclicity when the evaluation set is special),
in conjunction with Gray codes.

Our binary constructions are based on a new “aug-
mented” code concatenation scheme. This new scheme
is based on two ideas: (1) using a low-autocorrelation se-
quence as a “marker”, and (2) designing an inner code
for the concatenation all of whose codewords are far
away from all substrings of the marker.

1.2 Related work

The classical notions of de Bruijn sequences and M
sequences are the basic examples of positioning pat-
terns. The two-dimensional “de Bruijn torus” is the
natural generalization to two dimensions, and were first
constructed by [MS76]. These found applications in
various practical settings for localization / position-
ing [SZH+12, Sch01, sty].

Efficiently decodable de Bruijn sequences and tori,
which are extremely natural for the positioning applica-
tions, were given by [MEP96, MP94, BM93, DMRW93].

The requirement for robustness in positioning pat-
terns is very natural for real-world applications where
the positioning pattern is “measured” by a physical
device. Indeed, several applied works encountered
these problems (in applications such as wireless de-
vice localization, and markers for “augmented real-
ity”) [KY07, JMDB14, HHSZ13], and proposed ad hoc
solutions.

On the theoretical side, there were some important
papers on robust positioning such as [KW92, BEG+12,
HMNO08]. [KW92] showed that a random linear feed-
back shift register sequence provides a nearly optimal
tradeoff between the window-n distance and the length
of the sequence (in the regime where the number of er-
rors is less than

√
n). [BEG+12] gave constructions of



N × N 2-dimensional robust positioning patterns (for
n× n windows) with N = 2O(n) (while there exist such

patterns with N = 2O(n2)).

1.3 Overview of our constructions

We begin by describing a simple construction of a con-
stant rate 1 dimensional sequence over a large alphabet
with constant relative window-n distance. This simple
construction only leads to codes with rate R ≤ 1/3,
and having rate R approaching 1 seems to require some
significantly new ideas.

Let us also remark that there are several easy con-
structions of low rate sequences (with rate < 1/2) with
constant relative window-n distance using “markers”,
but going to high rate introduces significant conceptual
obstacles (in particular, one really needs to handle the
overlap of the windows in the sequence).

Let C be the Reed-Solomon code of degree ≤ k
polynomials over Fq. We will take n = q − 1. Let us
choose the sequence evaluation points for these poly-
nomials to be g, g2, . . . , gq−1, where g is a generator of
F∗q . Thus the codeword corresponding to the polyno-
mial f(X) is a rotation of the codeword corresponding
to the polynomial f(giX) (for every i).

Partition C into the equivalence classes, where two
codewords are equivalent if they are rotations of one
another. Let c1, . . . , cM be a collection of codewords,
one from each equivalence class. Let Σ = Fq, let
N = M ·(q−1) and let σ ∈ ΣN be the sequence obtained
by concatenating c1, c2, . . . , cM . Note that N ≈ qk+1.

We claim that σ has window-n distance at least
n − 3k. Indeed, if we look at any length n window
of σ, it looks like the concatenation of a suffix of ci
and a prefix of ci+1. A moment’s inspection, using the
fact that every rotation of ci is also a codeword of C
shows that every n-window of this sequence looks like
the splicing together of two codewords of C. Using this
fact, it follows that the number of agreements between
two distinct n windows is at most 3 times the maximum
number of agreements between two codewords. Thus
the distance between any two n-windows is at least
n− 3k.

The above construction fails to do anything inter-
esting if k > n/3. To go beyond, we will exploit our
ability to carefully choose the ordering of c1, . . . , cM .
Our construction ensures that many of the windows that
straddle ci and ci+1 are (essentially) rotations of ci (and
in particular, they are essentially codewords of C). We
do this using a Gray code. The analysis of the distance
is somewhat mysterious, and takes advantage of the fact
that windows now look like the gluing together of over-
lapping codewords. This leads to a bound of (n − k)/3
for the window-n distance.

Our generalization to 2 dimensions uses 2 variable
polynomial codes (with bounded individual degree). We
design the appropriate Gray code like property, and lay
out the codewords of the 2 variable polynomial code on
a large 2 dimensional grid. The construction is quite
simple given the 1-dimensional construction, but the
analysis gets significantly complex.

Our binary construction in the one dimensional case
is based on a new “augmented” code concatenation
scheme. This new scheme is based on two ideas: (1)
using a low-autocorrelation sequence as a “marker”, and
(2) designing an inner code for the concatenation all of
whose codewords are far away from all substrings of the
marker.

2 Preliminaries and Notation for 1
Dimensional Robust Positioning Sequences

Some basic preliminaries. Throughout this paper we
will use [n] to refer to the first n natural numbers with
0 included. That is

[n] := {0, 1, 2, . . . , n− 1}

We need some notation for expressing and accessing
values of sequences.

Definition 2.1. Given a sequence S := (s1, . . . , sN )
we define S[i] to be the ith entry of S, i.e. S[i] = si.
Further if I := (i0, i2, . . . , in) then we define

S[I] := (S[i0], S[i1], . . . , S[in])

Furthermore for our robust positioning patterns we
will denote them as a sequence of length N , however
we will frequently wish to consider the coordinates
cyclically. To that extent for a sequence S of length N
we will say that for any integer m even if m is negative
or > N we have that S(m) := S(m mod N).

Also, we will frequently need to refer to intervals of
integers, and so we use the notation [m1,m2].

Definition 2.2. Given m1 < m2 define [m1,m2] :=
(m1,m1 + 1 . . . ,m2). We will use square brackets for
inclusive and open brackets for open boundaries much
like intervals in R. For example (m1,m2] := (m1 +
1, . . . ,m2). Sometimes when more compact notation is
needed, we will use 〈m〉n to denote [m,m+ n).

For sequences S1, S2 ∈ Σn, we denote their Ham-
ming distance by ∆(S1, S2), and denote their agreement
by agree(S1, S2). Thus ∆(S1, S2) + agree(S1, S2) = n.

For sequences S1, S2, . . . Sn, we will denote their
concatenation by (S1, S2, . . . , Sn) .

We will frequently want to rotate sequences, cycli-
cally permuting their entries. We give special notation



to this operation. We define ρ : Σn 7→ Σn be the coordi-
nate rotation map ρ((x1, . . . , xn)) = (x2, x3, . . . , xn, x1).

The following definitions caption the relationship of
two sequences being almost the same (i.e. differ in only
one position) after a rotation.

Definition 2.3. Given two sequences S1, S2 ∈ Σn we
write S1 ∼ S2 if there exists some rotation ρj such that
∆(ρjS1, S2) ≤ 1. Similarly if T1 ∈ Σm and T2 ∈ Σn

where m ≤ n we write T1 . T2 if there is some i such
that T1 ∼ T2[i, i+m− 1].

Finally we will need a way to quantify the error
correcting properties of the sequences we create. We
borrow the terms rate, distance and relative distance
from Coding Theory as follows:

Definition 2.4. Given a q-ary sequence S of length N
and an integer n (the window length), we say that the
rate of S is

R(S) := R :=
logq(N)

n
.

We define the distance of S to be min0≤i 6=j≤N ∆(S[i, i+
n), S[j, j+n)). Finally we define the relative distance of
S to be

δS := min
0≤i 6=j≤N

∆(S[i, i+ n), S[j, j + n))

n

3 Robust Positioning Sequences Over Large
Alphabets

3.1 Overview

In this section we’ll show an explicit construction of a
robust positioning pattern over large alphabets which is
”good” in the sense that it will acheive constant fraction
distance and constant rate. Further the construction is
capable of acheiving any rate between 0 and 1, and any
relative distance between 0 and 1 as well.

The positioning pattern itself is acheived by listing
consecutively the entries of a Reed-Solomon code, which
has been suitably pruned so that no two codewords are
rotations of one another. Further we need to list the
remaining codewords in a specific order, namely in such
a way that their prefixes form a q-ary gray code of length
deg(p) (See Figure 1). This ordering will ensure that
windows which are slightly misaligned and which see
the end of some codeword Ci and the gray code prefix
of its successor codeword Ci+1 are tricked into believing
they instead see a rotation of the first codeword ρj(Ci)
(see Remark 3.1 and the accompanying diagram Figure
2). But since we ensured that our codewords were not
rotations of eachother, any such rotated codewords will
be unique and distant and will allow us to recover the

codeword Ci, while the rotation will tell us exactly the
location of the current window.

One more small remark is that ocasionally our
window will not only see the gray code bits of the
subsequent Reed-Solomon codeword, but in such cases
we may break the window down into two subwindows
which are small windows of rotated codewords, and at
a cost of losing some distance from the original Reed-
Solomon code, we will be able to decode one of these
shortened subwindows.

3.2 Definitions and Construction

First in order to explicitly write down a Reed-Solomon
codeword, we need to fix an ordering of our underlying
base field F. So to that aim fix g a generator of F×q , and
we will order the elments of F× as subsequent powers of
g.

Definition 3.1. Fix n := |F×| = q − 1. Given the
function f : [Fq] → [Fq] we define the word Cf :=
C(f) ∈ Fnq by setting

C(f) := (f(g0), f(g1), . . . , f(gn−1))

Let C := {C(f) s.t. f ∈ F}.

Then let Σ be a q-ary gray code of length k.
Our robust positioning pattern will be built out of
blocks consisting of encodings of a certain family of
polynomials F given by interpolating a polynomial with
of degree k with prefix given by some σ ∈ Σ, and with
constant term 0, and coefficient of X fixed to be 1
(these last two properties will ensure that the family
of polynomials define words which are not rotations of
one another).

Definition 3.2. Given σ ∈ Fk let fσ(X) ∈ F[X] be
the unique interpolating polynomial of degree k + 1 so
that:

• coeffX(fσ) = 1

• coeff1(fσ) = 0

• for each i ∈ [0, k), fσ(gi) = σi

Further, define F := {fσ s.t. σ ∈ Fk}.

The first two conditions above are equivalent to
saying fσ(X) := Xhσ(X) where

• hσ(0) = 1

• for each i ∈ [0, k − 1], hσ(gi) = σig
−i

Given a polynomial we will encode it in the follow-
ing manner.



σ0 fσ0

n

σ1 fσ1

n

σ2 fσ2

n

Figure 1: A view of the beginning of the robust
positioning pattern SΣ constructed in Definition 3.4. σi
represents the ith word in the Gray code Σ, and fσi

is the rest of the appropriate interpolated polynomial
word so that the codeword C(fσi) has σi as a prefix.

Definition 3.3. Given the function f : [Fq]→ [Fq] we
define the word Cf := C(f) ∈ Fnq by setting

C(f) := (f(g0), f(g1), . . . , f(gq−2))

Let C := {C(f) s.t. f ∈ F}.

We now are ready to present the definition of the
robust positioning pattern we will study:

Definition 3.4. Let Σ = σ0, σ1, . . . , σq
k−1 be a q-

ary gray code of window length k. For convenience of
notation we will often write fa for fσa and Ca for Cf

σa
.

Then define the sequence S to be

S := SΣ :=
(
Cf

σ1
, Cf

σ2
, . . . , Cf

σ
qk
)

:=
(
C0, C1, . . . , Cq

k−1
)

See Figure 1 for a depiction of part of this construction.

3.3 Proof of Distance of SΣ

The goal of this section is to prove the following distance
result for S.

Theorem 6. The sequence S := SΣ =

[Cf
1

, Cf
2

, . . . , Cf
qk

] defined in Definition 3.4
is a q-ary sequence of rate k+1

q and distance

max
(
q−k

3 − 3, q − 3k − 9
)

with window size n := q− 1.

When considering a window w = S[m] := S[m,m+
n) often the most important identifying feature is m̄ =
m mod n where 0 ≤ m̄ < n. This tells us which
symbols correspond to Gray code entries, and which
are values of the interpolated polynomial fσ. Larger
values of m̄ indicate that the Gray code has been pushed
leftward (wrapping around) in our window.

Our first observation is that when m̄ is small, then
we see almost exactly a rotation of a copy of some
codeword Ca.

Observation 3.1. Let w be a length n window of SΣ,
w = SΣ〈m〉n := (S(m), S(m + 1), . . . , S(m + n − 1))
where m = an + m̄ and 0 ≤ m̄ < k. Then ρm̄Ca ∼
w,(i.e. ∆(w, ρm̄Ca) ≤ 1).

σa[m̄, k) σa+1[0, m̄)fσa[k, n)

∼ ρm̄C(fσa)

∼ σa[0, m̄)

m̄

Figure 2: Accompanying diagram for Observation 3.1.
Note how the size of m̄ affects the position of the Gray
code bits, and the fact that m̄ < k is important to
ensuring that the Gray code bits are a suffix.

fσa[m̄, n) σa+1 fσa+1[0..m̄− 1]

. fσa

. fσa+1

Figure 3: Accompanying figure for Observation 3.2

Proof. For a depiction of the argument see Figure 2. If
m = an+ m̄ then we see that

w = SΣ[aq + m̄] =
(
Ca[m̄, n), Ca+1[0, m̄)

)
=
(
σa[m̄, k), Ca[k, n), σa+1[0, m̄)

)
Therefore

w = ρm̄
(
σa+1[0, m̄), σa[m̄, k), Ca[k, n)

)
and from the definition

ρm̄Ca = ρm̄
(
σa[0, m̄), σa[m̄, k), Ca[k, n)

)
As Σ is a Gray code we have that ∆(σa, σa+1) =
1 so comparing the above two expressions it follows
immediately that ∆(w, ρm̄Ca) ≤ ∆(σa, σa+1) = 1

2

Second, we observe that when m̄ is larger, the situ-
ation isn’t as nice, but we can split the window up into
two overlapping parts which do look like subwindows of
codewords.

Observation 3.2. Let w = S〈m〉n where m = an+ m̄
and k < m̄ ≤ n. If we let x1 = n−m̄ then w[0, x1+k) .
C(fa) and w[x1, n) . C(fa+1).

Proof. w[0, x1 + k − 1] ⊂ S〈m − m̄ + k〉n ∼ C(fa) by
Observation 3.1. We also have that w〈x1, q − 1〉n ⊂
S〈m+ (q − m̄)〉n = C(fa+1). 2

We combine these two observations into a single
corollary.



fσa2 fσa2+1

fσa1 fσa1+1σa1+1

σa2+1

q − m̄1 q − m̄2 q − m̄1 + k
q − m̄2 + k

I1 I2 I3 I4 I5

w1 :

w2 :

Ca1 ∩ Ca2

Ca1+1 ∩ Ca2

Ca1+1 ∩ Ca2+1

Figure 4: The partition in Case 1. The decomposition
of w1, w2 into the intersections of rotations of codewords
from C (shown by the curly brackets) is used to provide
our distance bounds.

Corollary 3.1. Let w1 6= w2 be windows of SΣ of
length ` ≤ n. Assume that w1 = S〈m1〉n and
w2 = S〈m2〉n where for all i = 1, 2 we have either
(k ≤ m̄i and m̄i + ` < n+ k) or (0 ≤ m̄i < k). Then
agree(w1, w2) ≤ min(`, k + 3).

Proof. Note that the congruence conditions are exactly
the conditions we need to apply the above observations.
If k ≤ m̄i and ` < n − m̄i + k then by Observation 3.2
wi . Cai for some ai. In the second case if 0 ≤ m̄i ≤ k
then wi ⊂ S[mi,mi + n) . ρm̄iCai for some ai by
Observation 3.1. So by using triangle inequality, the
fact that ρm̄1Ca1 6= ρm̄2Ca2 , and Lemma 3.1 we obtain
that

agree(w1, w2) ≤ min(`, agree(C1, C2)+3) ≤ min(`, k+3)

2

Now we are ready to begin the proof of our
main theorem. The basic strategy will be as follows:
Corollary 3.1 will allow us to break each window into
two pieces, each of which is a rotation of a subwindow
of a codeword from C. Then we will break our windows
up into pieces based on these subwindows (a process
which will require several cases), analyze what distance
and agreement bounds we can get on each piece, and
then recombine our answers for the final estimate.

Theorem 6 Let w1 6= w2 be windows of size q of SΣ.
Then ∆(w1, w2) ≥ max(q − 3k − 9, q−k

3 − 3).

Proof. Assume w1 = S〈m1〉n and w2 = S〈m2〉n. Let
m1 ≡ m̄1, m2 ≡ m̄2 where 0 ≤ m̄1, m̄2 < n. Assume
without loss of generality that m̄2 ≤ m̄1. We proceed
by cases.

Case 1 First assume that m̄1−m̄2 < k and k < m̄2.
As a result we will have that

0 < n− m̄1 ≤ n− m̄2 < n− (m̄1− k) ≤ n− m̄2 + k < n

Therefore we can partition the interval window
[0, n) into 5 pieces by letting (see Figure 4)

I1 := [0, n− m̄1)

I2 := [n− m̄1, n− m̄2)

I3 := [n− m̄2, n− m̄1 + k)

I4 := [n− (m̄1 − k), m̄2 + k)

I5 := [n− (m̄2 − k), n)

Note that it is possible that some of these intervals
are empty (i.e. if m̄1 = m̄2) but this will not affect our
argument.

For each j let agreej := agree(w1[Ij ], w2[Ij ]).
By Observation 3.2 for some a1, a2 we have that
w1[I1, I2, I3] . Ca1 and w1[I3, I4, I5] . Ca1+1. Sim-
ilarly we also have that w2[I1, I2, I3, I4] . Ca2 and
w2[I3, I4, I5] ∼ Ca2+1. Therefore by Corollary 3.1

agree1 + agree2 + agree3

= agree(w1[I1, I2, I3], w2[I1, I2, I3]) ≤ k + 3

agree2 + agree3 + agree4

= agree(w1[I2, I3, I4], w2[I2, I3, I4]) ≤ k + 3

agree3 + agree4 + agree5

= agree(w1[I3, I4, I5], w2[I3, I4, I5]) ≤ k + 3

Simply by noting that |I2| + |I3| = |I3| + |I4| = k we
find that

agree1 + agree2 + agree5 ≤ n− |I2| − |I3| = n− k
agree1 + agree4 + agree5 ≤ n− |I3| − |I4| = n− k

Summing these five inequalities yields
agree(w1, w2) =

∑
agreem ≤ 2n+k

3 + 3. Summing
only the first and third inequalities we find that

agree(w1, w2) =
∑

agreej

≤ agree1 + 2agree2 + 2agree3 + 2agree4 + agree5

≤ 2k + 6

Therefore in this case we find that agree(w1, w2) ≤
min(2k + 6, 2n+k

3 + 3).

Case 2 Here assume again that m̄2 > k but now
m̄1 − m̄2 ≥ k. Here we have to partition slightly
differently, as the Gray code bits will not overlap. Note
that we have
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Figure 5: The partition in Case 2

0 < n− m̄1 ≤ n− m̄1 + k ≤ n− m̄2 ≤ n− m̄2 + k ≤ n

So therefore we can partition [0, n) as follows:

I1 := [0, n− m̄1)

I2 := [n− m̄1, n− m̄1 + k)

I3 := [n− m̄1 + k, n− m̄2)

I4 := [n− m̄2, n− m̄2 + k)

I5 := [n− m̄2 + k, n)

Here we will have by Observations 3.1 and 3.2
that for some a1, a2 that w1[I1, I2] . Ca1 and
w1[I2, I3, I4, I5] . Ca1+1, while w2[I1, I2, I3, I4] . Ca2

and w2[I4, I5] . Ca2+1. So again defining agreej :=
agree(w1[Ij ], w2[Ij ]) we can use Corollary 3.1 to com-
pute that

agree1 + agree2 = agree(w1[I1, I2], w2[I1, I2]) ≤ k + 3

And again by similar reasoning applied on each pair
of overlapping subwords

agree1 + agree2 ≤ k + 3

agree2 + agree3 + agree4 ≤ k + 3

agree4 + agree5 ≤ k + 3

Also, simply by noting that |I2| = |I4| = k we find that

agree1 + agree2 + agree3 + agree5 ≤ q − |I2| = n− k
agree1 + agree3 + agree4 + agree5 ≤ q − |I4| = n− k

So summing all five inequalities we find that
3
∑

agreem ≤ 2q + k + 9. And so agree(w1, w2) ≤
2q+k

3 +3. Also summing over only the first 3 inequalities
we find that

agree(w1, w2) =
∑

agreej

≤ agree1 + 2agree2 + agree3 + 2agree4 + agree5

≤ 3k + 9

σa2 σa2+1

fσa1 fσa1+1σa1+1

fσa2

I1 I2 I3

w1 :

w2 :

Figure 6: The partition in Case 4

Therefore in this case we find that agree(w1, w2) ≤
min(3k + 9, 2q+k

3 + 3).

Case 3 In this case we assume that 0 ≤ m̄2 ≤
m̄1 ≤ k. By Lemma 3.1 we find that for some ai
wi ∼ Cai . So in this case we have by Corollary 3.1
that agree(w1, w2) ≤ k + 3.

Case 4 The last case is when m̄2 ≤ k but m̄1 > k.
In this case if we let

I1 := [0, n− m̄1 − 1]

I2 = [n− m̄1, q − m̄1 + d− 1]

I3 := [n− m̄1 + d, q − 1]

Then we have again by Observation 3.1 that w2 ∼
Ca2 for some a2. By Observation 3.2 that for some a1,
w1[I1, I2] . Ca1 and w1[I2, I3] . Ca1+1. If we define
agreej := agree(w1[Ij ], w2(w2[Ij ]) then we will have
that

agree1 + agree2 = agree(w1[I1, I2], w2[I1, I2]) ≤ k + 3

And due to similar reasoning to the above we will
have that

agree1 + agree2 ≤ k + 3

agree2 + agree3 ≤ k + 3

Also, simply by noting that |I2| = k we find that

agree1 + agree3 ≤ n− k

So aggregating these inequalities we find that both
2
∑

agreem ≤ n + k + 6 and
∑

agreem ≤ 2k + 6. As a
result in this final case we get

agree(w1, w2) =
∑

agreej ≤ min

(
n+ k

2
+ 3, 2k + 6

)
≤ min

(
2n+ k

3
+ 3, 3k + 9

)
2



Figure 7: The Rate vs. Distance tradeoff of our
construction as q →∞

Corollary 3.2. For any 0 < R < 1 and δ <
max( 1−R

3 , 1 − 3R), for large enough q there exists a q-
ary sequence of window length q, rate R and relative
distance δ.

Proof. We can compute the rate of SΣ is

R =
logn(n · qk)

n
≥

logq(nq
k)

n
=
k + 1

n
− on(1)

And by Theorem ?? we have that the relative distance
is

δ =
max

(
n− 3k, n−k

3

)
n

− on(1)

≥ max

(
1−R

3
, 1− 3R

)
− on(1)

2

Here we prove the useful fact that not only are
any two codewords in C far apart, but also any two
rotations of codewords of C are also distant as well.
This is crucial for our analysis which routinely uses the
fact that misaligned windows of the robust positioning
pattern SΣ still look like rotated codewords from C.

Lemma 3.1. For any i1, i2 ∈ [n] and any
Ca1 , Ca2 ∈ C, so long as (a1, i1) 6≡ (a2, i2), then
∆(ρi1(Ca1), ρi2(Ca2)) ≥ q − k − 1 and therefore also
agree(ρi1(Ca1), ρi2(Ca2)) ≤ k + 1.

Proof. First, we note that

ρi`(Ca`) = (fa`(gi`), fa`(gi`+1), . . . , fa`(gi`−1))

But this is exactly the encoding C(p`) of the degree k+1
polynomial p`(X) = f im(gi`X). Furthermore, we have
that p1(0) = p2(0) = 0.

Therefore we will have that ∆(ρj2(Ci2), ρj2(Ci2)) ≥
q−deg(p2−p1) ≥ q−k−1 if we can show that p2−p1 6= 0.

But note that

coeffX(p1) = coeffX(fa1(gi1X)) = gi1

coeffX(p2) = coeffX(fa2(gi2X)) = gi2

Therefore p1 = p2 only if gi1 = gi2 , which occurs only
if i1 ≡ i2 mod n.

If that is the case then p1 = p2 directly implies
that fa1 = fa2 , contradicting our assumption that
(a1, i1) 6≡ (a2, i2). 2

4 Binary Positioning Sequences

4.1 Preliminaries

To concatenate down to binary we first need a marker
to let us know the boundaries between words. To this
end we construct a suitable binary word Ψ so that any
two rotations of Ψ agree and differ in almost exactly
half the coordinates.

Lemma 4.1. For any t ∈ N there exists a binary word
Ψ of length 2t − 1 so that for any two i, j, 0 ≤ i 6=
j ≤ 2t − 1, the rotations ρi(Ψ), ρj(Ψ) have the property∣∣agree(ρi(Ψ), ρj(Ψ))− `

2

∣∣ ≤ 2
t
2−1 ·O(t).

We sketch the construction. Let g be a generator of
F×2t . Order the elements of F×2t by xi := gi, and take ψ :
F → {±1} to be a nontrivial additive character of F2t .

Now we can define Ψ̃ := [ψ(g0), ψ(g1), . . . , ψ(g2t−2)].
We will then let our codeword be the binary verison of
this string by replacing −1 with 0.

Next, in order to use this marker appopriately in
our concatenation, we must have a binary outer code
which is also far from any window of Ψ.

Lemma 4.2. Given δ < 1
2 and R < 1 − H2(δ) For

sufficiently large n, and any word W of length n, there
exists a binary code C of block length n, relative distance
δ and rate R so that all codewords of C have distance at
least δn

2 from any rotation of W .

Proof. By the Gilbert-Varshamov bound, for suffi-
ciently large n there exists a code C0 with block length
n relative distance δ and rate R > 1 − H2(δ). Now
we can define C from C0 by simply removing any code-
word which has distance less than δn

2 from any rotation
of W . Since C has distance greater than δn there can
be at most one codeword removed per rotation of W .
Therefore |C| ≥ |C|−n and so the rate is asymptotically
unchanged. As the distance of C as at least the distance
of C0, C satisfies the conditions we need. 2
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Figure 8: An illustration of the argument in Lemma
4.3. wi[I3] is a subset of a window of S of length
n − |P1 ∪ P2|, and so contributes at least d − |P1 ∪ P2|
in distance. Meanwhile there is additional contribution
of |P1| + |P2| − 2|P1 ∩ P2| to the distance from I1 and
I2 where copies of x are compared to elements of Σ.

4.2 Augmented Sequences

First to build our binary sequence we will need to
define a method of augmenting large alphabet sequences
to include marker symbols which will help us with
alignment issues.

Definition 4.1. Let S be a positioning sequence over
Σ with window length n. Fix any x /∈ Σ and define
the s-augmented sequence A := As(S) over the alphabet
Σ ∪ x of window length n+ s by

A[a(n+ s) + b] :=

{
x if 0 ≤ b < s

S[an+ b− s] if s ≤ b < n+ s

Lemma 4.3. Let S be a positioning sequence and A the
s-augmented sequence. If S has distance d then A has
distance at least min(d, 2s).

Proof. Take w1 6= w2 to be arbitrary distinct length
n + s windows of U where wi := U〈mi〉n+s. Now for
each window we define Pi to be the places corresponding
to the copies of x. That is

Pi := {j ∈ [n+ s] s.t. mi + j mod (n+ s) < s}

Also define

I1 := P1 ∩ P c2 I2 := P c1 ∩ P2 I3 := (P1 ∪ P2)c

Because w1[I1] is a string of only the character
x and w2[I1] contains no copies of x at all, we have
that ∆(w1[I1], w2[I1]) = |I1|. Similarly we find that
∆(w1[I2], w2[I2]) = |I2|

There are two cases to consider. First if P1 and P2

are disjoint then ∆(w1, w2) ≥ 2s as |I1| = |I2| = s.
In the second case we have P1 ∩ P2 is nonempty.

Therefore as the union of two contiguous (on the circle)

· · · · · · · · ·

· · · · · ·

x x x x x· · · αnO−1 αnO

αnO−1 αnOα0

α0

α1

α1

α2

α2

· · · · · · · · ·ΨΨ Ψ ΨΨ· · · ϕ(αnO−1) ϕ(αnO )ϕ(α0) ϕ(α1) ϕ(α2)

s times s times

Figure 9: A view of the binary Robust Self Location
Pattern T constructed in Section 4.3. Note that the se-
quence consists of a concatenation of the large alphabet
sequence S to binary, intermixed with a locator word
Ψ, which will aid in making detecting where a window
lies in T modulo nI .

intervals of length s, P1∪P2 is also such an interval but
of length ` := |P1∪P2|. There are two more subcases to
consider. First if P1∪P2 = [a, a+`) for some a ≤ n+s−`
or second if P1 ∪ P2 = [a, n + s) ∪ [0, `− n− s + a) for
some a ≥ n+ s− `. Define w̃i := wi[P

c
i ], and note that

by the construction of A, w̃i is a length n window of
S and w̃1 6= w̃2 so ∆(w̃1, w̃2) ≥ d. Here we will have
that I3 := (P1 ∪ P2)c = [0, a) ∪ [a + `, n + s) and so
for i = 1, 2 it can be seen that wi[I3] = w̃i[I] where
I = [0, a)∪ [a+ `− s, n). Therefore as |I| = n+ `− s it
follows that

∆(w1, w2) ≥ ∆(w1[I1], w2[I1]) + ∆(w1[I2], w2[I2])

+ ∆(w1[I3], w2[I3])

≥ |I1|+ |I2|+ ∆(w̃1, w̃2)− (`− s)
= 3s− 2|P1 ∩ P2|+ d− |P1 ∪ P2|
≥ d

In the second subcase the argument is exactly the
same, but here we will have I3 := (P1 ∪ P2)c = [` −
n − s + a, a) a contiguous interval of length n + s − `,
and so w1[I3] and w2[I3] are subwindows of S of length
n+s−` and so the proof follows through using the same
estimates as above.

2

4.3 Construction of the Binary Robust Posi-
tioning Sequence

Now we are ready to proceed with the construction of
our binary robust positioning pattern.

Fix some t ∈ N and let n := 2t − 1. Then take S
to be a q-ary robust positioning sequence with window
length nO, rate RO and relative distance δO. Let Ψ be
a word of the form promised by Lemma 4.1 with length
n = 2t − 1 and let C be a binary code with q messages



nI := |ϕ(α)|+ |Ψ| = ñI + u RI := log2 q
n

δI := H−1
2 (1− r)− η |Ψ| := 2t − 1 := n

N := n(nO + s) m̄ := m mod ?

Figure 10: Summary of Notation

and block length n (and therefore rate RI := log q
n ),

relative distance δI > H−1
2 (1−RI) chosen as promised

by Lemma 4.2 to have all windows distant from Ψ.
Take A to be an s-augmentation of the q-ary

sequence S, then let ϕ : F∪ {x} → C to be an encoding
of Fq to codewords of C with ϕ(x) := Ψ. Then we can
define our binary positioning pattern to be given by

T := [ϕ(A[1]), ϕ(A[2]), ϕ(A[3]), . . .]

In particular we can see that if m = aN + bn + c with
0 ≤ b < N and 0 ≤ s < n then

T [m] = T [aN + bn+ c] :=

{
Ψ[c] if b < s

φ(T [anO + b])[c] if s ≤ b

4.4 Proof of Distance

We state our main result about the distance of T .

Theorem 7. T is a binary robust positoning pattern of
block length (nO + s)nI and distance at least

min

(
(min(nOδO − 1, 2s)δInI

2
, (s− 2)

δIn

2

)
and rate at least RORI

nO
nO+s

Lemma 4.4. Let w1 6= w2 be any two windows of T
of the form wi := T 〈mi〉N . If m1 6= m2 mod n then
∆(w1, w2) ≥ (s− 2) δn2 .

Proof. Define

P1 := {i ∈ [N ] s.t. m1 + i =aN + bn+ c

where 0 ≤ c < n and 0 ≤ b < s}

That is to say that P1 is the set of indices corresponding
to entries in w1 coming from copies of Ψ. In particular
if i ∈ P1 and i ≡ ī mod n then w1[i] = Ψ[̄i].

Now let

A2 := {i ∈ [N ] s.t. m2 + i ≡ 0 mod n}

Assume that m2 ≡ m̄2 mod n. If we consider the
sequence of subwindows 〈in+ n−m2〉n.

So A2 is the set of beginnings of length n windows
corresponding to either a copy of Ψ or a codeword of

Ψ Ψ Ψ Ψ

Ψ C0Ψ C1Ψ C2Ψ C3

〈a0〉n 〈a1〉n 〈a7〉n

ρxΨ ρxΨ ρxΨ

∆ ≥ δIn
2

· · ·

· · ·

P

Figure 11: An illustration of the argument in Lemma
4.4. The distance in the nonaligned case comes from
comparing rotations of the marker word Ψ to codewords
of C and other copies of Ψ.

C. Because P1 is a set of size sn consisting of at most
2 runs of consecutive integers, it must contain at least
s− 2 length n windows of the form 〈a〉n where a ∈ A2.
But for such a window we will have w2〈a〉n is either a
codeword of C or a copy of Ψ, while if x := m2−m1 6≡ 0
mod n we will have that w1〈a〉n = ρxΨ. So either by the
construction of Ψ to have low autocorrelation (Lemma
4.1) or by the distance of all codewords of C from all
rotations of Ψ (Lemma 4.2) we will have that

∆(w1[〈a〉n], w2[〈a〉n]) ≥ min

(
δIn

2
, (1− o(1))

n

2

)
=
δIn

2

Because P1 contains s − 2 disjoint such windows, the
result follows. 2

Next we cover the case when the codewords are
aligned modulo n. Here we will have that binary code-
words and copies of Ψ will be compared to eachother
and will get our distance from the distance of the con-
catenation code combined with the distance of the large
alphabet positioning sequence.

Lemma 4.5. Let w1 6= w2 be any two windows of T
of the form wi := T 〈mi〉N . If m1 ≡ m2 mod n then

∆(w1, w2) ≥ (min(nOδO−1,2s)δInI
2 .

Proof. Let 0 ≤ m̄ < n such that m1 ≡ m2 ≡ m̄
mod n. Now for j ∈ [nO + s − 1] define Ij :=
〈nj + n − m̄〉n. Then for any i, j wi[Ij ] corresponds
to a codeword in C or a copy of Ψ, and in fact it
must be that u1 := {ϕ−1(w1[Ij ])}j∈[nO+s−1] and u2 :=
{ϕ−1(w2[Ij ])}j∈[nO+s−1] are distinct windows of A of
length nO + s − 1. By Lemma 4.3 we know that these



windows differ in at least min(nOδO, 2s) − 1 positions.
Since C ∪ {Ψ} forms a code of distance nδI

2 our result
follows. 2

We are now ready to restate and prove our main
result of this section:

Theorem 8. T is a binary robust positoning pattern of
block length (nO + s)nI and distance at least

min

(
(min(nOδO − 1, 2s)δInI

2
, (s− 2)

δIn

2

)
and rate at least RORI

nO
nO+s

Proof. The statement of distance is a combination of
Lemmas 4.5 and 4.4. Meanwhile the rate statement
follows from the standard calculation

R =
log2 |T |

(nO + s)nI
≥ log2 |q| log2 |S|

(nO + s)nI
= RORI

nO
nO + s

2

We note that choosing s,RO and RI properly we
can obtain the following corollary.

Corollary 4.1. For any 0 < R < 1 there is some
δ(R) such that the above construction yields binary
positioning patterns of arbitrarily long block length, rate
R and relative distance δ(R).

5 Efficient encoding and decoding

6 Encoding/Decoding Over Large Alphabets

The following is an algorithm for encoding a window of
S := SΣ as defined in Definition 3.4. Assume we wish
to compute S[m] where 0 ≤ m ≤ qk−1. Assume we are
using the Gray Code Σ given by the standard inductive
construction, for which an efficient method of encoding
and decoding exists.

Algorithm 6.1. Given m to compute S〈m〉n do:

1. Find 0 ≤ m̄ < q and a so that m = aq + m̄

2. Find σa and σa+1 (the ath and (a+1)st entries
in the q-ary gray code Σ.

3. Interpolate the polynomials fa and fa+1 so
that for j = 0, 1

(a) fa+j(0) = 0

(b) (fa+j)′(0) = 1

(c) fa+j(gi) = σa+j
i for 0 ≤ i ≤ k − 1

4. Output [(fa(gj))q−1
j=m̄, (fa(gj))m̄−1

j=0 ]

Theorem 9. The following algorithm for decoding re-
ceived words of the window sequence S can correct
min(δn, q+k2 − 1 −

√
q(k + 1)) errors (where δn =

max(q − 3k − 9, q−k
3 − 3)). Furthermore the algorithm

runs in time O(poly(q)).

Algorithm 6.2. Assume we receive a window w
of length q. To decode do:

1. Run the Guruswami-Sudan list decoding algo-
rithm [GS99] for Reed Solomon codes on w,
reuturning the list of degree k+ 1 polynomials
L := {p s.t. ∆(C(p), w) ≤ q −

√
q(k + 1)}.

2. For each polynomial p ∈ L do the following:

(a) For each i ∈ [q] find the index ai such that

ρi(Cp)[0, k − 1]

= (p(gi), p(gi+1), . . . , p(gi+k−1))

= Σ[ai, ai + k − 1)

where Σ is the q-ary Gray code in use.

(b) Make the guesses µ1
p = aiq + (q − i) and

µ0
p = (ai − 1)q + (q − i)

(c) For each guess µip let wip = S〈µip〉n. If

∆(w,wip) <
δq
2 = 1

2 max(q−3k−6, q−k
3 −

2) then return wip and its index µip

Proof. Assume that the sent window was u = S[m] with
m = aq + m̄, so that ∆(u,w) ≤ q+k

2 − 1 −
√
q(k + 1).

Let x = q− m̄, and I0 = [0, x+ k− 1], I1 = [x, q− 1]. If
m̄ < q−k

2 then by either Observation 3.1 or 3.2 we will
have that u[I0] ∼ ρm̄Ca[I0], and therefore

∆(u, ρm̄Ca) ≤ (q − |I0|) + ∆(u[I0], ρm̄Ca[I0])

≤ (q − |I0|) + 1

Similarly if m̄ ≥ q−k
2 then u[I1] ∼ Ca+1[0, k + m̄−

1] = ρm̄Ca+1[x, q − 1]. So

∆(ρxu,Ca+1) = ∆(u, ρm̄Ca+1)

≤ (q − |I1|) + ∆(u[I1], ρm̄Ca+1[I1])

≤ (q − |I1|) + 1

Because |I0|+ |I1| = q+ k for some j we must have
|Ij | ≥ q+k

2 .



Therefore we can compute that

∆(w, ρm̄Ca+j) ≤ ∆(w, u) + ∆(u, ρm̄Ca+j)

≤ q + k

2
− 1−

√
q(k + 1) + q − |Ij |+ 1

≤ q −
√
q(k + 1)

Therefore we see that the Guruswami-Sudan list
decoding algorithm will place either fa+j(x+ m̄) in its
list L.

Therefore when step 2a tries p = fa+j(x + m̄)
and i = q − m̄ we will have ρiρm̄Ca+j [0, k − 1] =
Ca+j [0, k − 1] = σa+j , and conseuqently the guesses
µ1
p = (a + j)q + m̄ and µ0

p = (a + j − 1)q + m̄ will be
made. If j = 0 then the former will be correct, and if
j = 1 then the latter will be. Either way step c will
check µ = aq+ m̄ = m, and because ∆(w, S〈m〉n) < δn

2
the algorithm will return m and S〈m〉n.

The only thing left to check is that the algorithm
returns no false positives. But, by Theorem ?? we know
that all windows of S have distance at least δn :=
max(q − 3k − 9, q−k

3 − 3) from eachother. Therefore
it follows that there is always at most one window
S〈µ〉n so that ∆(S〈µ〉n, w) ≤ δn

2 , for any window w,
and therefore only the correct window could ever be
returned.

To check the runtime claim we note that the Algorithm
in step 1 runs in time poly(q) and returns a list of size
|L| ≤ q2. Furthermore each of the operation in steps
2a takes time poly(q) by the decodability of Σ. The
operations in step 2b take time O(1), and each step in
2c runs in time poly(q) by the encoding algorithm of S
given 2

6.1 Encoding/Decoding in Binary

Let T be a binary robust positioning sequence as
constructed section 4.3. with window length N =
(nO + s)n and distance d.

First we comment on construction of the sequence.
The only point of interest here is to find the locator
word Ψ its accompanying code C. Ψ is just a character
over F2n and so can be any multilinear polynomial.
over F2[X1, . . . , Xn]. For C we may pick any efficiently
encodable and decodable good distance binary code of
rate R, of which numerous constructions exist. Then
to pair it with Ψ we only have to remove the codeword
in C of distance less than d

2 from each rotation of Ψ,
a process which takes at most n calls to the decoding
algorithm of C.

Now we discuss the decoding algorithm. Here the
process proceeds in two steps. First we find where in

the window are the s copies of Ψ. Once we know that,
we know exactly which blocks of length n correspond to
concatenated codewords, and can apply usual decoding
methods for concatenated words.

Assume that S has a decoder algorithm DO which
given a window w ∈ ΣnOO will determine (if possible)
the unique window S〈m〉nO so that ∆(S〈m〉nO , w) < d
in time poly(q). Assume also that we also have for the
inner alphabet a decoding algorithm DI so that for any
received word w ∈ [2]n DI returns the unique letter
α ∈ [q] so that ∆(CI(α), w) < δIn

2 in time poly(q).

Algorithm 6.3. For each i from 0 to N do

1. For each 0 ≤ j < nO decode (if possible) the
length n window (ρiw)〈jn〉n to αj using the
decoder of C.

2. Let w̃i be the q-ary string (α0, . . . , αnO−1).

3. Run the decoder DO over large alphabets on
w̃i (padded with an extra bit if necessary) and
return its index µ̃i

4. Let µ = nOµ̃− i.

5. If ∆(T [µ], w) < d
2 then return T [µ], µ.

Theorem 10. Algorithm 6.3 runs in time poly(N) and
given a window w ⊂ [2]N returns (if it exists) the unique

window u := T 〈m〉N such that ∆(u,w) < δOδI
(n−1)nO

4
in time poly(N).

The argument that this decoding works is very
similar to decoding an ordinary concatenated code. We
can brute force through every rotation ρiw for i ∈ [N ]
of the received window w, and try decoding ρiw as
we would any concatenated code of length nOn (the
algorithm will return when the unchecked sn entries
correspond to the s copies of Ψ). Since one of the
rotations will correspond to us having a word which is
n− 1 blocks of concatenated codewords (and possibly 1
junk block from the beginning and end of the window),
we will be able to decode at least a δONO fraction of
these blocks correctly, and the decoder for the large
alphabet robust positioning sequence handles decoding
the resulting large alphabet sequence. In step 5 we
use the fact that T has good distance to eliminate any
possible false positives.

7 Positioning sequences with constant distance

In this section, we give a brief description of our
construction of positioning sequences with constant



distance d. The details appear in the full version of
this paper.

Over large alphabets Σ, it follows by inspecting the
parameters in Theorem 6 that the construction there

leads to sequences of length |Σ|n
|Σ|O(d) , which is essentially

optimal (upto the constant in the O(d)) by the Singleton
bound.

Over the binary alphabet, we have to do something
different. Here we are aiming to get a sequence of length

2n

nO(d)
. The concatenation scheme described for the case

of constant relative distance codes is insufficient, since
any nontrivial concatenation map leads to a drastic
reduction in the length of the sequence. Instead, we will
use a trivial concatenation map, along with a simpler
marker, at the cost of having to rely on an unproven
conjecture (Conjecture C from the introduction).

Assuming Conjecture C, for infinitely many r we
can choose a prime q between 2r − cr and 2r − 1. We
start with a large alphabet positioning sequence over the
alphabet Σ = Fq with distance d. Now choose a one-to-
one map φ : Fq → {0, 1}r whose image avoids the string
0r: this is possible since q ≤ 2r−1. We will be using the
map φ to encode large alphabet symbols into sequences
of binary symbols. The final binary sequence is then
obtained by taking the φ-encoding of each symbol of
the large alphabet sequence, along with the marker
sequence (02r1r)3d. The goal of this marker sequence, as
in the case of the constant relative distance codes, is to
ensure alignment. The fact that the image of φ avoids
0r is what ensures that this marker sequence cannot
have too much agreement with any symbols outside the
marker sequence. Finally, the fact that q > 2r − cr
ensures that the length of the sequence so constructed
is as long as 2n

nO(d)
: encoding elements of Σ by φ did not

make us lose too much in the rate.

8 Two dimensional positioning patterns

In this section, we give a brief description of our
constructions of 2 dimensional positioning patterns of
high rate and constant relative distance.

We begin with the case of large alphabets. Follow-
ing the 1 dimensional case, our strategy is to consider
2-variable polynomials over a field F with bounded in-
dividual degree, and to evaluate them on F∗ × F∗. As
before, we order the elements of F∗ as a geometric pro-
gression, and consider two codewords equivalent if they
are (two-dimensional) rotations of one another. We then
choose one codeword from each equivalence class, and
lay them out in a 2-dimensional grid in a certain care-
fully chosen order (the carefully chosen order is again
based on Gray codes). This gives us our 2-dimensional
positioning pattern for n× n windows (with n = |F∗|).

The analysis of the distance of this construction
is now significantly more involved. We need to take
two n × n windows in this 2-dimensional pattern, and
measure their distance. This could involve up to
eight 2-variable polynomials (four per window) and
depending on the locations of these windows a number
of different cases arise. Ultimately the analysis relies
on the distance properties of 2-variable polynomials,
that their restrictions to rows/columns are 1-variable
polynomials, and the Gray-code based ordering of the
polynomials that leads to the four polynomials in any
window being very closely related to each other. We
omit the details in this version of the paper.

Over small alphabets, our constructions are based
on concatenation using markers again. The ideas are
very similar to the 1-dimensional case. The notable
difference is that we need to construct a 2-dimensional
marker that is far away from every rotation of itself,
which we do again based on character sum bounds.

Unfortunately, our constructions do not seem deli-
cate enough to handle the constant distance regime with
optimal redundancy (as opposed to constant relative
distance). This seems like an interesting question for
future work.
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