
Local list-decoding and testing of random linear codes from

high-error

Swastik Kopparty∗ Shubhangi Saraf†

February 4, 2012

Abstract

In this paper, we give efficient algorithms for list-decoding and testing random linear codes.
Our main result is that random sparse linear codes are locally list-decodable and locally testable
in the high-error regime with only a constant number of queries. More precisely, we show that
for all constants c > 0 and γ > 0, and for every linear code C ⊆ {0, 1}N which is:

• sparse: |C| ≤ N c, and

• unbiased: each nonzero codeword in C has weight ∈ (1
2 −N

−γ , 12 +N−γ),

C is locally testable and locally list-decodable from (1
2 − ε)-fraction worst-case errors using

only poly(1
ε) queries to a received word. We also give subexponential time algorithms for list-

decoding arbitrary unbiased (but not necessarily sparse) linear codes in the high-error regime.
In particular, this yields the first subexponential time algorithm even for the problem of (unique)
decoding random linear codes of inverse-polynomial rate from a fixed positive fraction of errors.

Earlier, Kaufman and Sudan had shown that sparse, unbiased codes can be locally (unique)
decoded and locally tested from a constant fraction of errors, where this constant fraction tends
to 0 as the number of codewords grows. Our results strengthen their results, while also having
simpler proofs.

At the heart of our algorithms is a natural “self-correcting” operation defined on codes and
received words. This self-correcting operation transforms a code C with a received word w
into a simpler code C′ and a related received word w′, such that w is close to C if and only
if w′ is close to C′. Starting with a sparse, unbiased code C and an arbitrary received word
w, a constant number of applications of the self-correcting operation reduces us to the case of
local list-decoding and testing for the Hadamard code, for which the well known algorithms of
Goldreich-Levin and Blum-Luby-Rubinfeld are available. This yields the constant-query local
algorithms for the original code C.

Our algorithm for decoding unbiased linear codes in subexponential time proceeds simi-
larly. Applying the self-correcting operation to an unbiased code C and an arbitrary received
word a super-constant number of times, we get reduced to the problem of learning noisy
parities, for which non-trivial subexponential time algorithms were recently given by Blum-
Kalai-Wasserman and Feldman-Gopalan-Khot-Ponnuswami. Our result generalizes a result of
Lyubashevsky, which gave a subexponential time algorithm for decoding random linear codes
of inverse-polynomial rate from random errors.

∗Rutgers University, swastik.kopparty@rutgers.edu. This work was done while the author was a summer intern
at Microsoft Research New England.
†Institute for Advanced Study, shubhangi@ias.edu. This work was done while the author was a summer intern

at Microsoft Research New England.

0

1 Introduction

In this paper, we study the basic tasks of error-correction and error-detection for random linear
codes in the presence of high error-rates. Our main result is that with high probability for a sparse
random linear binary code C, by inspecting just a constant number of coordinates of an arbitrary
received word w, one can (i) decide whether the distance of w from C is at most 49% or not, and
(ii) recover implicit descriptions of all the codewords of C which are 49%-close to w. We also give
subexponential time algorithms for decoding random linear codes of inverse-polynomial rate from
49% errors.

We begin by setting up some notation. A linear code C in FN2 is simply a linear subspace of FN2 .
The elements of C are often referred to as “codewords”. We say that C is sparse if |C| ≤ N c for some
constant c. For a string x ∈ FN2 , we define its (normalized Hamming) weight wt(x) to equal 1

N×
(the number of nonzero coordinates of x). We define the bias of the code C as maxy∈C\{0}

∣∣∣1−wt(y)
2

∣∣∣.
Thus each nonzero codeword y of a code of bias β has wt(y) ∈ [(1 − β)/2, (1 + β)/2]. For two
strings x, y ∈ FN2 , we define the (normalized Hamming) distance between x and y, ∆(x, y), to be
1
N× (the number of coordinates i ∈ [N] where xi and yi differ). We then define the distance of a
string x from the code C, ∆(x, C) to be the minimum distance of x to some codeword of C:

∆(x, C) = min
y∈C

∆(x, y).

The basic algorithmic tasks associated with codes are error-detection and error-correction. Here
we are given an arbitrary received word w ∈ FN2 , and we want to (1) determine if ∆(w, C) > δ, and
(2) find all codewords y ∈ C such that ∆(w, C) ≤ δ. In recent years, there has been much interest
in developing sublinear time algorithms (and in particular, highly query-efficient algorithms) for
these tasks. In what follows, we will describe our results on various aspects of these questions.

1.1 Local list-decoding

Informally, a local list-decoder for C from δ-fraction errors is a randomized algorithm A that,
when given oracle access to a received word w ∈ FN2 , recovers the list of all codewords c such
that ∆(c, w) < δ, while querying w in very few coordinates. The codewords thus recovered are
“implicitly represented” by randomized algorithms A1, . . . , Al with oracle access to w. Given a
coordinate j ∈ [N], Ai makes very few queries to w and is supposed to output the jth coordinate
of the codeword that it implicitly represents.

A particular case of local list-decoding which is of significant interest is local list-decoding in the
“high-error” regime. Specifically, for every constant ε > 0, one wants to query-efficiently locally
list-decode a code from (1

2−ε)-fraction errors (the significance of 1
2−ε is that it is just barely enough

to distinguish the received word from a random string in FN2 ; for codes over large alphabets, one
considers the problem of decoding from (1−ε)-fraction errors). Local list-decoding in the high-error
regime plays a particularly important role in the complexity-theoretic applications of coding theory
(see [Sud00], for example).

The first known local list-decoder (for any code) came from the seminal work of Goldreich and
Levin [GL89], which gave time-efficient, low-query, local list-decoders for the Hadamard code in

1

the high-error regime. In the following years, many highly non-trivial local list-decoders were devel-
oped for various codes, including multivariate polynomial based codes (in the works of Goldreich-
Rubinfeld-Sudan [GRS00], Arora-Sudan [AS03], Sudan-Trevisan-Vadhan [STV99], and Gopalan-
Klivans-Zuckerman [GKZ08]) and combinatorial codes such as direct-product codes and XOR codes
(in the works of Impagliazzo-Wigderson and Impagliazzo-Jaiswal-Kabanets-Wigderson [IW97, IJKW08]).
Many of these local list-decoders, especially the ones in the high-error regime, play a promi-
nent role in celebrated results in complexity theory on hardness amplification and pseudoran-
domness [IW97, STV99, IJKW08].

To summarize, all known local list-decoding algorithms were for highly structured algebraic or
combinatorial codes. Recently, Kaufman and Sudan [KS07] showed that random sparse linear codes
can be locally (unique-)decoded from a small constant fraction of errors. This was the first result to
show that query-efficient decoding algorithms could also be associated with random, unstructured
codes. This result was proved by studying the weight distribution of these codes and their duals,
and in particular was based on the MacWilliams identities and non-trivial information about the
roots of Krawtchouk polynomials. In an earlier paper [KS09], we gave an alternate (and arguably
simpler) proof of this result, as part of a more general attempt to characterize sparse codes that
are locally decodable and testable in the low-error regime. Popular belief [Sud09] suggested that
these low-error local decoders for random codes could not be extended to the high-error regime.

Our first main result is that even random codes can have query-efficient local list-decoders in the
high-error regime. Specifically, we show that linear codes which are sparse and unbiased (both
properties are possessed by sparse random linear codes with high probability) admit high-error
local list-decoders with constant query complexity.

Informal Theorem A For every constant c, γ > 0, every linear code C ⊆ FN2 with N c codewords
and bias N−γ can be locally list-decoded from (1/2− ε)-fraction errors using only poly(1

ε) queries
to a received word.

The formal statement appears in Theorem 4.

1.2 Local testing

Informally, a local tester for C is a randomized algorithm A, which when given oracle access to a
received word w ∈ FN2 , makes very few queries to the received word w, and distinguishes between
the case where w ∈ C and the case where w is “far” from all codewords of C.

The first local tester (for any code) came from the seminal work of Blum, Luby and Rubin-
feld [BLR93], which gave an efficient, 3-query local tester for the Hadamard code. This result
was subsequently generalized to the problem of local testing of low-degree multivariate polynomi-
als [RS96, AS98, ALM+98, AKK+03, KR04, JPRZ04]. This body of work played a significant role
in the proof of the PCP theorem and were the harbingers of the field of property testing.

A particular variant of local testability which is of significant interest is local testing in the “high-
error” regime. Here, for every constant ε > 0, one wants to query-efficiently distinguish between
the cases ∆(w, C) < 1/2− ε, i.e., w is “close” to C, and ∆(w, C) ≈ 1/2, i.e., w is as far from C as a
random point is (for codes over large alphabets, 1/2 gets replaced by 1). For the Hadamard code, the

2

existence of such testers follows from the Fourier-analytic proof of the BLR linearity test [BCH+96].
For the code of degree 2 multivariate polynomials over F2, local testers in the high-error regime
were given by Samorodnitsky [Sam07]. For the code of multivariate polynomials over large fields,
local-testers in the high-error regime were given by Raz-Safra [RS97], Arora-Sudan [AS03] and
Moshkovitz-Raz [MR06]. More recently, Dinur-Goldenberg [DG08] and Impagliazzo-Kabanets-
Wigderson [IKW09] gave query-efficient local testing algorithms in the high-error regime for the
combinatorial families: the direct-product and XOR codes. These algebraic and combinatorial
high-error local-testers led to some remarkable constructions of PCPs with low soundness error.

As in the case of list-decodability, we have the situation that all known locally-testable codes in
the high-error regime are for highly structured algebraic or combinatorial codes. Again, Kaufman
and Sudan [KS07] showed that a random sparse linear code is locally testable in the low-error
regime by studying its weight distribution and the weight distribution of its dual. We [KS09] had
an alternate proof of this result too. Popular belief [Sud09] again suggested that local-testability
in the high-error regime could not be found in random linear codes.

Our second main result is that random codes can have query-efficient local testers in the high-error
regime. Specifically, sparse and unbiased codes admit high-error local testers with constant query
complexity.

Informal Theorem B For every constant c, γ > 0, every linear code C ⊆ FN2 with N c codewords
and bias N−γ can be locally tested from (1/2 − ε)-fraction errors using only poly(1

ε) queries to a
received word.

The formal theorem appears as Theorem 4, where we in fact show something stronger (called
distance estimation in the high-error regime): for such codes, using constantly many queries, one can
distinguish between ∆(w, C) > 1/2−ε1 and ∆(w, C) < 1/2−ε2 for every constants 0 < ε1 < ε2 < 1/2.

1.3 Subexponential time list-decoding

The techniques we develop to address the previous questions turn out to be useful for making
progress on another fundamental algorithmic question in coding theory: that of time-efficient worst-
case decoding of random linear codes. Given a random linear code C ⊆ FN2 and an arbitrary
received word w ∈ FN2 , we are interested in quickly finding all the codewords c ∈ C such that
∆(w, c) < 1

2 − ε, for constant ε > 0. We show that this problem can be solved in subexponential
time, using just the unbiasedness of C. Our algorithm uses some recent breakthroughs on the
problem of learning noisy-parities due to Blum-Kalai-Wasserman [BKW03] and Feldman-Gopalan-
Khot-Ponnuswami [FGKP06].

Informal Theorem C For all constants α, γ > 0, for every linear code C ⊆ FN2 with dimension
n, where N = n1+α, and bias N−γ , and for every constant ε > 0, C can be list-decoded from
(1

2 − ε)-fraction errors in time 2O(n/ log logn).

The formal statement appears in Theorem 6.

In particular, the above theorem implies that if C ⊆ FN2 is a random linear code with dimension

n = N
1

1+α , then for every constant ε > 0, C can be list-decoded from (1
2 − ε)-fraction errors in time

2O(n/ log logn).

3

Earlier, it was not even known how to unique-decode random linear codes from 0.1-fraction (say)
worst-case errors in time 2o(n). For decoding random linear codes of inverse-polynomial rate from
random errors, Lyubashevsky [Lyu05] gave a subexponential time algorithm, also based on algo-
rithms for the Noisy Parity problem. Our result generalizes his in two ways: we decode from
worst-case errors, and we give a natural, explicit criterion (namely low-bias) on the code C which
guarantees the success of the algorithm.

1.4 Time-efficient local algorithms for dual-BCH codes

For the family of dual-BCH codes (see Section 6 for a definition), perhaps the most important
family of sparse, unbiased codes, we show that the constant-query local list-decoding and local
testing algorithms can be made to run in a time-efficient manner too. The dual-BCH codes form a
natural family of polynomial-based codes generalizing the Hadamard code (which is the t = 1 case
of dual-BCH codes, see Section 6). They have a number of extremal properties which give them
an important role in coding theory. For example, the dual-BCH code C ⊆ FN2 with N t codewords
has bias as small as O(t ·N−1/2), which is optimal for codes with N t codewords!

The key to making our earlier query-efficient local list-decoding and local testing algorithms run
in a time-efficient manner for dual-BCH codes, is a time-efficient algorithm for a certain sampling
problem that arises in the local list-decoder and tester. This sampling problem turns out to be
closely related to an algorithmic problem that was considered in the context of low-error testing
of dual-BCH codes [KL05], that of sampling constant-weight BCH codewords. A variant of the
sampling algorithm of [KL05] turns out to suffice for our problem too, and this leads to the following
result.

Informal Theorem D For every constant c, the dual-BCH code C ⊆ FN2 with N c codewords,
can be locally list-decoded and locally tested from (1/2 − ε)-fraction errors in time poly(logN, 1

ε)
using only poly(1

ε) queries to a received word.

The formal statement appears as Theorem 5. The original algorithm for sampling constant-weight
BCH codewords was given in [KL05], and was based on results on the weight distribution of BCH
codes [KL95]. We give an alternate (and possibly simpler) analysis in Section 6.

Organization of this paper In Section 2, we give a brief overview of the techniques we use. In
Section 3 we formally define local list-decoders and testers and state our main results. The proofs
appear in Sections 4, 5 and 6.

2 Methods

In this section, we give an overview of the main ideas underlying our algorithms. Our goal in this
section is to stress the simplicity and naturalness of our techniques.

The main component of our algorithms is a certain “self-correcting” operation which transforms
a code C with a received word w into a simpler code C′ and a related received word w′, such
that w is close to C if and only if w′ is close to C′. Repeated application of this self-correcting

4

operation will allow us to reduce our list-decoding and testing problems for C to certain kinds of
list-decoding and testing problems for a significantly simpler code C∗ (in our case, C∗ will be the
Hadamard code). Query-efficient/time-efficient algorithms for the simpler code C∗ then lead to
query-efficient/time-efficient algorithms for the original code C.

In order to simplify the description of the self-correcting operation, we first translate our problems
into the language of list-decoding and testing under distributions. Let C ⊆ {0, 1}N be a linear code
of dimension n, and let G be an n × N generator matrix for C. Let S = {v1, v2, . . . , vN} ⊂ Fn2
denote the multiset of columns of G (if C has no repeated coordinates, then S will in fact be a
set). We associate to C the distribution µ over Fn2 which is uniform over S. Note that if the
code C has low bias, then the resulting distribution µ has small Fourier bias (see the discussion
around Equation (2) for a proof). Every word w = (w1, . . . , wN) in FN2 can be viewed as a function
fw : S → F2, where fw(vi) = wi. Under this mapping, every codeword of C gets associated with
a linear function; if a ∈ Fn2 , then the codeword a · G ∈ C gets associated with the linear function
g(x) = a · x.

Note that via this translation, the problem of testing if w is close to some codeword exactly
translates into the problem of testing if fw is close to some linear function under the distribution
µ (where the distance of two functions g, h under µ is measured by the probability that g and h
differ on a random sample from µ). Similarly, the problem of local list-decoding, i.e. the problem
of finding all codewords close to w, translates into the problem of finding all linear functions that
are close to fw under the distribution µ.

We now come to the self-correcting operation on f and µ. The operation has the property that
it maintains the property “f correlates with a linear function under µ”, and at the same time it
results in a distribution that is “simpler” in a certain precise sense.

Define µ(2) to be the convolution of µ with itself; i.e., it is the distribution of the sum of two
independent samples from µ. We define f (2) : Fn2 → F2 to be the (probabilistic) function, where for
a given x, f (2)(x) is sampled as follows: first sample y1 and y2 independently and uniformly from µ
conditioned on y1 +y2 = x, and return f(y1) +f(y2) (if there are no such y1, y2, then define f (2)(x)
arbitrarily).

The following two simple facts are key to what follows:

• µ(2) is “simpler” than µ: the statistical distance of µ(2) to the uniform distribution on Fn2 is
significantly smaller than the statistical distance of µ to the uniform distribution on Fn2 (this
follows from the low Fourier bias of µ, which in turn came from the unbiasedness of C).

• If f is (1
2 − ε)-close to a linear function g under µ, then f (2) is (1

2 − 2ε2)-close to g under µ(2):

this is a formal consequence of our definition of f (2). In particular, if f is noticeably-close to
g under µ, then so is f (2) under µ(2).

This leads to a general approach for list-decoding/testing for linear functions under µ. First pick
k large, and consider the distribution µ(k) and the function f (k) (defined analogously to µ(2) and
f (2)). If k is chosen large enough, then µ(k) will in fact be 2−10n-close to the uniform distribution in
statistical distance. Furthermore, if k is not too large, then f (k) will be noticeably-close under µ(k)

to the same linear functions that f is close to under µ. Thus, if k is suitable (as a function of the
initial bias/sparsity of the code) f (k) is noticeably-close under the uniform distribution to the same

5

linear functions that f is close to under µ. Now all we need to do is run a local list-decoding/testing
algorithm on f (k) under the uniform distribution.

An important issue that was swept under the rug in this discussion, is the query/time-efficiency of
working with f (k) and µ(k). If we ignore running-time, one can simulate oracle access to f (k) using
just a factor k larger number of queries to f . This leads to our query-efficient (but time-inefficient)
algorithms for sparse, unbiased linear codes in the high-error regime (in this setting k only needs
to be a constant). We stress that our proof of this result is significantly simpler and stronger than
earlier analyses of local algorithms (in the low-error regime) of sparse, unbiased codes [KL05, KS07].

The bottleneck for implementing these local, query-efficient algorithms in a time-efficient manner
is the following algorithmic “back-sampling” problem: given a point x ∈ Fn2 , produce a sample
from the distribution of y1, . . . , yk picked independently from µ conditioned on

∑
yi = x. A time-

efficient back-sampling algorithm would allow us to time-efficiently simulate oracle access to f (k)

given oracle access to f . For random sparse linear codes, solving this problem in time sublinear in
N is impossible; however for specific, interesting sparse unbiased codes, this remains an important
problem to address. For the special case of dual-BCH codes, perhaps the most important family
of sparse, unbiased codes, we observe that the back-sampling problem can be solved using a small
variant of an algorithm of Kaufman-Litsyn [KL05]. Thus for dual-BCH codes, we get poly log(N)-
time, constant-query local testing and local list-decoding algorithms in the high-error regime.

For subexponential time list-decoding, we follow the same plan. Here too we will self-correct
f to obtain a function f (k), such that every linear function that correlates with f under the µ
distribution, also correlates with f (k) under the uniform distribution over Fn2 . However, since we
are now paying attention to running time (and we do not know how to solve the back-sampling
problem for µ efficiently in general), we cannot afford to allow the list-decoder over the uniform
distribution over Fn2 to query the value of f (k) at any point that it desires (since this will force
us to back-sample in order to compute f (k) at that point). Instead, we will use some recent
remarkable list-decoders ([FGKP06, BKW03]), developed in the context of learning noisy parities,
which can find all linear functions close (under the uniform distribution) to an arbitrary function h
in subexponential time by simply querying the function h at independent uniformly random points
of Fn2 ! Using the unbiasedness of µ, it turns out to be easy to evaluate f (k) at independent uniformly
random points of Fn2 . This leads to our subexponential time list-decoding algorithm.

Relationship to the k-wise XOR on codes Back in the language of codes, what happened
here has a curious interpretation. Given a code C ⊆ FN2 , the k-wise XOR of C, C(⊕k), is the code

contained in FNk

2 defined as follows: for every codeword c ∈ C, there is a codeword c(⊕k) ∈ F [N]k

2

whose value in coordinate (i1, . . . , ik) equals ci1 ⊕ ci2 ⊕ . . . ⊕ cik . In terms of this operation, our
algorithms simply do the following: given a code C and received word w, consider the code C(⊕k)

with received word w(⊕k). The crucial observation is, that for k chosen suitably as a function of
the bias/sparsity of C, the code C(⊕k) is essentially, up to repeating each coordinate a roughly-equal
number of times, the Hadamard code! Additionally, w(⊕k) is close to c(⊕k) for a codeword c if and
only if w is close c. Thus decoding/testing w(⊕k) for the Hadamard code now suffices to complete
the algorithm.

The k-wise XOR on codes is an operation that shows up often as a device for hardness amplifica-
tion, to convert functions that are hard to compute into functions that are even harder to compute.

6

Our algorithms use the XOR operation for “good”: here the XOR operation is a vehicle to trans-
fer query-efficient/time-efficient algorithms for the Hadamard code to query-efficient/time-efficient
algorithms for arbitrary unbiased codes.

3 Definitions and Main Results

3.1 Codes

We begin by formalizing the notions of local list-decoding and local-testing of codes.

Definition 1 Let r ∈ FN2 . A randomized algorithm A is said to implicitly compute r with error δ
if for all j ∈ [N] it holds that

Pr [A(j) = rj] ≥ 1− δ,

where the probability is over the internal randomness of A.

Below we formally define local list-decoders. In what follows, we denote by Aw the randomized
algorithm A with oracle access to w.

Definition 2 (Local list-decoder) Let C ⊆ FN2 be a code. A (δ, q, l)-local list-decoder for C is a
randomized algorithm A, such that for every w ∈ FN2 , A outputs a list of randomized algorithms
{A1, . . . , Al}, such that:

• For each i ∈ [l], and for each input j ∈ [N], the algorithm Awi (j) makes at most q queries
into w during its execution.

• With probability at least 2/3, for every codeword c ∈ C with ∆(w, c) < δ, there exists an index
i such that the algorithm Awi implicitly computes c with error 1/3 (in the sense of Definition
1).

We now define local testers (this slight abuse of notation; traditionally these objects are called
tolerant local testers [PRR06]).

Definition 3 (Local tester) Let C ⊆ FN2 be a code. Let 0 < δ1 < δ2. A (δ1, δ2, q)-local tester for
C is a randomized algorithm A, such that for every w ∈ FN2 ,

• Aw makes at most q oracle calls to w during its execution.

• If there is a codeword c ∈ C such that ∆(w, c) < δ1, Aw accepts with probability at least 2/3.

• If for all c ∈ C, ∆(w, c) > δ2, then Aw rejects with probability at least 2/3.

We can now formally state our main theorems regarding the local testability and local list-decodability
of sparse unbiased codes.

7

Theorem 4 (Constant-query local list-decoding and testing of sparse, unbiased, linear codes)
Let C ⊆ FN2 be a linear code with N c codewords and with bias β = N−γ. Then,

• Local list-decoding: for all 0 < ε < 1/2, there exists a
(

1/2− ε,
(

1
ε

)O(c/γ)
,
(

1
ε

)O(c/γ)
)

-local

list-decoder for C.

• Local testing: for all constants ε1, ε2 such that 0 < ε1 < ε2 < 1/2, there exists a(
1/2− ε2, 1/2− ε1,

(
1

ε2−ε1

)O(c/γ)
)

-local tester for C.

The next theorem states that the above algorithms can be implemented in a time-efficient manner
for the dual-BCH codes. The proof appears in Section 6.

Theorem 5 (Time-efficient local algorithms for dual-BCH codes) Let t be a constant, and
let N be an integer of the form 2s − 1. Let C be the dual-BCH code of length N and dimension st.
Then,

• Local list-decoding: for all 0 < ε < 1/2, there exists a
(
1/2− ε,poly

(
1
ε

)
, poly

(
1
ε

))
-local

list-decoder for C which runs in time poly(logN, 1
ε).

• Local testing: for all constants ε1, ε2 such that 0 < ε1 < ε2 < 1/2, there exists a(
1/2− ε2, 1/2− ε1,poly

(
1

ε2−ε1

))
-local tester for C which runs in time poly(logN, 1

ε).

Finally, we formally state our theorem on the subexponential time list-decoding of unbiased linear
codes from worst-case errors. The proof appears in Section 5.

Theorem 6 (Subexponential time list-decoding of unbiased codes) For all constants α, γ, ε >
0, there is an algorithm SubExpListDecode, which when given:

• the generator matrix G of a n-dimensional binary linear code C ⊆ FN2 , where C has bias N−γ

and N = n1+α, and

• a vector r ∈ FN2 ,

runs in time exp(n
log logn) and with high probability, finds all codewords c ∈ C such that ∆(c, r) <

1
2 − ε.

There are analogues of Theorem 4 and Theorem 6 for linear codes over an arbitrary finite field
Fq. The proofs are straightforward generalizations of the proofs in the F2 case, but require a little
more notation. We state the theorems below, and point out the changes required to the proofs in
Appendix C.

Theorem 7 (Constant-query local list-decoding and testing of sparse, unbiased, linear
codes over Fq) Let q be a fixed prime power. Let C ⊆ FNq be a linear code with N c codewords and
with bias1 β = N−γ. Then,

1For q-ary codes, the bias is defined to be the smallest β such that for each codeword c, and for each α ∈ Fq, the
fraction of coordinates of c which equal α lies in the interval [1

q
(1− β), 1

q
(1 + β)].

8

• Local list-decoding: for all 0 < ε < 1− 1
q , there exists a

(
1− 1

q − ε,
(

1
ε

)O(c/γ)
,
(

1
ε

)O(c/γ)
)

-

local list-decoder for C.

• Local testing: for all constants ε1, ε2 such that 0 < ε1 < ε2 < 1− 1
q , there exists a(

1− 1
q − ε2, 1−

1
q − ε1,

(
1

ε2−ε1

)O(c/γ)
)

-local tester for C.

Theorem 8 (Subexponential time list-decoding of unbiased codes over Fq) Let q be a fixed
prime power. For all constants α, γ, ε > 0, there is an algorithm SubExpListDecode, which when
given:

• the generator matrix G of a n-dimensional q-ary linear code C ⊆ FNq , where C has bias N−γ

and N = n1+α, and

• a vector r ∈ FNq ,

runs in time exp(n
log logn) and with high probability, finds all codewords c ∈ C such that ∆(c, r) <

1− 1
q − ε.

3.2 Distributions

As suggested earlier, it is greatly simplifying to work in the language of distributions over Fn2 . We
now formalize some notions in this context.

For sets D and R, we will use the concept of a probabilistic function from D to R. Formally, a
probabilistic function h from D to R is given by a collection of distributions (νd)d∈D, where each
νd is a distribution over R. Functionally, we view probabilistic functions as a black box, such that
whenever an element d ∈ D is fed into this box, a sample from νd is returned by the box. The
samples returned from different invocations of this box are mutually independent (in particular,
two different calls to the box on the same input may return different values). Abusing notation,
we write h : D → R. Note that ordinary (deterministic) functions can be viewed as a special case
of probabilistic functions. Working with probabilistic functions in the context of recovering linear
functions from errors (and especially working with their Fourier representation) was originally done
in [FGKP06], and we will find it very convenient in our arguments too.

For two probabilistic functions h1, h2 : Fn2 → F2 and a distribution µ over Fn2 , we define the
µ-distance between h1 and h2 by:

∆µ(h1, h2) = Pr
x∈µ

[h1(x) 6= h2(x)],

where the probability is over x chosen according to µ, and h1(x) and h2(x) being sampled inde-
pendently from the probabilistic functions h1 and h2.

We now introduce some terminology regarding linear functions and characters. Every linear func-

tion g : Fn2 → F2 is a deterministic function of the form g(x) = a · xdef
=
∑n

i=1 aixi for some a ∈ Fn2 .
A character of Fn2 is a function χ : Fn2 → R such that for some linear function g : Fn2 → F2, we have
χ(x) = (−1)g(x) for all x. The character χ0 with χ0(x) = 1 for all x is called the trivial character.

We can now define the analogous versions of local list-decoding and local testing for distributions.

9

Definition 9 (Local list-decoder for linear functions under µ) Let µ be a distribution over
Fn2 . A (δ, q, l)-local list-decoder for linear functions under µ is a randomized algorithm A, such that
for every probabilistic function f : Fn2 → F2, A outputs a list of randomized algorithms {A1, . . . , Al},
such that:

• For each i ∈ [l], and for each input x ∈ Fn2 , the algorithm Afi (x) makes at most q queries into
f during its execution.

• With probability at least 2/3, for every linear function g : Fn2 → F2 such that ∆µ(f, g) < δ,

there exists an index i such that the algorithm Afi implicitly computes g with error 1/3 (in
the sense of Definition 1).

Definition 10 (Local tester for linear functions under µ) Let µ be a distribution over Fn2 .
Let 0 < δ1 < δ2. A (δ1, δ2, q)-local tester for linear functions, or linearity tester, under µ is a
randomized algorithm A, such that for every probabilistic function f : Fn2 → F2,

• A makes at most q oracle calls to f .

• If there is a linear function g : Fn2 → F2 such that ∆µ(g, f) < δ1, Af accepts with probability
at least 2/3

• If for all linear functions g : Fn2 → F2, ∆µ(g, f) > δ2, then Aw rejects with probability at least
2/3

We now state our main theorem on the local list-decoding and testing of linear functions under
unbiased distributions. The proof appears in Section 4. In the next subsection, we will derive
Theorem 4 from it.

Theorem 11 (Local list-decoding and testing of linear functions under unbiased distributions)
Let µ be a distribution over Fn2 such that for all nontrivial characters χ : Fn2 → {− 1,+1},

| E
x∈µ

[χ(x)]| < 2−ηn.

Then,

1. Local list-decoding: for every 0 < ε < 1/2, there exists a
(

(1/2− ε),
(

1
ε

)O(1/η)
,
(

1
ε

)O(1/η)
)

-

local list-decoder for linear functions under µ.

2. Local testing: for every 0 < ε1 < ε2 < 1/2, there exists a

(
1/2− ε2, 1/2− ε1,

(
1

ε2−ε1

)O(1/η)
)

-

local tester for linear functions under µ.

10

3.3 From Distributions to Codes

In this subsection, we will use Theorem 11 on local algorithms for unbiased distributions to prove
Theorem 4 on local algorithms for sparse, unbiased codes.

Definition 12 (Distribution associated to a code) Let C ⊆ {0, 1}N be a linear code of dimen-
sion n. Let G be any generator matrix for C (i.e., G is an n × N matrix whose rows are linearly
independent and span C). Then the distribution associated to C via G is distribution µ over Fn2
which is uniform over the columns of G.

The connection between local algorithms for codes and local algorithms for distributions comes
from the following simple theorem.

Theorem 13 Let C be a code and let µ be a distribution associated to C via G. Then,

• Local list-decoding: If there exists a (δ, q, l)-local list-decoder for linear functions under µ,
then there exists a (δ, q, l)-local list-decoder for C.

• Local testing: If there exists a (δ1, δ2, q)-local tester for linear functions under µ, then there
exists a (δ1, δ2, q)-local tester for C.

Proof Let v1, . . . , vN ∈ Fn2 be the columns of G. Let w ∈ FN2 be a received word.

Let f : Fn2 → F2 be the probabilistic function such that on input x, f(x) is sampled as follows: If
there exists i ∈ [N] such that x = vi, then pick an i uniformly at random from {i ∈ N | x = vi},
and output wi. If there is no i ∈ [N] such that x = vi, then output a uniformly random element of
F2 (or define f(x) arbitrarily).

Let c = a · G be a codeword of C, and let g : Fn2 → F2 be the corresponding linear function given
by g(x) = a · x. Observe that our definition of f implies that

∆(c, w) = ∆µ(g, f). (1)

Also note that one can simulate oracle access to f given oracle access to w.

The local list-decoding and testing algorithms for C can now be easily described. Given a received
word w ∈ FN2 , consider the corresponding probabilistic function f : Fn2 → F2, and run the algorithms
for local list-decoding/testing for linear functions under µ on f . The local tester for C accepts if and
only if the corresponding local tester for linear functions under µ accepts. The local list-decoding
algorithm for C outputs, for each linear function g(x) = a · x in the list output by the list-decoding
algorithm for linear functions under µ, the codeword c = a · G. Correctness follows immediately
from Equation (1).

We now give a proof of the main theorem on local list-decodability and testability of sparse, unbiased
codes, Theorem 4, assuming Theorem 11.

Proof of Theorem 4: Let C be a linear code with |C| ≤ N c and bias ≤ N−γ . Let G be a generator
matrix for C. Let n = log |C|. Let µ be the distribution associated to C via G.

11

We first notice that our assumptions on the sparsity and the bias of the code C imply that for all
nontrivial characters χ : Fn2 → {−1,+1},

| E
x∈µ

[χ(x)]| < 2−ηn, (2)

where η = γ/c. Indeed, if χ(x) = (−1)a·x, then the codeword a · G of the code C has weight
1−Ex∈µ[χ(x)]

2 . By assumption on the bias of C, the weight of any nonzero codeword of C lies

in the interval (1−N−γ
2 , 1+N−γ

2). By the sparsity of C, this interval is contained in the interval

(1−2−γn/c

2 , 1+2−γn/c

2), and Equation (2) follows.

Theorem 11 now implies the existence of suitable list-decoding and testing algorithms for linear
functions under µ. By Theorem 13, this implies the existence of the desired local list-decoding and
local testing algorithms for C.

4 Local algorithms for distributions

In this section, we prove Theorem 11.

4.1 Some notation

We now introduce some notation.

Let Un denote the uniform distribution over Fn2 .

Let µ be a distribution over Fn2 . For an integer k > 0, we let µ(k) denote the distribution of
x1 + . . . + xk, where the xi are picked independently from µ. The crucial fact that we need
about this operation is given by the following lemma: for unbiased µ, µ(k) is close to the uniform
distribution.

Lemma 14 Suppose that for every nontrivial character χ of Fn2 , we have

|Ex∈µ[χ(x)]| < β.

Then the distribution µ(k) is βk · 2n-close to Un in statistical distance (or L1 distance).

For completeness, we include a proof of this (well-known) lemma in the appendix.

For an integer k > 0 and y ∈ Fn2 , we let µ(k,y) denote the distribution of (x1, . . . , xk) ∈ (Fn2)k, where
the xi are picked independently from µ conditioned on

∑k
i=1 xi = y.

For a probabilistic function f : Fn2 → F2, we define the real function associated with f to be the
function F : Fn2 → [−1, 1], where for each x ∈ Fn2 , F (x) = 2px − 1, where px is the probability
that f(x) equals 0. Thus for each x, F (x) = E[(−1)f(x)] (where the randomness is over the choice
of f(x) from the probabilistic function f), and in particular, if f is a deterministic function, then
F (x) = (−1)f(x).

12

For functions F,G : Fn2 → R and a distribution µ over Fn2 , we define the µ-correlation between F
and G, denoted 〈F,G〉µ be the quantity

Ex∈µ[F (x)G(x)].

Note that if f and g are probabilistic functions from Fn2 to F2, and F and G are the real functions
associated with them, then

〈F,G〉µ = 1− 2∆µ(f, g). (3)

This follows from the fact that for each x ∈ Fn2 ,

F (x)G(x) = E[(−1)f(x)]E[(−1)g(x)] = E[(−1)f(x)+g(x)] = 1− 2 Pr[f(x) 6= g(x)].

4.2 Local algorithms for distributions

In this subsection, we will prove Theorem 11 on the local list-decoding and testing of linear functions
under unbiased distributions µ.

Recall the setup: we have a distribution µ over Fn2 and a function f : Fn2 → F2. Our algorithms will
work by reducing to the uniform distribution over Fn2 . Specifically, we will produce a (probabilistic)
function h : Fn2 → F2 (from which we can sample, given oracle access to f) such that the µ-distance
of f from a linear function g “corresponds” to the Un-distance of h from g. Then list-decoding
and linearity-testing of h under the uniform distribution will enable us to list-decode and test the
linearity of f under the µ-distribution.

We begin by introducing the local list-decoder for linear functions under the uniform distribution,
given by the famous Goldreich-Levin algorithm2.

Theorem 15 (Local list-decoder for the uniform distribution [GL89]) For every 0 < ε <
1/2, there exists a

(
1
2 − ε, poly(1

ε),poly(1
ε)
)
-local list-decoder for linear functions under Un.

This version of the Goldreich-Levin theorem, in conjunction with the BLR linearity test [BLR93]
(suitably generalized to handle probabilistic functions), easily implies a constant query local tester
for linear functions under the uniform distribution in the high error regime.

Theorem 16 (Local tester for the uniform distribution) For every 0 < ε1 < ε2 < 1/2, there

exists a
(

1
2 − ε2,

1
2 − ε1, poly

(
1

ε2−ε1

))
-local tester for linear functions under Un.

In Appendix A, we outline a proof of Theorem 16 using Theorem 15 and the BLR linearity test.

We now give a proof of the main result of this section, Theorem 11.

Theorem 11 (Local list-decoding and testing of linear functions under unbiased distri-
butions) Let µ be a distribution over Fn2 such that for all nontrivial characters χ : Fn2 → {−1,+1},

| E
x∈µ

[χ(x)]| < 2−ηn.

Then,

2To be precise, we state a generalization of the usual Goldreich-Levin theorem to handle probabilistic functions;
inspecting the original proof of the theorem immediately reveals that it applies verbatim to probabilistic functions
too.

13

1. Local list-decoding: For every ε such that 0 < ε < 1/2, there exists a
(

1
2 − ε, (

1
ε)
O(1/η),

(
1
ε

)O(1/η)
)

-

local list-decoder for linear functions under µ.

2. Local testing: For every ε1, ε2 such that 0 < ε1 < ε2 < 1/2, there exists a(
1
2 − ε2,

1
2 − ε1,

(
1

ε2−ε1

)O(1/η)
)

-local tester for linear functions under µ.

Proof Let f : Fn2 → F2 be the probabilistic function which we want to locally list-decode or
locally test. Let k be an odd integer ≈ 100

η , and note that Lemma 14 implies that the distribution

µ(k) is 2−50n close to Un in statistical distance.

Let h : Fn2 → F2 be the probabilistic function defined as follows. For y ∈ Fn2 , to sample h(y), first
sample (x1, . . . , xk) from µ(k,y), and then output

∑k
i=1 f(xi). Clearly, any algorithm that is given

oracle access to f can simulate oracle access to h with a O(1
η)-blowup in the number of queries

(although the time complexity of this simulation need not be bounded). See also the Remark
following the proof.

We will assume without loss of generality in the rest of the proof that (1
ε)
k and (1

ε2−ε1)k are all

2o(n), since otherwise the trivial local testers and list-decoders that query the function at every
point of the domain will satisfy the bounds in the theorem.

The crux of our algorithms is the following claim (the proof appears in the analysis of the algo-
rithms).

Claim 17 For every linear function g : Fn2 → F2, letting ∆µ(f, g) = 1−β
2 and ∆Un(h, g) = 1−α

2 , we
have

α = βk ± 2−50n.

We now present our local list-decoding and testing algorithms for linear functions. Both these
algorithms will assume they have oracle access to the probabilistic function h, which by the earlier
discussion, can be simulated by using oracle access to f .

Algorithm for Local List-Decoding Fix any ε such that 0 < ε < 1/2. We now describe a(
1
2 − ε, (

1
ε)
O(1/η),

(
1
ε

)O(1/η)
)

-local list-decoder, Dµ, for linear functions under µ. Let α = (2ε)k−2−50n

2 .

By Theorem 15, there is a
(

1
2 − α,poly(1

α), poly(1
α)
)
-local list-decoder, DUn , for linear functions

under Un. The list-decoder for linear functions under µ, Df
µ, works as follows given oracle access

to the probabilistic function f :

• Run DUn and get as output a list of randomized algorithms {D1, . . . , Dl}.

• Return a list of randomized algorithms {Dµ,1, . . . , Dµ,l}, where Dµ,i works as follows: The

algorithm Df
µ,i(x) simulates Dh

i (x) (recall that given oracle access to f , one can simulate

oracle access to h) and returns the value returned by Dh
i (x).

14

Algorithm for Testing Fix any ε1, ε2 such that 0 < ε1 < ε2 < 1/2. We now describe a(
1
2 − ε2,

1
2 − ε1,

(
1

ε2−ε1

)O(1/η)
)

-local tester, Tµ, for linear functions under µ.

Let α1 = (2ε1)k+2−50n

2 and let α2 = (2ε2)k−2−50n

2 . By Theorem 16, there is a
(

1
2 − α2,

1
2 − α1,poly

(
1

α2−α1

))
-

local tester, TUn , for linear functions under Un.

The linearity-tester under µ, Tµ, works as follows given oracle access to the probabilistic function
f :

• Simulate T hUn (again recall that given oracle access to f , one can simulate oracle access to h),

and accept if and only if T hUn accepts.

Analysis The correctness of the algorithms will follow easily from Claim 17. We first prove this
claim.

Let F : Fn2 → [−1,+1] be the real function associated with f . Let H : Fn2 → [−1,+1] be the real
function associated with h.

Let χg be the real function associated with g. Note that since g is a deterministic function, χg(x)
simply equals (−1)g(x).

Note that by definition,

H(y) = E[(−1)h(y)]

= E(x1,...,xk)∈µ(k,y) [(−1)
∑k
i=1 f(xi)]

= E(x1,...,xk)∈µ(k,y)

[
k∏
i=1

F (xi)

]
.

We want to estimate ∆Un(h, g) in terms of ∆µ(f, g). Equivalently, by Equation (3), we want to
bound 〈H,χg〉Un in terms of 〈F, χg〉µ. We begin by expanding out the definition of 〈H,χg〉Un :

〈H,χg〉Un = Ey∈Un [H(y)χg(y)]

= Ey∈µ(k) [H(y)χg(y)]± 2−50n (by Lemma 14, choice of k, and using |H(y)χg(y)| ≤ 1)

= Ey∈µ(k)

[(
E(x1,...,xk)∈µ(k,y)

[
k∏
i=1

F (xi)

])
χg(y)

]
± 2−50n

= Ey∈µ(k)

[
E(x1,...,xk)∈µ(k,y)

[
k∏
i=1

(F (xi)χg(xi))

]]
± 2−50n

= Ex1,...,xk∈µ

[
k∏
i=1

(F (xi)χg(xi))

]
± 2−50n

= (Ex∈µ[F (x)χg(x)])k ± 2−50n.

= 〈F, χg〉kµ ± 2−50n.

By Equation (3), we get that α = βk ± 2−50n. This proves the claim.

15

Analysis of decoder Claim 17 together with Equation (3) implies that if g is a linear function

such that ∆µ(g, f) < 1/2− ε, then ∆Un(g, h) < 1/2− α, where α = (2ε)k−2−50n

2 . Now, the decoder

Df
µ simulates Dh

Un
, and hence returns an algorithm computing every linear function g such that

∆Un(g, h) < 1/2 − α. Hence, it also returns an algorithm computing every linear function g such
that ∆µ(g, f) < 1/2− ε.

Observe that the query complexity of Df
µ is given by the query complexity of Dh

Un
, but blown up

by a factor of k = O(1/η), since each each query to h is made by making k queries to f . Plugging

in the parameters of DUn , we obtain the desired query complexity for Df
µ.

Analysis of tester Just as we stated in the analysis of the decoder, Claim 17 together with
Equation (3) implies that

• If g is a linear function such that ∆µ(g, f) < 1/2 − ε2, then ∆Un(g, h) < 1/2 − α2, where

α2 = (2ε2)k−2−50n

2 .

• If g is a linear function such that ∆µ(g, f) > 1/2 − ε1, then ∆Un(g, h) > 1/2 − α1, where

α1 = (2ε1)k+2−50n

2 . (For this implication we use that k is odd.)

Now, the tester T fµ simulates T hUn , and outputs the output of T hUn . If f is 1/2− ε2 close to a linear
function under µ, then by the above implications, h is 1/2 − α2 close to a linear function under
Un, and hence T hUn accepts. If f is 1/2− ε1 far from all linear function under µ, then by the above

implications, h is 1/2− α1 far from all linear function under Un, and hence T hUn rejects.

Just as in the case of the local list-decoder, observe that the query complexity of T fµ is given by
the query complexity of T hUn , but blown up by a factor of k = O(1/η), since each each query to h
is made by making k queries to f . Plugging in the parameters of TUn , we obtain the desired query
complexity for T fµ .

Remark (Time Complexity). Suppose there is an algorithm µSample that runs in time T ,
which when given y ∈ Fn2 , produces a vector x ∈ (Fn2)k whose distribution is λ-close to to µ(k,y).
Then in time poly(T), one can sample (upto λ-statistical distance) the value of h(y) for any given y,
using oracle access to f . This will allow the algorithms of the previous section to run in time which
is a poly(T) factor larger than the corresponding running times of the invoked algorithms for the

uniform distribution. In particular, if λ < 2−Ω(n), the list-decoder will run in time poly
(
T,
(

1
ε

)1/η)
,

and the linearity-tester will run in time poly

(
T,
(

1
ε2−ε1

)1/η
)

.

In Section 6, we show how to implement the µSample algorithm in time poly(n) when µ is the
distribution associated with the dual-BCH code via a particular generator matrix.

16

5 Subexponential time list-decoding of unbiased linear codes

In this section, we prove Theorem 6 on the subexponential time list-decoding of unbiased linear
codes.

As in the local algorithms given in Section 4, we first change our language to that of distributions
on Fn2 . Given a linear code C and a received word r from which we want to list-decode, we get a
distribution µ and a function f : Fn2 → F2, and we want to find all linear functions g : Fn2 → F2

that are close to f in µ-distance.

Following the local algorithms, here too we will “self-correct” f to obtain a function h, such that
every linear function that correlates with f under the µ distribution, also correlates with h under
the uniform distribution over Fn2 . However, since we are now paying attention to running time
(and we do not know how to solve the µSample problem efficiently in general), we cannot afford to
allow the list-decoder over the uniform distribution over Fn2 to query the value of h at any point
that it desires. Instead, we will use some recent remarkable list-decoders, developed in the context
of learning noisy parities, which can list-decode in subexponential time by simply querying the
function h at independent uniformly random points of Fn2 ! Using the unbiasedness of µ, it turns
out to be easy to evaluate h at independent uniformly random points of Fn2 . This completes the
informal description of the algorithm.

Below we state the result on agnostically learning parities ([FGKP06]) that gives a list-decoding
algorithm for any function h over the uniform distribution over Fn2 in subexponential time, in the
model where the algorithm receives independent and uniform samples from h. The parameters in
Theorem 18 below are obtained by combining the parameters for the running time and query com-
plexity of the Blum-Kalai-Wasserman [BKW03] algorithm for learning noisy parities with random
errors in subexponential time with the Feldman-Gopalan-Khot-Ponnuswami [FGKP06] algorithm
for reducing the problem of learning noisy parities with agnostic errors to the problem of learning
noisy parities with random errors.

Theorem 18 ([FGKP06]) There is an algorithm AgnosticParity, such that for every probabilistic
function h : Fn2 → F2, every β > 0 and every choice of parameter t > 0,:

• If AgnosticParity is given as input the parameter β and s ≥ exp(log(1/β)n1/t + tn
logn) in-

dependent samples (x, h(x)), where x is chosen uniformly Fn2 , then with high probability
AgnosticParity returns the set of all linear functions g : Fn2 → F2 such that ∆Un(h, g) < 1−β

2 .

• AgnosticParity runs in time exp(log(1/β)n1/t + tn
logn)

We are now ready to prove our main theorem, Theorem 6, on the subexponential time list-decoding
of unbiased codes.

Theorem 6 (Subexponential time list-decoding of unbiased codes, restated) For all
constants α, γ, ε > 0, there is an algorithm SubExpListDecode, which when given:

• the generator matrix G of a n-dimensional binary linear code C ⊆ FN2 , where C has bias N−γ

and N = n1+α, and

17

• a vector r ∈ FN2 ,

runs in time exp(n
log logn) and with high probability, finds all codewords c ∈ C such that ∆(c, r) <

1−ε
2 .

Proof Let vi be the ith column of G.

Below we present the list-decoding algorithm. For concreteness, we will present the algorithm in
the language of codes. The proof of correctness will employ the language of distributions over Fn2 .

• Initialize the set Z = ∅.

• Set k = 100n
γ logN , t = 2 logn

log logn , and s = exp(log(1/ε)kn1/t + tn
logn).

• Repeat s times:

– Sample i1, . . . , ik uniformly at random from [N].

– Include (
∑k

j=1 vij ,
∑k

j=1 rij) in Z.

• Choose the parameter t = 2 logn
log logn , and feed εk/2 and Z as input to AgnosticParity, and let

its output be {g1, . . . , gl}.

• For each i ∈ [l], write the linear function gi in the form gi(x) = ai ·x, and output the codeword
ai ·G.

Clearly (by Theorem 18), this algorithm runs in time exp(log(1/ε)kn1/t+ tn
logn). By choice of k and

t, and since ε is constant and N = n1+α for constant α, this equals exp(n
log logn).

We now show that this algorithm is indeed a list-decoder as claimed. Let c = a ·G be a codeword
of C such that ∆(c, r) < 1−ε

2 . Let g : Fn2 → F2 be the linear function given by g(x) = a · x.

Let µ be the uniform distribution over the columns of G (i.e., µ is the distribution associated to
C via G). Let f : Fn2 → F2 be a probabilistic function, where to sample f(x), we pick an i ∈ [N]
uniformly at random from the set of all i such that x = vi, and output ri (if there are no such i,
then we can define f(x) arbitrarily).

Let h : Fn2 → F2 be the probabilistic function defined as follows. For y ∈ Fn2 , to sample h(y), first
sample (x1, . . . , xk) from µ(k,y) (recall that µ(k,y) denotes the distribution of (x1, . . . , xk) ∈ (Fn2)k,
where the xi are picked independently from µ conditioned on

∑k
i=1 xi = y), and then output∑k

i=1 f(xi).

As in the local setting, we have the following claim. We omit the proof (which is identical to the
proof Claim 17).

Claim 19 Let ∆Un(h, g) = 1−α′
2 . Then,

α′ > εk ± 2−50n.

18

Now, if εk ≤ 2−n, then the trivial brute force algorithm that searches over all possible linear
functions also satisfies the parameters of the theorem. Hence, from now on we assume without loss
of generality that εk > 2−n. In particular, the claim above implies that α′ > εk/2.

Let us analyze a single iteration of the loop in the algorithm. We will show that the distribution
of the point (

∑
j vij ,

∑
j rij) (which gets included in the set Z) is 2−50n-close to the distribution

of (y, h(y)), where y is sampled uniformly at random from Fn2 , and h(y) is sampled independently
from the probabilistic function h.

Assuming this for the moment, it is easy to see that the algorithm will include c in its output.
Indeed, the set of samples Z fed into the algorithm AgnosticParity is 2−50n-close to the distribution
of

((x1, h(x1)), (x2, h(x2)), . . . , (xs, h(xs))),

where the xi are independent. Thus by Theorem 18, since ∆Un(h, g) < 1−εk/2
2 , we see that the

algorithm AgnosticParity will return g in its output. Thus c will be included in the output of the
algorithm SubExpListDecode, as desired.

We now analyze the distribution of (
∑

j vij ,
∑

j rij). By definition, the distribution of this is

identical to the distribution of (
∑k

j=1 xj ,
∑k

j=1 f(xj)), where x1, . . . , xk are sampled independently

and uniformly from µ. By Lemma 14, the distribution of
∑k

j=1 xj (recalling definitions, we see

that this distribution is simply µ(k)) is 2−50n-close to uniformly distributed over Fn2 . For any given
y ∈ Fn2 , conditioned on

∑k
j=1 xj = y, the distribution of

∑k
j=1 f(xj) has a distribution identical to

that of h(y). Thus the distribution of (
∑

j vij ,
∑

j rij) is 2−50n-close to the distribution of (y, h(y)),
for uniformly sampled y.

This completes the proof of correctness of the algorithm.

Since the bias of random linear codes is small, we immediately get the following corollary.

Corollary 20 For all constants α, ε > 0, there is an algorithm which when given the n × N
generator matrix G of a random binary linear code C, where N = n1+α, and when given a vector
r ∈ FN2 , runs in time exp(n

log logn) and finds all codewords c ∈ C such that ∆(c, r) < 1
2 − ε.

6 Efficient local algorithms for dual-BCH codes

In this section, we will prove Theorem 5 on the existence of time-efficient and query-efficient al-
gorithms for list-decoding and testing dual-BCH codes. As mentioned earlier, we will do this by
showing that the µ-sampling problem associated to the dual-BCH codes can be solved efficiently.
The algorithm presented here is a small variant of one given by Kaufman-Litsyn [KL05] for sam-
pling constant weight BCH codewords. The analysis we present is self-contained (and possibly
simpler).

Let us recall the definition of the dual-BCH code of length 2s − 1 and parameter t, dBCH(s, t).
First identify F2s with Fs2 in a linear fashion. For an element α ∈ F∗2s , let vα,t ∈ Ft2s be the vector
given by

vα,t = (α, α3, α5, . . . , α2t−1).

19

Define vα,t ∈ (Fs2)t to be the vector obtained from vα,t by interpreting each of its coordinates as
elements of Fs2. Then the dual-BCH code dBCH(s, t) is the code with the (st)× (2s − 1) generator
matrix G, where the columns of G are the vectors vα,t, for α ∈ F∗2s .

We denote by St,s ⊆ Ft2s the set of all vectors vt,α, where α ∈ F∗2s . By definition, the distribution
µ associated to dBCH(s, t) via G is the uniform distribution over St,s. In this setting, in the
µSample problem we are given a vector b ∈ Ft2s , and want to sample uniformly from the set of all
(x1, . . . ,xk) ∈ Skt,s such that

∑k
i=1 xi = b. Below we give an algorithm to sample uniformly from

the set of all (x1, . . . ,xk) ∈ Skt,s such that the xi are all distinct, and
∑k

i=1 xi = b. Later we will

show that this distribution is in fact 2−Ω(s)-close to the actual distribution that we want.

Before proceeding with the sampling algorithm, we state two of the fundamental properties of
dual-BCH codes that will be useful in the analysis.

Proposition 21 (Unbiasedness of dual-BCH codes) For every character χ : Ft2s → C, we
have ∣∣Ex∈St,s [χ(x)]

∣∣ ≤ 2t · 2−s/2.

Proposition 21 is a consequence of the Weil bound on character sums [LN94].

Proposition 22 (Distance of BCH codes [MS81]) For every V ⊆ St,s with 1 ≤ |V | ≤ 2t, we
have

∑
v∈V v 6= 0.

Theorem 23 There is a randomized algorithm BCHSample, which when given as input:

• integers t, k, s with 4t < k < s,

• a vector b ∈ Ft2s,

runs in time poly(tt, s), and outputs a random set T ⊆ F2s such that:

• |T | = k.

• The distribution of T is 2−Ω(s)-close to the uniform distribution over the set

F = {R ⊆ F2s | |R| = k,
∑
α∈R

vα,t = b}.

Proof We give the algorithm BCHSample below. The main idea is to first pick all but t elements
of the set T uniformly at random, and to then consider the residual problem of picking the last
t elements such that

∑
α∈T vα,t equals b. We show that with probability at least 1

t! (which is
noticeable if t is a constant), there do exist t elements with this property. Finally, we notice that
the residual problem of finding the last t elements (when they exist) is precisely the problem of
syndrome decoding of BCH codes up to half the minimum distance, for which there are classical
efficient algorithms (see [MS81, DORS08]).

We begin by stating the theorem describing the syndrome-decoding algorithm for BCH codes.

20

Theorem 24 (Syndrome-decoding of BCH codes [MS81, DORS08]) There is an algorithm
SyndromeDecode, which when given integers s, t and a vector y ∈ Ft2s, runs in time poly(s) and
returns the unique set U ⊆ F∗2s (if it exists) with:

• |U | ≤ t,

•
∑

α∈U vα,t = y.

We can now formally present our algorithm BCHSample.

• Repeat poly(t!, s) times:

– Pick α1, . . . , αk−t ∈ F2n uniformly at random.

– Let c =
∑k−t

i=1 vαi,t.

– Run SyndromeDecode(s, t,b−c). If it runs successfully, let U ⊆ F2s be the set it returned.

– Let T = {α1, . . . , αk−t} ∪ U .

– If |T | = k, then return T and EXIT.

• FAIL.

Let S = St,s. The following lemma analyzes a single iteration of the loop, and immediately implies
the correctness of the algorithm.

Lemma 25 In a single iteration of the loop, a set T is returned with probability 1/t!− os(1), and
the distribution of this set T is uniform over F .

Proof The lemma will follow from a sequence of claims.

Claim 26 The distribution of c is 2−Ω(st)-close to the uniform distribution over Ft2s.

Proof This is a direct consequence of Proposition 21 and Lemma 14. Let µ be the uniform
distribution over S. Notice that the distribution of c is precisely µ(k−t).

Proposition 21 implies that for every nontrivial character χ : Ft2s → R

|Ex∈µ [χ(x)]| ≤ 2t · 2−s/2.

Lemma 14 then implies that the statistical distance of the distribution µ(k−t) from the uniform
distribution over Ft2s is at most 2st · (2t)k−t · 2−(k−t)s/2 ≤ 2−Ω(st), as desired.

Claim 27 If y ∈ Ft2s is picked uniformly at random, then with probability at least 1/t! − os(1),
SyndromeDecode(s, t,y) will succeed and output a set U with |U | = t. Furthermore, the distribution
of this U is uniformly distributed over the set of all t-element subsets of F2s.

21

Proof Recall that SyndromeDecode(s, t,y) will succeed and output a set U of size t, if and only
if y can be written as the sum of exactly t distinct vectors of S. However, and this is the crucial
point, any y0 ∈ Ft2s can be written as the sum of t distinct elements of S in at most 1 way. Indeed, if
there were 2 different ways of writing some y0 ∈ Ft2s as a sum of t distinct elements in S, then there
would be a nonempty set of size at most 2t elements from S which sum to 0. But this contradicts
the distance property of BCH codes, Proposition 22.

Thus the set of all y0 ∈ Ft2s which can be written as a sum of exactly t distinct elements of S has

cardinality exactly
(|S|
t

)
≈ 2st

t! (1− os(1)). The claim follows.

We can now complete the proof of Lemma 25, and with that the proof of Theorem 23. By the
previous 2 claims, with probability at least 1/t!− os(1), SyndromeDecode(s, t,b− c) will output a
set U of cardinality t.

Furthermore, this set U will be disjoint from {α1, . . . , αk−t} with high probability. This can be
seen as follows. By the above, an equivalent way, up to 2−Ω(st) statistical error, of generating
({α1, . . . , αk−t}, U) is to first pick U uniformly at random amongst all t element subsets of F2s ,
let c = b −

∑
α∈U vα,t, then to pick (v1, . . . , vk−t) from the distribution µ(k−t,c), and finally for

each i ∈ [k − t] let αi be the unique α such that vi = vα,t. Now, as in the proof of Claim 26,
the statistical distance of µ(k−t)/2 from the uniform distribution over (Ft2s)(k−t)/2 is 2−Ω(st). Thus
we have the following yet another equivalent way, up to 2−Ω(st) statistical error, of generating
({α1, . . . , αk−t}, U). First pick U as before and let c = b−

∑
α∈U vα,t. Now pick d ∈ Ft2s uniformly

at random. Pick (v1, . . . , v(k−t)/2) from µ((k−t)/2,d) and (v(k−t)/2+1, . . . , vk−t) from µ((k−t)/2,c−d),
and and finally for each i ∈ [k − t] let αi be the unique α such that vi = vα,t. Now notice that
since d is picked uniformly, the distribution of (v1, . . . , v(k−t)/2) is 2−Ω(st) close to the uniform dis-

tribution over (Ft2s)(k−t)/2 even after conditioning on the choice of U . Similarly, the distribution of
(v(k−t)/2+1, . . . , vk−t) is 2−Ω(st) close to the uniform distribution over (Ft2s)(k−t)/2, even after con-
ditioning on the choice of U (since the only effect that U has is through c, and the distribution
of d − c is uniformly distributed even conditioned on c). Thus, conditioned on U , the distribu-

tion of (α1, . . . , α(k−t)/2) is close to uniform in F(k−t)/2
2s , and so the probability that U intersects

{α1, . . . , α(k−t)/2} is os(1). Similarly, the probability that U intersects {α(k−t)/2+1, . . . , αk−t} is
os(1). Thus the probability that U intersects {α1, . . . , αk−t} is os(1).

Whenever U is disjoint from {α1, . . . , αk−t}, the cardinality of T will indeed equal k, and thus the
algorithm will return the set T with probability at least 1

t! − oS(1).

It remains to see that the distribution of T is uniform over F . By design, the distribution of T is
supported on F . For every element R of F , T will equal R if and only if α1, . . . , αk−t are distinct
elements of R. The probability of this occurring does not depend on R, and thus the distribution
of T is uniform over F .

Remark Observe that what we just showed also implies that for every b, the number of
(x1, . . . ,xk) ∈ Skt,s such that the xi are all distinct and

∑
xi = b is 2s(k−t)(1 − o(1)). Conse-

quently, for every k′ < k, and for every b, the number of (x1, . . . ,xk′) ∈ Sk
′
t,s such that the xi

are all distinct and
∑

xi = b is at most 2s(k−t−1)(1 − o(1)). This implies that the distribution
that BCHSample samples from (the uniform distribution over the set of all (x1, . . . ,xk) ∈ Skt,s such

22

that the xi are all distinct and
∑

xi = b), is 2−Ω(s)-close to the distribution µ(k,b) (the uniform
distribution over the set of all (x1, . . . ,xk) ∈ Skt,s such that

∑
xi = b).

We can now complete the proof of Theorem 5.

Proof of Theorem 5: Follows by combining Theorem 23 and the remark following it, with
Theorem 11 and the remark following it.

Acknowledgements

We are very grateful to Madhu Sudan for suggesting these problems to us, for constant encourage-
ment, valuable discussions and for conjecturing the impossibility of our results. We are also very
grateful to Adam Kalai for his enthusiastic support and many helpful discussions. Many thanks
also to Henry Cohn and Tali Kaufman for all their encouragement.

Finally, we would like to thank Microsoft Research, New England, for its hospitality.

References

[AKK+03] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Testing
low-degree polynomials over GF(2). In Proceedings of RANDOM 2003, LNCS, vol.
2764, pages 188–199, New York, 2003. Springer.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM,
45(3):501–555, May 1998.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteriza-
tion of NP. Journal of the ACM, 45(1):70–122, January 1998.

[AS03] Sanjeev Arora and Madhu Sudan. Improved low degree testing and its applications.
Combinatorica, 23(3):365–426, 2003. Preliminary version in Proceedings of ACM STOC
1997.

[BCH+96] Mihir Bellare, Don Coppersmith, Johan H̊astad, Marcos Kiwi, and Madhu Sudan.
Linearity testing over characteristic two. IEEE Transactions on Information Theory,
42(6):1781–1795, November 1996.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. J. ACM, 50(4):506–519, 2003.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applica-
tions to numerical problems. Journal of Computer and System Sciences, 47(3):549–595,
1993.

23

[DG08] Irit Dinur and Elazar Goldenberg. Locally testing direct product in the low error range.
In FOCS, pages 613–622. IEEE Computer Society, 2008.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM J. Comput.,
38(1):97–139, 2008.

[FGKP06] Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami.
New results for learning noisy parities and halfspaces. In FOCS, pages 563–574, 2006.

[GKZ08] Parikshit Gopalan, Adam R. Klivans, and David Zuckerman. List-decoding Reed-Muller
codes over small fields. In STOC, pages 265–274, 2008.

[GL89] Oded Goldreich and Leonid Levin. A hard-core predicate for all one-way functions.
Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pages 25–
32, May 1989.

[Gop10] Parikshit Gopalan. A Fourier-Analytic Approach to Reed-Muller Decoding. In FOCS,
pages 685–694. IEEE Computer Society, 2010.

[GRS00] Oded Goldreich, Ronitt Rubinfeld, and Madhu Sudan. Learning polynomials with
queries: The highly noisy case. SIAM Journal on Discrete Mathematics, 13(4):535–570,
November 2000.

[IJKW08] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. Uniform
direct product theorems: simplified, optimized, and derandomized. In STOC, pages
579–588, 2008.

[IKW09] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. New direct-product
testers and 2-query pcps. In STOC, pages 131–140, 2009.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR Lemma. Proceedings of the 29th Annual ACM Symposium on
Theory of Computing, pages 220–229, May 1997.

[JPRZ04] Charanjit S. Jutla, Anindya C. Patthak, Atri Rudra, and David Zuckerman. Testing
low-degree polynomials over prime fields. In FOCS ’04: Proceedings of the Forty-Fifth
Annual IEEE Symposium on Foundations of Computer Science, pages 423–432. IEEE
Computer Society, 2004.

[KL95] Ilia Krasikov and Simon Litsyn. On spectra of BCH codes. IEEE Transactions on
Information Theory, 41(3):786–788, 1995.

[KL05] T. Kaufman and S. Litsyn. Almost orthogonal linear codes are locally testable. In
Proceedings of the Forty-sixth Annual Symposium on Foundations of Computer Science,
pages 317–326, 2005.

[KR04] T. Kaufman and D. Ron. Testing polynomials over general fields. In Proceedings of the
Forty-fifthth Annual Symposium on Foundations of Computer Science, pages 413–422,
2004.

24

[KS07] Tali Kaufman and Madhu Sudan. Sparse random linear codes are locally decodable and
testable. In FOCS, pages 590–600. IEEE Computer Society, 2007.

[KS09] Swastik Kopparty and Shubhangi Saraf. Tolerant linearity testing and locally testable
codes. In APPROX-RANDOM, pages 601–614, 2009.

[LN94] Rudolf Lidl and Harald Niedereitter. Introduction to Finite Fields and Their Applica-
tions. Cambridge University Press, 2nd edition, 1994.

[Lyu05] Vadim Lyubashevsky. The parity problem in the presence of noise, decoding random
linear codes, and the subset sum problem. In APPROX-RANDOM, pages 378–389,
2005.

[MR06] Dana Moshkovitz and Ran Raz. Sub-constant error low degree test of almost-linear
size. In Jon M. Kleinberg, editor, STOC, pages 21–30. ACM, 2006.

[MS81] F. J. MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting Codes.
Elsevier/North-Holland, Amsterdam, 1981.

[PRR06] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. J. Comput. Syst. Sci., 72(6):1012–1042, 2006.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM Journal on Computing, 25(2):252–271, April
1996.

[RS97] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and
a sub-constant error-probability PCP characterization of NP. In Proceedings of the
Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 475–484, New
York, NY, 1997. ACM Press.

[Sam07] Alex Samorodnitsky. Low-degree tests at large distances. In David S. Johnson and Uriel
Feige, editors, STOC, pages 506–515. ACM, 2007.

[STV99] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without the
XOR lemma. Proceedings of the 31st Annual ACM Symposium on Theory of Computing,
pages 537–546, 1999.

[Sud00] Madhu Sudan. List decoding: Algorithms and applications. SIGACT News, 31:16–27,
2000.

[Sud09] Madhu Sudan, 2009. Personal Communication.

25

A The Goldreich-Levin local list-decoder and tester

In this section, we prove Theorem 16, which gives a constant query linearity tester under the
uniform distribution (in the sense of Definition 3) in the high error regime. This linearity tester is
a simple combination of the Goldreich-Levin theorem 15 and the BLR linearity test [BLR93].

We begin by formally stating these results3

Theorem 15 ([GL89]) For every 0 < ε < 1/2, there exists a
(
(1/2− ε),poly(1

ε),poly(1
ε)
)
-local

list-decoder for linear functions under Un.

Theorem 28 ([BLR93], The BLR Linearity Tester) There is a Tester ABLR such that for
any parameter ε such that 0 < ε < 0.1, there is a

(
ε, 50ε, poly(1

ε)
)
-local tester for linearity under

Un.

We can now prove Theorem 16.

Theorem 16 (Local List-Decoder =⇒ Local Tester) Let Un be the uniform distribution over

Fn2 . Then for any 0 < ε1 < ε2 < 1/2, there exists a
(

1
2 − ε2,

1
2 − ε1, poly(1

ε2−ε1)
)

-local Tester for

testing linearity under Un.

Proof of Theorem 16: Fix ε1, ε2 such that 0 < ε1 < ε2 < 1/2, and let f : Fn2 → F2 be a
probabilistic function. Let δ = ε2−ε1

100 .

We now describe the
(

1
2 − ε2,

1
2 − ε1, poly(1

ε2−ε1)
)

-local tester for linearity under Un.

The Tester The tester works in three stages:

1. Run the
(

(1/2− ε2),poly(1
ε2

), poly(1
ε2

)
)

-local list-decoder Adecoder for linear functions under

Un given by the Goldreich-Levin Theorem 15 O(1) times. Each time Adecoder outputs a list
of poly(1

ε2
) randomized algorithms. Let {A1, . . . , Al} be the union of all these lists, where

l = poly(1
ε2

).

For each i between 1 and l, let Bi : Fn2 → F2 be the randomized algorithm which on input

x, outputs Afi on x independently poly(1
δ) times, and outputs the majority of the outputs of

these executions. Thus, if Ai computes a linear function g with error 1/3, then Bi computes
that linear function with error δΩ(1).

2. For each Bi (1 ≤ i ≤ l), run the BLR linearity test (given by Theorem 28) with parameter δ
to “test” if Bi is δ-close to a linear function. Repeat the Test poly(l) times and take majority
vote of the output accept/reject decision.

3. For each Bi, estimate the Un-distance of f from Bi by

(a) uniformly and independently sample poly(1
δ , l) elements of Fn2 , say x1, x2, . . . , xm,

3To be precise, we state generalizations of the usual Goldreich-Levin and Blum-Luby-Rubinfeld theorems to handle
probabilistic functions; inspecting the original proofs of these theorems immediately reveals that they apply verbatim
to probabilistic functions too.

26

(b) for each sample xj , 1 ≤ j ≤ m, take a sample of the evaluation of f and Bi on xj
(recall that f and Bi are probabilistic functions and hence the evaluations are random
variables).

(c) let the estimated distance between f and Bi be the fraction of the xj (i ≤ j ≤ m) for
which f(xj) 6= Bi(xj).

If there is any Bi such that Bi got accepted by the majority vote of the repeated BLR Test,
and the estimated distance of f from Bi is less than 1/2− ε1 − 60δ, then the Tester accepts,
else it rejects.

Analysis of the Tester First observe that the number of oracles calls to f made by the tester
(in stages 1, 2 and 3) is poly(l, 1

δ). Now l = poly(1
ε2

) and δ = ε2−ε1
100 < ε2. Hence the number of

oracle calls is at most poly(1
ε2−ε1).

We want to show that for any (probabilistic) function f : Fn2 → F2 whose Un-distance from the set
of linear functions is less than 1/2− ε2, the above Tester accepts with probability at least 2/3, and
for any function f whose Un-distance from the set of linear functions is at least 1/2− ε1, the Tester
rejects with probability at least 2/3.

Case 1: Let f be a function such that the Un-distance of f from the set of linear functions is less
than 1/2−ε2. Let g : Fn2 → F2 be a linear function such that ∆Un(f, g) < 1/2−ε2. By Theorem 15,

each time the Goldreich-Levin
(

(1/2− ε2), poly(1
ε2

), poly(1
ε2

)
)

-local list-decoder Adecoder is run,

with probability at least 2/3, Adecoder returns some function Ai such that Afi computes g with error
1/3. In stage 1 of the tester, since we run Adecoder multiple times, with probability at least 9/10,

in at least one of the iterations Adecoder will return an algorithm Ai such that Afi computes g with
error 1/3. By construction, this implies that ∆Un(Bi, g) ≤ δ. Thus the BLR linearity test (given by
Theorem 28) with parameter δ when applied to Bi will return “Accept” with probability at least
2/3. Thus the repeated version of the BLR Test given in stage 2 will accept Bi with probability at
least 9/10. Finally, by the Chernoff bound, with probability at least 9/10, the estimated distance
between f and Bi is at most ∆Un(f,Bi)+δ/2 < ∆Un(f, g)+δ+δ/2 < 1/2−ε2+3δ/2 < 1/2−ε1−60δ.

Thus with probability at least 7/10 > 2/3, the tester accepts.

Case 2: Let f be a function such that the Un-distance of f from the set of linear functions is
greater than 1/2 − ε1. Fix any Bi returned by stage 1. Now, if Bi is at least 50δ far from linear,
then then BLR Linearity Test will accept Bi with probability at most 1/3, and the repeated BLR
test given in stage 2 will accept f with probability at most 1

100l . If the Un-distance of Bi from linear
is at most 50δ, then since the distance of f from the set of linear functions is greater than 1/2− ε1,
the triangle inequality implies that ∆Un(Bi, f) ≥ 1/2− ε1 − 50δ. Hence, for Bi to be accepted, the
estimated distance of Bi from f must deviate from the true Un-distance by at least 10δ. By the
Chernoff bound, this happens with probability at most exp(−δ2m) < 1

100l . Hence, in either case,
the tester will accept with probability at most 1

50l . Since there are a most l different functions Bi,
by the union bound, the probability that the Tester accepts f is at most 1/50 < 1/3.

27

B Fourier Background

Proof of Lemma 14: Let H denote the set of characters of Fn2 .

For χ ∈ H, and for a distribution ν on Fn2 , denote the Fourier coefficient ν̂(χ) by:

ν̂(χ) = Ex∈ν [χ(x)] =
∑
x∈Fn2

ν(x)χ(x).

Then we have the basic Fourier inversion formula:

ν(x) = Eχ∈H [ν̂(χ)χ(x)].

Now we consider the Fourier coefficients of the distribution µ given in the statement of the Lemma.

Observe that µ̂(k)(χ) = (µ̂(χ))k. Indeed:

µ̂(k)(χ) = Ex∈µ(k) [χ(x)]

= Ex1,...,xk∈µ[χ(x1 + . . .+ xk)]

= Ex1,...,xk∈µ[

k∏
i=1

χ(xi)]

=
k∏
i=1

Exi∈µ[χ(xi)]

= (µ̂(χ))k.

We can now estimate the statistical distance between µ(k) and Un.

∑
x∈Fn2

∣∣∣∣µ(k)(x)− 1

2n

∣∣∣∣ =
∑
x∈Fn2

∣∣∣∣∣ 1

2n

(∑
χ

µ̂(k)(χ)χ(x)

)
− 1

2n

∣∣∣∣∣ by Fourier inversion

=
∑
x∈Fn2

∣∣∣∣∣∣ 1

2n

 ∑
χ∈H,χ 6=χ0

(µ̂(χ))kχ(x)

∣∣∣∣∣∣ since µ(k)(χ0) = 1
2n

≤
∑
x∈Fn2

∣∣∣∣∣∣ 1

2n

 ∑
χ∈H,χ 6=χ0

|µ̂(χ)|k
∣∣∣∣∣∣

≤ 2n · βk.

This completes the proof.

In this lemma, the 2n can in fact be replaced by 2n/2 by using the orthogonality of characters.

28

C Larger alphabet

In this section, we point out the changes required in the proofs of the theorems over F2 in order to
make them work over Fq. Let q = ps, where p is prime.

We begin with some generalities on our new domain Fnq . For each linear function g : Fnq → Fq, we

have a corresponding character χg : Fnq → C, given by χg(x) = ωTr(g(x)), where ω ∈ C is a primitive

pth root of unity, and Tr : Fq → Fp is the field trace. These characters form an orthonormal basis
for complex valued functions on Fnq .

For each probabilistic function f : Fnq → Fq and each α ∈ F∗q , we define a complex function Fα
associated with f and α by:

Fα(x) = E[ωTr(αf(x))],

where the randomness is over the sampling of f(x) from the probabilistic function f . Under this
definition, the complex function associated with a (deterministic) linear function g and α is χα·g.

If f, g : Fnq → Fq, and if Fα, Gα (for α ∈ F∗q) are the complex functions associated with f, g, then
we have the following easily verified identity:

1− q

q − 1
∆µ(f, g) = Eα∈F∗qEx∈µ[Fα(x)Gα(x)] = Eα∈F∗q [〈Fα, Gα〉µ].

Now we work towards the proofs of Theorem 7 and Theorem 8. The algorithms below are essentially
generalizations of the algorithms for the F2 case.

Given the code C ⊆ FNq , we take the n × N generator matrix G, whose columns are v1, . . . , vN .
Define µ to be the distribution of vi, where i is picked uniformly from [N]. Given a received word
r ∈ FNq , we can associate a probabilistic function f : Fnq → Fq, defined by f(x) = ri, where i is
picked uniformly from {i | vi = x} (and arbitrarily if the set is empty).

Thus the unbiasedness assumption in Theorem 7 and Theorem 8 implies that for nonzero linear
functions g, we have |Ex∈µ[χg(x)]| ≤ O(β).

We now define µ(k). For reasons that will become clear later, we will only make this definition in

the case of k is even. µ(k) is defined to be the distribution of
∑k/2

i=1 xi −
∑k/2

i=1 x
′
i, where the xi, x

′
i

are independent samples from µ. As before, the statistical distance of µ(k) from Un, the uniform
distribution on Fnq , is bounded by βkqn (the proof is identical to the proof of Lemma 14).

For y ∈ Fnq , we define µ(k,y) to be the distribution of (x1, . . . , xk/2, x
′
1, . . . , x

′
k/2), where the xi, x

′
i

are independent samples from µ conditioned on
∑k/2

i=1 xi −
∑k/2

i=1 x
′
i = y.

Now, as in the binary case, we introduce a probabilistic function h whose agreement with a linear
function g under the distribution µ(k) is closely related to the agreement of f with the linear function
g. For y ∈ Fnq , to sample h(y), first sample (x1, . . . , xk/2, x

′
1, . . . , x

′
k/2) from µ(k,y), and then output∑k/2

i=1 f(xi)−
∑k/2

i=1 f(x′i). Again, we can simulate oracle access to h given oracle access to f .

The key fact we have about h is the following. Let g : Fnq → Fq be any linear function. For each
α ∈ F∗q , let Fα, Hα be the complex functions associated to f, h and α. Then, as in the F2 case, we

29

have:

1− q

q − 1
∆µ(f, g) = Eα∈F∗qEx∈µ[Fα(x)χαg(x)]

= Eα∈F∗q [〈Fα, χαg〉µ] .

1− q

q − 1
∆µ(k)(h, g) = Eα∈F∗qEy∈µ(k) [Hα(y)χαg(y)]

= Eα∈F∗q
[
|〈Fα, χαg〉µ|k

]
.

Thus if g is a linear function for which ∆µ(f, g) ≤
(

1− 1
q

)
(1 − ε), then there is some α ∈ F∗q

for which |〈Fα, χαg〉µ| ≥ ε, and thus ∆µ(k)(h, g) ≤
(

1− εk

q−1

)(
1− 1

q

)
. Therefore, if εk is not too

small, and βk = q−50n (so that µ(k) and Un are q−Ω(n) close in statistical distance), then ∆Un(h, g)
will be noticeably smaller than 1 − 1

q , which is precisely the setting required for the known local
list-decoders [GRS00] and agnostic noisy parity learners [Gop10] over Fq to work. Thus if we locally
list-decode all linear functions g which are sufficiently closer than 1− 1

q to h under Un, this list will
include all linear functions g which are close to f under µ. Once we have local list-decoding, local
testing follows immediately via the BLR linearity test.

30

