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Abstract

We study the complexity of deciding whether a given
homogeneous multivariate polynomial has a non-
trivial root over a finite field. Given a homo-
geneous algebraic circuitC that computes ann-
variate polynomialp(x) of degreed over a finite
field Fq, we wish to determine if there exists a
nonzerox ∈ F

n
q with C(x) = 0.

For constantn there are known algorithms for do-
ing this efficiently. However for linearn, the prob-
lem becomesNP hard. In this paper, using interest-
ing algebraic techniques, we show that ifd is prime
andn > d/2, the problem can be solved over suffi-
ciently large finite fields in randomized polynomial
time. We complement this result by showing that re-
laxing any of these constraints makes the problem
intractable again.

1 Introduction

Given a homogeneous polynomialp(X) overFq in
n variables and degreed, consider the projective hy-
persurface ofFq-rational points,Vp = {x ∈ PF

n
q :

p(x) = 0}, defined byp(X). We wish to efficiently
determine whetherVp is nonempty. This is equiv-
alent to deciding whether there is anx ∈ F

n
q , with

x 6= 0, such thatp(x) = 0.

Let us impose the following conditions onn, d and
q:

• d is a prime,

• d < 2n

• q ≥ Ω(n4).
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Our main result is that under these conditions, given
black-box access to evaluations ofp, we can de-
cide whetherVp is nonempty in randomized time
polynomial inn, d and log q. Furthermore, relax-
ing any one of these conditions, makes the question
NP hard. In particular, “2” cannot be replaced by
“2+ ε” for any ε > 0, we cannot drop the condition
thatd is prime, nor can we allowq to be constant!

Given access to merelypoly(n, d, log q) evalua-
tions ofp(X), our algorithm infers the existence of
a nontrivial root ofp(X), without actually finding
one. This inference is made by exploiting the rich
algebraic structure of polynomials and their factor-
ization patterns. Indeed, we use some powerful al-
gebraic tools to prove these results. We believe that
that our techniques are of independent interest and
may find further applications in algebraic complex-
ity.

1.1 Detecting Rational Points: His-
tory and Motivation

The problem of determining whether there is a ra-
tional point on a variety over a finite field is a nat-
ural and well studied problem. This problem has
been implicitly studied in number theory for cen-
turies, perhaps beginning with the quadratic reci-
procity theorem of Gauss.

In [7], Huang and Wong gave a randomized polyno-
mial time algorithm for detecting rational points on
varieties for constantn. They further asked if one
could find an algorithm for growingn, aware that
the general case isNP complete. Our work stud-
ies this question for the case of projective hypersur-
faces.

Detecting rational points on projective hypersur-
faces also arises naturally in the problem (due



to Saks and Wigderson) of detecting nonsingular
spaces of matrices. Anonsingularspace of matrices
is a linear subspace ofF

d×d
q such that all its nonzero

elements are nonsingular. GivenA1, . . . , An, a
basis for a linear subspaceL of F

d×d
q , consider

the homogeneous degreed polynomial p(X) =
det(

∑n
i=1 AiXi) ∈ Fq[X1, . . . , Xn]. It is easy to

check that the projective hypersurface defined by
p(X) has no nontrivialFq rational point iff L is
a nonsingular space of matrices. Furthermore, for
anyx ∈ F

n
q , there is a polynomial time algorithm

to evaluatep(x). Thus our main result implies that
over sufficiently large fields, whend is prime and
the dimensionn of the spaceL is greater thand/2,
there is a randomized polynomial time algorithm for
detecting nonsingular spaces of matrices.

A number of problems on singularity, nonsingular-
ity, minimum rank and maximum rank of spaces of
matrices have been studied extensively (cf. [3]).
The problem of detecting singular spaces of matri-
ces was studied by Lovász [12], and is intimately
connected with the problem of polynomial identity
testing. We believe that our results shed some light
on the structure and algorithmics of such problems
in linear algebra.

There are several algorithms [1], [11], [14], [15]
for counting rational points on projective hyper-
surfaces. The most powerful, an algorithm of
Lauder [10] counts points onsmoothhypersurfaces
in time polynomial in log q and the number of
nonzero coefficients, which may be as large asdn

in general.

Recently, Gopalan, Guruswami and Lipton [6] and
Wan [17] considered the problem of counting ratio-
nal roots of a polynomialmodm, for some integer
m. They gave algorithms and hardness results for
different choices ofm.

1.2 Results

We will be considering homogeneous polynomials
p(X) in n variables and of degreed overFq. Our
algorithmic result will only require black-box ac-
cess to evaluations ofp(X) at points inF

n
q . For the

correspondingNP hardness results, we will assume
thatp(X) is presented as a homogeneous algebraic
circuit1 C over Fq. We assume that the fieldFq

1i.e., every intermediate gate computes a homogeneous poly-
nomial

is represented by an irreducible polynomial over a
prime subfield. We are interested in the complexity
of detecting nontrivial roots ofp(X) after imposing
various constraints onn, d andq.

For a set of “constraints”S ⊆ N
3, we define

the languageLproj(S) to be the set of all4-tuples
(C, 1n, 1d, Fq) such that

1. C is a homogeneous algebraic circuit of degree
d overFq,

2. (n, d, q) ∈ S,

3. There existsx ∈ F
n
q , x 6= 0 with C(x) = 0.

We can now state our main algorithmic result.

Theorem 1.1 LetS ⊆ N
3 be the set of all(n, d, q)

such that:

1. d is prime,

2. d < 2n,

3. q ≥ 32n4.

ThenLproj(S) is in RP .

This result will be proved in Section 3. Our main
technical result underlying the algorithm is a struc-
ture theorem for rational-point-free hypersurfaces
over finite fields for the above setting of the pa-
rametersn, d and q. The randomized algorithm
of this theorem “pretends” that the hypersurface is
rational-point-free, attempts to recover the under-
lying structure guaranteed by the structure theo-
rem, and finally verifies its attempt via a polynomial
identity test. Any failure along the way indicates
that the hypersurface must have a rational point.

We complement the above algorithmic result by
showing that, in a certain sense, relaxing any of the
constraints onS above makesLproj(S) NP hard.
We state these results below. They will be proved in
Section 4.

Theorem 1.2 (Relaxing primality of the degree)
LetS1 ⊆ N

3 be the set of all(n, d, q) such that:

1. d < 2n,

2. q ≥ 32n4.

ThenLproj(S1) is NP complete.

Theorem 1.3 (Relaxing the degree bound)Let
ε > 0 and letS2 ⊆ N

3 be the set of all(n, d, q)
such that:



1. d is a prime,

2. d < (2 + ε)n,

3. q ≥ 32n4.

ThenLproj(S2) is NP complete.

One may also ask if the condition requiring a
growing field size in Theorem 1.1 is really neces-
sary. Here we can only show a slightly weaker
kind of hardness. LetLweak

proj (S) denote the set of
(C, n, d, Fq), whereC is an algebraic circuit, such
that there is a homogenous polynomialp(X) of de-
greed in n variables overFq such thatC(x) = p(x)
for eachx ∈ F

n
q (i.e., we no longer require that

C formally computesp(X), merely that its evalu-
ations agree with evaluations ofp(X) at points of
F

n
q ). Clearly, theNP hardness ofLweak

proj (S) still
shows the computational intractibility of detecting
nontrivial roots ofp(X), given blackbox access to
its evaluations inFn

q (for (n, d, q) ∈ S).

Theorem 1.4 (Relaxing the growing field size)
Letq0 be a prime power, and letS3 ⊆ N

3 be the set
of all (n, d, q) such that:

1. d is a prime,

2. d < 2n,

3. q = q0.

ThenLweak
proj (S3) is NP hard.

Organization of this paper: In Section 2, we in-
troduce the algebraic tools that we will use. In Sec-
tion 3 we prove our main technical lemma, and use
it to prove Theorem 1.1 . Finally, in Section 4 we
prove the complementary hardness results: Theo-
rem 1.2 and Theorem 1.3.

2 Algebraic Preliminaries

In this section, we will introduce some algebraic
preliminaries necessary for the proofs of our results.

2.1 Norm polynomials

We give a brief overview of norm polynomials and
some of their many interesting properties. They in-
directly inspired our algorithm and are crucial to our
hardness results.

Let Fq be a finite field. For any positive integern,
a norm polynomial is a homogeneous polynomial
Nn ∈ Fq[x1, . . . , xn] with the following properties:

• deg(Nn) = n,

• For any (c1, . . . , cn) ∈ F
n
q , if

Nn(c1, . . . , cn) = 0 thenc1 = . . . = cn = 0.

• An algebraic circuit computingNn can be gen-
erated in time polynomial inn andq.

Following ([13] p.272), we now give a construction
of norm polynomialsNn. Let {α1, . . . , αn} be a
basis ofFqn overFq. Put

Nn(x1, . . . , xn) =

n−1
∏

j=0

(αqj

1 x1+. . .+αqj

n xn). (1)

Since the{αqj

i }j∈{0,1,...,n−1} are conjugates ofαi

overFq (i.e., they are the roots of the minimal poly-
nomial ofαi overFq), the coefficients ofNn are in
Fq. It is clear thatdeg(Nn) = n and thatNn is a ho-
mogeneous polynomial. Now let(c1, . . . , cn) ∈ F

n
q

and putγ = c1α1 + . . . + cnαn ∈ Fqn . Then

Nn(c1, . . . , cn) =

n−1
∏

j=0

(αqj

1 c1 + . . . + αqj

n cn)

=

n−1
∏

j=0

(α1c1 + . . . + αncn)qj

= NFqn /Fq
(γ),

whereNFqn /Fq
denotes the field norm fromFqn

to Fq. Thus Nn(c1, . . . , cn) = 0 is equivalent to
NFqn /Fq

(γ) = 0, which holds only forγ = 0, i.e.,
only whenc1 = . . . = cn = 0.

It remains to note that one can generate irreducible
polynomials of arbitrary degreen in time polyno-
mial in n andq over arbitrary finite fields [2], [16].
Moreover over fields of constant characteristic this
can be achieved in running time polynomial inn
andlog q. Thus givenn andFq one can efficiently
generate an algebraic circuit computing a norm
polynomial of degreen in two steps:

• Generate an irreducible polynomialf(y) ∈
Fq[y] of degreen. Set α1 = 1, α2 =
y, . . . , αn = yn−1.

• Generate an algebraic circuit that on input
x1, . . . , xn ∈ F

n
q computes the expression in

formula (1) modulof(y).



2.2 Rational points and factoriza-
tion

The algebraic closure ofFq is denotedFq. A poly-
nomialp(X) ∈ Fq[X1, . . . , Xn] is absolutely irre-
ducibleif it is irreducible inFq[X1, . . . , Xn].

For r ∈ N, let Gal(Fqr/Fq) be the Galois group
of Fqr over Fq. This group is generated by the
Fq-automorphism ofFqr that mapsx → xq. For
a polynomialp(X) =

∑

piX
ai1

1 Xai2

2 · · ·Xain
n ∈

Fqr [X1, . . . , Xn] and σ ∈ Gal(Fqr/Fq), define
σ(p(X)) =

∑

σ(pi)X
ai1

1 Xai2

2 · · ·Xain
n . We say

σ(p(X)) is a conjugate ofp(X).

We will appeal to several powerful theorems on ra-
tional points during the course of our proof. We list
them below.

The theorem of Lang and Weil gives an estimate for
the number ofFq-rational points on any absolutely
irreducibleFq-hypersurface in terms of its degree.
The following refinement (due to Cafure-Matera,
relying heavily on Weil’s theorem and results of
Kaltofen) gives a sufficient condition for an abso-
lutely irreducible polynomial to have several roots.

Theorem 2.1 (Cafure-Matera [4]) Suppose
p(X) ∈ Fq[X1, . . . , Xn] is a degreed absolutely
irreducible polynomial. Then for any positive
constantc, there is a degree boundd0(c), such that
if d ≥ d0(c) andq > 2d4, then

∣

∣{x ∈ F
n
q : p(x) = 0}

∣

∣ ≥ c.

Tracing the dependence ofd0 on c in their proof,
one can check thatd0(2) may be taken to be1.

The Chevalley-Warning theorem gives another suf-
ficient condition for a polynomial to have more than
one root. It implies that if a polynomial has low
enough degree and has at least one root, then it has
more than one root.

Theorem 2.2 (Chevalley-Warning [13]) Suppose
p(X) ∈ Fq[X1, . . . , Xn] is a degreed polynomial.
If d < n, then

∣

∣{x ∈ F
n
q : p(x) = 0}

∣

∣ ≡ 0 mod char(Fq)

If d = n, there are examples of polynomials that
have only one root. Indeed, norm polynomials have
this property. Our main lemma implies that, for
somen, q, the norm polynomials are theonly such
examples.

3 The Algorithm

In this section we prove Theorem 1.1.

3.1 The Main Lemma

Given a homogeneous polynomialp(X) in n vari-
ables of degreed over Fq, recall that we wish to
decide whetherVp is nonempty or empty; equiva-
lently whetherp(X) has a nontrivialFq root or not.
In this subsection we prove our main technical re-
sult, Lemma 3.2, which gives structural information
about any polynomial that has no nontrivialFq root,
under certain conditions onn, q andd.

We begin with a preliminary lemma about factor-
ization ofFq-irreducible polynomials overFq.

Lemma 3.1 Supposep(X) ∈ Fq[X1, . . . , Xn] is
of degreed and is irreducible inFq[X1, . . . , Xn].
Then there existsr with r|d and an absolutely ir-
reducible polynomialh(X) ∈ Fqr [X1, . . . , Xn] of
degreed/r such that

p(X) = c
∏

σ∈G

σ(h(X))

whereG = Gal(Fqr/Fq) and c ∈ Fq. Further-
more, ifp(X) is homogeneous, then so ish(X).

Proof Let h(X) be an absolutely irreducible fac-
tor of p(X), scaled so that one of its nonzero coef-
ficients is inFq. Let r be the smallest integer such
that the coefficients ofh lie in Fqr . Furthermore,
for any σ ∈ Gal(Fqr/Fq), σ(h(X))|σ(p(X)) =
p(X). Thus all conjugates ofh(X) are also factors
of p(X).

For σ ∈ Gal(Fqr/Fq), σ 6= identity, we claim that
h(X) and σ(h(X)) are relatively prime. Indeed,
supposeh(X) andσ(h(X)) have a common fac-
tor in Fq[X1, . . . , Xn]. By the absolute irreducib-
lity of h(X), this means thatσ(h(X)) must be a
scalar multiple ofh(X). This means that for any
two nonzero coefficientsβ, γ ∈ Fqr , σ(β)/β =
σ(γ)/γ, and soβ/γ ∈ F

σ
qr (the subfield ofFqr

fixed by σ). Thus, by the initial scaling ofh(X),
every coefficient ofh(X) lies in F

σ
qr . By definition

of r, this means thatFqr = F
σ
qr , which implies that

σ = identity, a contradiction.



We can now conclude that
∏

σ∈G σ(h(X))|p(X).
However

∏

σ∈G σ(h(X)) ∈ Fq[X1, . . . , Xn] andp
is irreducible. The result follows.

We can now state and prove our main lemma.

Lemma 3.2 Supposed is prime,d < 2n and q >
32n4. Let p(X) ∈ Fq[X1, . . . , Xn] be a homoge-
neous degreed polynomial inn variables with coef-
ficients inFq with no nontrivialFq-rational points.
Then there exists a homogeneous degree1 polyno-
mial h(X) ∈ Fqd [X1, . . . , Xn] such that:

p(X) = c
∏

σ∈G

σ(h(X))

whereG = Gal(Fqd/Fq) andc ∈ Fq.

Proof Note that there is one trivial rational point
(the origin). To prove our theorem, we will infer
facts about the factorization ofp(X) using the hy-
pothesis (i.e.,the absence of another rational point).

1. p(X) is irreducible over Fq[X1, . . . , Xn]:
If p(X) = g1(X)g2(X), where gi(X) ∈
Fq[X1, . . . , Xn] are of positive degree, then
they are both homogeneous polynomials and at
least one of them has degree< n. This poly-
nomial has a nontrivial rational point by Theo-
rem 2.2, and thus so doesp, a contradiction.

2. Therefore, by Lemma 3.1, for somer|d, p(X)
factors as a product ofr conjugates, each of
degreed/r. Howeverd is prime, and sor = 1
or r = d. r = 1 corresponds top(X) being
absolutely irreducible.

3. p(X) is not absolutely irreducible: If p(X)
was absolutely irreducible, we would have a
contradiction to Theorem 2.1 withc = 2.

Thusr = d and the result follows.

In fact, we can say something further abouth(X).
Supposeh(X) =

∑n
i=1 aiXi. Then, by the ab-

sence of nontrivialFq rational points,{a1, . . . , an}
are linearly independent overFq. Conversely, if
the ai are independent, thenp(X) has no nontriv-
ial roots.

The lemma says that ifp(X) has no rational points,
thenp(X) is a product of conjugate degree1 poly-
nomials. This lays out a natural plan of attack for

our algorithm. The algorithm first pretends that
p(X) has no rational point, and through some judi-
cious substitutions2, determines the coefficients of
the degree1 factors thatp(X) is supposed to fac-
tor into. Then, the algorithm will verify thatp(X)
is indeed the product of these conjugate degree1
polynomials via a randomized polynomial identity
test.

If p(X) has no rational point, then the substitutions
will go through successfully, we will correctly de-
termine the coefficients of the linear factors, and the
polynomial identity test will pass. If the polynomial
identity test passes with high probability, thenp(X)
is the product of some known degree1 polynomials,
and hence we can directly check if it has a rational
point.

3.2 Substitutions

Supposep(X) has no nontrivial root. The lemma
above tells us that we may writep(X) =
c
∏

σ∈G σ(h(X)), whereG = Gal(Fqd/Fq) Let
h(X) =

∑n
i=1 aiXi. Indeed, there are many repre-

sentations ofp(X) in this form (anFq-multiple of
a product of degree1 conjugate polynomials over
F

d
q), and the purpose of the first phase of our algo-

rithm will be to determine one such representation
(c,h(X)).

In our representation, we can assumea1 = 1 (pos-
sibly changingc). The algorithm will rely on the
following observations.

• p(1, 0, 0, . . . , 0) = c

• p(1, X2, 0, 0, . . . , 0) =
c
∏

σ∈G σ (1 + a2X2) =
c
∏

σ∈G (1 + σ(a2)X2)

• p(1, X2, 0, . . . , 0, Xk, 0, . . . , 0) =
c
∏

σ∈G σ (1 + a2X2 + akXk) =
∏

σ∈G (1 + σ(a2)X2 + σ(ak)Xk)

As remarked earlier, we will only require black-
box access to evaluations of the polynomial. In
this model, note that we can efficiently compute
p(1, T, 0, . . . , 0, S, 0, . . . , 0) (whereT andS are in-
determinates) by substituting values inFq for T and
S and then interpolating.

2Indeed, at this point one could use Kaltofen factorization,
but this will introduce two-sided error



3.3 The Algorithm

The algorithm has two phases. The first phase of
the algorithm will attempt to recover a represen-
tation (c, h(X)) of p(X), as suggested in the pre-
vious subsection. We note that univariate and bi-
variate polynomial factorization and the generation
of an explicit description of fieldFqd can all be
done in randomized polynomial time (with zero er-
ror) [2, 8]. In our algorithm, if any of these proce-
dures fail, the algorithm REJECTs.

We describe the first phase of the algorithm below
(herebi will be our guess forai):

Phase 1

1. Computec = p(1, 0, . . . , 0). If c = 0, AC-
CEPT

2. Setb1 = 1

3. Computeg(T ) = p(1, T, 0, 0, . . . , 0), whereT
is an indeterminate. Ifg(T ) = 0, ACCEPT

4. Factorg(T ) overFqd asc
∏d

j=1(1 + βjT ).

5. Setb2 = β1 (say). If theβj are not all the
distinct conjugates ofβ1 overFqd , ACCEPT

6. For eachk ∈ {3, 4, . . . , n}, do the following:

• Compute gk(T, S) =
p(1, T, 0, . . . , 0, S, 0, 0), where T
and S are indeterminates, andS is
substituted into thekth input variable. If
gk(T, S) = 0, ACCEPT

• Factor gk(T, S) over Fqd in the form
∏d

j=1(1 + βjT + γk,jS) (if possible). If
factorization into this form is not possi-
ble, ACCEPT

• Setbk = γk,1

7. Store (c,
∑n

i=1 biXi) for use in the second
phase

In the second phase, the algorithm harvests the in-
formation gathered in the first. Using the purported
representation ofp(X), it verifies that it is correct
via an identity test.

Phase 2

1. If the bi are linearly dependent overFq, AC-
CEPT

2. Perform a Randomized Identity Test (with fail-
ure probability at most1/2) for the identity

“p(X) = c
∏

σ∈G

σ(

n
∑

i=1

biXi)”

• If they are not equal ACCEPT

• Otherwise REJECT

The following claim completes the proof of Theo-
rem 1.1.

Claim 3.3 If p(X) has no nontrivial root, then the
above algorithm REJECTs with probability1. If
p(X) has a nontrivial root, then the above algo-
rithm ACCEPTs with probability at least1/2.

Proof We consider two cases.

• Supposep(X) has no nontrivial root: Then
p(X) is of the formc

∏

σ∈G σ(h(X)) where
h(X) =

∑n
i=1 aiXi, for someFq-linearly-

independentai ∈ Fqd with a1 = 1. The al-
gorithm will proceed “as planned”; in particu-
lar it will not ACCEPT during the first phase.
By the observations made earlier,b2 will be
set to τ(a2) for someτ ∈ G, and further-
more for eachk, bk will be set toτ(ak). Thus
∑n

i=1 biXi = τ(
∑n

i=1 aiXi) and sop(X) =
c
∏

σ∈G σ(
∑n

i=1 biXi). Therefore thebi are
linearly independent overFq, and the algo-
rithm always REJECTs in the second phase.

• Supposep(X) has nontrivial roots: Now we
do not care about what happens in the first
phase. If we do not make it to the final iden-
tity test, then we must have ACCEPTed during
some earlier step. So let us assume we have
reached the identity test; in particular, thebi

are linearly independent overFq. In the final
test ofp(X) againstc

∏

σ∈G σ(
∑

biXi), ob-
serve that the second polynomial has no non-
trivial rational points, while the first does, and
hence with probability at least1/2 the polyno-
mials will be exposed as unequal by the iden-
tity test, and the algorithm will ACCEPT.

This completes the proof of the claim, and hence of
Theorem 1.1.



3.4 Finding roots

Given a homogeneous degreed polynomial in n
variables overFq, one could also consider the al-
gorithmic question of finding a nontrivial root (if
any). The Chevalley-Warning theorem guarantees
that everyd-dimensional projective hyperplane con-
tains a rational point. Our algorithm allows us to
identify a projective hyperplane of dimension at
mostd/2 with a rational point in time polynomial
in n, d, q, when d is prime andq > 32n4. In-
deed, using the detection algorithm one can suc-
cessively find smaller dimensional projective hyper-
planes containing a rational point until the dimen-
sion becomes at mostd/2.

4 Hardness results

In this section we establish Theorem 1.2 and The-
orem 1.3, that show that relaxing the conditions in
Theorem 1.1 makesLproj NP complete.

4.1 Proofs of hardness results

Proof of Theorem 1.2:

Consider the languageL of 3DNF formulaeF
for which there exists an assignmentx, such that
F (x) = 0 andx 6= 0. It is easy to see that language
L is NP complete. We will now give a reduction
from L to Lproj(S1).

Let F be a 3-DNF formula of lengthl in variables
x1, . . . , xm. AssumeF hast clauses. Clearly,m ≤
l andt ≤ l. Fix some integers ≥ 2. Fix a finite field
Fq of size at least100s4l8. This is the right field size
to meet the requirements of the theorem. However
one can carry out our reduction over arbitrary finite
fields independent of their size.

In what follows we demonstrate an efficient pro-
cedure that givenF generates an algebraic circuit
overFq computing a homogeneous polynomialpF

in n = m + m(s − 1)(3t + 1) variables such that
the following holds,

∃ x ∈ {0, 1}m such thatF (x) = 0 andx 6= 0

(2)

⇔∃ x ∈ F
n
q , such thatpF (x) = 0 andx 6= 0.

(3)

First for every clauseci = xσ1

i1
∧ xσ2

i2
∧

xσ3

i3
construct a polynomialwci

(xi1 , xi2 , xi3) =
lσ1

(xi1)lσ2
(xi2 )lσ3

(xi3 ), where lσ(x) is a linear
form defined byl0(x) = x andl1(x) = 1 − x. Our
first attempt for the polynomialpF (x) would be to
define

p̂F (x) = Nt(wc1
, . . . , wct

), (4)

whereNt is a norm polynomial. One can verify
that the polynomial̂pF (x) defined above has a root
in Fq if and only if there exists anx ∈ {0, 1}n such
thatF (x) = 0. The obvious problem with this re-
duction is thatp̂F (x) need not be a homogeneous
polynomial.

We go around this problem by defining ho-
mogenizing the polynomial p̂F , once with
respect to each input variablexj . Intro-
duce new polynomialswci,j(xi1 , xi2 , xi3) =
lσ1,j(xi1 )lσ2,j(xi2)lσ3,j(xi3 ), where lσ,j(x) is a
homogeneous linear form defined byl0,j(x) = x
andl1,j(x) = xj − x. We also define polynomials

pF,j(x) = Nt(wc1,j , . . . , wct,j), (5)

for all j ∈ {1, 2, . . . , m}. Essentially, the polyno-
mial pF,j(x) is obtained by homogenization of the
polynomialp̂F (x) defined by (4), where variablexj

is used to carry out the homogenization procedure.
PolynomialspF,j are homogeneous. However they
may have roots that do not correspond to boolean
assignments toF that set it to zero.

The picture below represents the structure of our
final polynomialpF . pF is a polynomial inn =
m + T variables, whereT = m(s − 1)(3t + 1).
Of these,m variables are justx1, . . . , xm and the
otherT variables are labelledz1, . . . , zT . We need
zi’s to achieve the right ratio between the number
of variables and the degree of the polynomial.

Ns

Nm

......

....

X1 P
F,

Xm P
F,

Z1 Z

N
m(3t+1)

m(3t+1)

Z
T-3t Z

Nm(3t+1)

T

1 m

... .... .

The general idea behind our construction is
the following. We combine the products



xjpF,j(x1, . . . , xm) using the norm polynomial
Nm. This polynomial already has the property (2).
The only problem that we still have at this point
is that the degree of the norm of products isd =
m(3t + 1) while the number of variables is only
m. So we are quite far from the the desired relation
d < 2m. To resolve this problem we add yet another
norm polynomialNs on top of Nn. Other argu-
ments ofNs are norms in new variablesz1, . . . , zT .

Note that for every norm gate in thepF the argu-
ments are polynomials of the same degrees. Thus
pF is a homogeneous polynomial.pF is a polyno-
mial inn = m+m(s−1)(3t+1)variables of degree
d = sn(3t + 1). Therefore we have the relation

d < ((s)/(s − 1))n. (6)

Recall thatpF is a polynomial overFq whereq ≥
100s4l8. Thus we also have the relationq ≥ 32n4.
It remains to verify that the property (2) does hold.

Assume we are given a nonzero boolean assign-
ment a ∈ {0, 1}m such thatF (a) = 0. We set
all variablesz1, . . . , zT to zero. We shall now
verify that pF (a1, . . . , am, 0, . . . , 0) = 0. First
note that for everyj ∈ {1, 2, . . . , n} the prod-
uct ajpF,j(a1, . . . , am) = 0. This happens ei-
ther becauseaj = 0 or becauseaj = 1 and
pF,j(a1, . . . , am) computes the value ofF (a). Fur-
ther recall that the norm polynomials on zero inputs
evaluate to zero. Therefore(a1, . . . , an, 0, . . . , 0) is
a nontrivial zero ofpF .

The other direction is slightly more complicated.
Let (a1, . . . , am, v1, . . . , vT ) ∈ F

m
q be a nontriv-

ial zero ofpF . Note thatvi needs to be zero for all
i ∈ {1, . . . , T}, since otherwise the value ofNs will
be nonzero. Therefore there should be a non-zero
value among(a1, . . . , am). Without loss of gener-
ality assume thata1 6= 0. Observe the following
chain of implications:

Ns = 0 ⇒ Nm = 0 ⇒ pF,1(a1, . . . , am) = 0.
(7)

For all i = 1, n set bi = 0 if ai = 0 and
set bi = 1 otherwise. Observe thatb1 = 1.
The structure of polynomialswci,1 implies that
pF,1(b1, . . . , bm) = 0. It remains to notice that
b1 = 1 and pF,1(b1, . . . , bm) = 0 imply that
F (b1, . . . , bm) = 0.

Remark The above proof shows that we may
even add the additional constraintd < (1 + ε)n for

anyε > 0 to the definition ofS1. Indeed, we may
chooses to be a suitably large constant so that (6)
gives us the desired bound ond.

Proof of Theorem 1.3: We exhibit a reduction
from the sameNP complete language as in the
proof of theorem 1.2. Given a 3DNF formulaF of
lengthl we follow the procedure of theorem 1.2 to
construct an algebraic circuit computing a polyno-
mial p̂(x1, . . . , xn) of degreed over a field of size
at least32n4 such that the condition (2) is satisfied.
We also required ≤ (1 + ε/2)n. The possibility of
such a construction is implied by the above remark.

Next we choose a primer between(2 + ε/2)n and
(2+ ε)n. Note that the existence of such a prime for
sufficiently largen follows from the prime number
theorem [5]. We can findr by brute force search
since we are allowed to run in time polynomial in
n. Putg = r − d. Note thatg ≥ n. We now define
our final polynomial to be

pF (x1, . . . , xn) = p̂F (x1, . . . , xn)

· Ng(x1, . . . , xn, x1, . . . , x1).

The first n arguments ofNg are x1, . . . , xn and
all other arguments arex1. One can easily see that
a circuit for pF can be constructed in polynomial
time. pF has prime degreer and the required re-
lations betweenn andr are satisfied. Proving the
condition (2) is also easy. It suffices to show that
every nontrivial root ofpF is also a nontrivial root
of p̂F . This follows from the fact thatNg depends
on all the variablesx1, . . . , xn and always evaluates
to nonzero at nonzero inputs.

Proof of Theorem 1.4: Again, our reduction is
from the sameNP complete language as in the pre-
vious proofs. We fix some value ofε > 0. Given
a formulaF we use the construction from the re-
mark after the proof of Theorem 1.2 to get an alge-
braic circuit that evaluates a homogeneous polyno-
mial p̂F (x1, . . . , xn) such that̂pF satisfies the prop-
erty (2). Moreoverdeg p̂F ≤ (1 + ε)n. Also, we
choose the field sizeq to beq0.

The polynomialp̂F has all the properties that we
want except that the degree ofp̂F is not prime.
Our idea to go around this problem is the follow-
ing. We will prove that there exists a polynomial
pF (x1, . . . , xn) of prime degree such thatpF and
the p̂F are identical overFq. Then we can can use



the circuit that computeŝpF to computepF and our
reduction will be complete. Note that the further ar-
gument is aimed only to prove the existence ofpF

of prime degree and we do not need to construct an-
other circuit (recall that we are showing hardness of
Lweak

proj (S3), notLproj(S3)).

For a later part of the argument, we needd to be
relatively prime toq. Recall thatd = ms(3t + 1),
wherem, s andt are defined in the proof of theo-
rem 1.2. Closer look at that proof shows that we
can increase each of these quantities by one without
affecting the reduction. In particular,

• In order to increasem by one just add a new
variabley to F and consider a new formula
F ∨ (y ∧ y ∧ y).

• Increasings is trivial sinces is just a parameter
of the reduction and it can set to be arbitrarily
large.

• It order to increaset one can just duplicate
some clause ofF.

Applying the tricks from above one can forced =
ms(3t + 1) to be relatively prime toq. The simple
way to increase the degree of a polynomial over a
finite field of sizeq is to increase the degree of one
variable in each monomial fromb to b + q. Clearly,
this does not affect the values of polynomial over
Fq but increases the degree byq.

Therefore to complete the reduction we only need
to show that assumingd ≤ (1 + ε)n an arithmetic
progression of the form{d + qk}k≥1, contains a
prime that is less than2n. Assuming thatn is suf-
ficiently large this follows from the known facts
about the distribution of primes in arithmetic pro-
gressions [5]3.

5 Conclusions

We studied the complexity of deciding whether a
given multivariate polynomial has a root over a fi-
nite field. In this paper we found a randomized
polynomial time algorithm for solving this problem
given black-box access in a setting amenable to in-
teresting algebraic techniques. We hope the tech-
niques find wider applicability.

3We may actually chooseq to be slightly superconstant
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