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Abstract

We study the complexity of deciding whether a given
homogeneous multivariate polynomial has a non-
trivial root over a finite field. Given a homo-
geneous algebraic circuif’ that computes am-
variate polynomialp(x) of degreed over a finite
field F,, we wish to determine if there exists a
nonzerar € Fy with C(z) = 0.

For constantn there are known algorithms for do-
ing this efficiently. However for linear, the prob-
lem becomehlP hard. In this paper, using interest-
ing algebraic techniques, we show thatis prime
andn > d/2, the problem can be solved over suffi-
ciently large finite fields in randomized polynomial
time. We complement this result by showing that re-
laxing any of these constraints makes the problem
intractable again.

1 Introduction

Given a homogeneous polynomidlX ) overF, in

n variables and degreg consider the projective hy-
persurface oF;-rational pointsV,, = {z € PFy :
p(z) = 0}, defined byp(X). We wish to efficiently
determine whetheV,, is nonempty. This is equiv-
alent to deciding whether there is anc F?, with

x # 0, such thap(x) = 0.

Let us impose the following conditions en d and
q:

e disaprime,

e d<2n

o ¢ > Q(n%).
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Our main resultis that under these conditions, given
black-box access to evaluations gf we can de-
cide whetherV, is nonempty in randomized time
polynomial inn,d andlogq. Furthermore, relax-
ing any one of these conditions, makes the question
NP hard. In particular, 2" cannot be replaced by
“2+ ¢€" forany e > 0, we cannot drop the condition
thatd is prime, nor can we allow to be constant!

Given access to merelpoly(n,d,logq) evalua-
tions ofp(X), our algorithm infers the existence of

a nontrivial root ofp(X), without actually finding
one. This inference is made by exploiting the rich
algebraic structure of polynomials and their factor-
ization patterns. Indeed, we use some powerful al-
gebraic tools to prove these results. We believe that
that our techniques are of independent interest and
may find further applications in algebraic complex-

ity.

1.1 Detecting Rational Points: His-
tory and Motivation

The problem of determining whether there is a ra-
tional point on a variety over a finite field is a nat-
ural and well studied problem. This problem has
been implicitly studied in number theory for cen-
turies, perhaps beginning with the quadratic reci-
procity theorem of Gauss.

In [7], Huang and Wong gave a randomized polyno-
mial time algorithm for detecting rational points on
varieties for constant. They further asked if one
could find an algorithm for growing, aware that
the general case NP complete. Our work stud-
ies this question for the case of projective hypersur-
faces.

Detecting rational points on projective hypersur-
faces also arises naturally in the problem (due



to Saks and Wigderson) of detecting nonsingular is represented by an irreducible polynomial over a
spaces of matrices. Aonsingulaispace of matrices  prime subfield. We are interested in the complexity
is alinear subspace ng‘i suchthatall its nonzero  of detecting nontrivial roots gf(X') after imposing
elements are nonsingular. Givety,..., A,, a various constraints on, d andg.

basis for a linear subspade of F¢*¢, consider

. “ H ” C 3 o
the homogeneous degreepolynomial p(X) — For a set of “constraints’s C N°, we define

det(3°0 | A X;) € Fy[Xq,...,X,]. Itis easyto t(gellgnfdu%g%;’a‘gﬁ%;? be the set of ali-tuples
check that the projective hypersurface defined by *’~ = "7 o

p(X) has no nontrivialF, rational point iff L is 1. Cis ahomogeneous algebraic circuit of degree
a nonsingular space of matrices. Furthermore, for doverl,

anyz € Fy, there is a polynomial time algorithm 2. (n,d,q) € S,

to evaluatep(x). Thus our main result implies that . .
. ! S 3. Th tg € F”, th =0.
over sufficiently large fields, whedd is prime and ere existy € Fy, « 7 0 with C(z) =0

the dimensiom of the spaced. is greater tham/2, We can now state our main algorithmic result.

there is a randomized polynomial time algorithm for

detecting nonsingular spaces of matrices. Theorem 1.1 LetS C N? be the set of al(n, d, )
such that:

A number of problems on singularity, nonsingular-

ity, minimum rank and maximum rank of spaces of o
matrices have been studied extensively (cf. [3]). 1. dis prime,
The problem of detecting singular spaces of matri- 2. d < 2n,
ces was ztuc_iiﬁdhby Logl'asz [1f2], Iand is_ irF(ijmat_ely 3. ¢ > 32n™.
connected with the problem of polynomial identity -
testing. We believe that our results shed some light ThenLy,o;(5) isinRP .

on the structure and algorithmics of such problems ) ) ) )
in linear algebra. This result will be proved in Section 3. Our main

) technical result underlying the algorithm is a struc-
There are several algorithms [1], [11], [14], [15] {yre theorem for rational-point-free hypersurfaces

for countingrational points on projective hyper- e finite fields for the above setting of the pa-
surfaces. The most_ powerful, an algorithm of rametersn,d and g. The randomized algorithm
Lauder [10] counts points osmoothhypersurfaces g this theorem “pretends” that the hypersurface is
in time polynomial inlogg and the number of  aiional-point-free, attempts to recover the under-
nonzero coefficients, which may be as largelds  |ying structure guaranteed by the structure theo-
in general. rem, and finally verifies its attempt via a polynomial
Recently, Gopalan, Guruswami and Lipton [6] and identity test. Any failure along the way indicates
Wan [17] considered the problem of counting ratio- that the hypersurface must have a rational point.
nal roots of a polynomiainodm, for some integer
m. They gave algorithms and hardness results for
different choices ofn.

We complement the above algorithmic result by
showing that, in a certain sense, relaxing any of the
constraints onS above maked..;(.S) NP hard.
We state these results below. They will be proved in
1.2 Results Section 4.

We will be considering homogeneous polynomials Theorem 1.2 (Relaxing primality of the degree)
p(X) in n variables and of degretoverF,. Our  LetS; C N° be the set of al(n, d, ) such that:
algorithmic result will only require black-box ac- 1. d < 2n,
cess to evaluations @f X)) at points inF;". For the 4

. a- 2. q > 32n".
correspondingNP hardness results, we will assume .
thatp(X) is presented as a homogeneous algebraic TheNLyroj(51) is NP complete.
circuit' C over F,. We assume that the fielf,

T , ; Theorem 1.3 (Relaxing the degree bound).et
i.e., every intermediate gate computes a homogeneous poly- 3
nomial e > 0 and letS; C N° be the set of alln,d, q)

such that:



1. dis a prime, LetF, be a finite field. For any positive integey

2.d< (2+6n a norm polynomial is a homogeneous polynomial
’ N, eF ..., x| with the following properties:
3. ¢ > 320, € Folor, - ] gprop
ThenLy,,;(S2) is NP complete. o deg(N,) =n,
, . . e For any (ci,...,cn) € Fy, if
One may also ask if the condition requiring a Np(c1,. .. cn) = Othency = ... = ¢ = 0.

growing field size in Theorem 1.1 is really neces-
sary. Here we can only show a slightly weaker e An algebraic circuit computingy,, can be gen-

kind of hardness. LeL;Vf;ik(S) denote the set of erated in time polynomial in andg.
(C,n,d,F,;), whereC is an algebraic circuit, such

that there is a homogenous polynomiéK ) of de- Following ([13] p.272), we now give a construction
greed in n variables oveF, such that(x) = p(x) of norm polynomialsN,,. Let {c,...,a,} be a

for eachz € Fy (i.e., we no longer require that basis off,» overF,. Put
C formally computeg(X), merely that its evalu-

n—1
ations agree with evaluations pfX) at points of N _ @ 9 1
F'). Clearly, theNP hardness ofL.}e2(S) still n(@n,. o) = Jl;[()(al mt- e o). (1)

shows the computational intractibility of detecting

nontrivial roots ofp(X), given blackbox access to  gjnce the{cﬂj }je01....n_1) @re conjugates af;
; 7 -

its evaluations iy (for (n, d, q) € 5). overF, (i.e., they are the roots of the minimal poly-
nomial ofa; overlF,), the coefficients ofV,, are in

Theorem 1.4 (Relaxing the growing field size) F,. Itis clear thatdeg(N,,) = n and thatV,, is a ho-
Letgo be a prime power, and lef; C N3 bethe set  mogeneous polynomial. Now lét;, ..., c,) € Fy
of all (n, d, ¢) such that: and puty = ciaq + ... + ¢, € Fgn. Then

1. dis aprime, 1

2. d < 2n, Nn(cl,...,cn):H(a‘{]cl—i—...—l-ozfjcn)

3. q = qo. 7=0

ThenL¥eak(S3) is NP hard.

n
proj =

-1
H(O{lcl + ...+ Oéncn)qj = N]Fqn/]Fq (7)7
=0

<.

Organization of this paper: In Section 2, we in-  \yhere Nr, . /r, denotes the field norm frorfi.

troduce the algebraic tools that we will use. In Sec- g F,. Thus N, (c1,...,¢c,) = 0 is equivalent to
tion 3 we prove our main technical lemma, and use N, Je, () = 0, which holds only fory = 0, i.e.,
it to prove Theorem 1.1 . Finally, in Section 4 we onlqy wﬁencl — ... =c,=0.

prove the complementary hardness results: Theo-

rem 1.2 and Theorem 1.3 It remains to note that one can generate irreducible

polynomials of arbitrary degree in time polyno-
mial in n andq over arbitrary finite fields [2], [16].

2 Algebraic Preliminaries Moreover over fields of constant characteristic this
can be achieved in running time polynomialsin
andlog ¢. Thus givenrn andF, one can efficiently

In thls. se(_:tlon, we will introduce some algebraic generate an algebraic circuit computing a norm
preliminaries necessary for the proofs of our results. polynomial of degree in two steps:

2.1 Norm polynomials e Generate an irreducible polynomigly) €
F,ly] of degreen. Seta; = l,as =
Yyooyapm =y L

We give a brief overview of norm polynomials and

some of their many interesting properties. Theyin- ® Generate an algebraic circuit that on input
directly inspired our algorithm and are crucial to our r1,...,z, € Fy computes the expression in
hardness results. formula (1) modulof (y).



2.2 Rational points and factoriza-
tion

The algebraic closure @, is denoted?,. A poly-
nomialp(X) € Fy[Xy,..., X, ] is absolutely irre-
ducibleif itis irreducible inF [ X1, . .., X,].

Forr € N, let Gal(F,/F,) be the Galois group
of F,~ overF,. This group is generated by the
F,-automorphism off,- that mapsz — z9. For

a polynomialp(X) = > p; X7 X352 ... X%in €
Fer[X1,...,X,] ando € Gal(F, /F,), define
o(p(X)) = Y o(p) X[ X537 X, We say
o(p(X)) is a conjugate op(X).

We will appeal to several powerful theorems on ra-
tional points during the course of our proof. We list
them below.

The theorem of Lang and Weil gives an estimate for
the number off ;-rational points on any absolutely
irreduciblelF,-hypersurface in terms of its degree.
The following refinement (due to Cafure-Matera,
relying heavily on Weil's theorem and results of
Kaltofen) gives a sufficient condition for an abso-
lutely irreducible polynomial to have several roots.

Theorem 2.1 (Cafure-Matera [4]) Suppose

p(X) € Fy[Xy,...,X,] is a degreed absolutely
irreducible polynomial. Then for any positive
constant, there is a degree bount}(c), such that
if d > do(c) andg > 2d*, then

H{z e Fy : p(z) =0} > c.
Tracing the dependence df on c in their proof,
one can check thak (2) may be taken to bé.

The Chevalley-Warning theorem gives another suf-
ficient condition for a polynomial to have more than
one root. It implies that if a polynomial has low

3 The Algorithm
In this section we prove Theorem 1.1.
3.1 The Main Lemma

Given a homogeneous polynomjglX ) in n vari-
ables of degred overF,, recall that we wish to
decide whethe#/, is nonempty or empty; equiva-
lently whethemp(X') has a nontriviaF, root or not.

In this subsection we prove our main technical re-
sult, Lemma 3.2, which gives structural information
about any polynomial that has no nontriviial root,
under certain conditions am, ¢ andd.

We begin with a preliminary lemma about factor-
ization ofIF;-irreducible polynomials ovéf,,.

Lemma 3.1 Supposen(X) € F,[X1,...,X,] is

of degreed and is irreducible inF,[X;, ..., X,].

Then there exists with r|d and an absolutely ir-
reducible polynomiah(X) € F,[Xq,...,X,] of

degreed/r such that

p(X) =c ] o(a(x))

whereG = Gal(F,/F,) andc € F,. Further-
more, ifp(X) is homogeneous, then soi&X).

Proof Leth(X) be an absolutely irreducible fac-
tor of p(X), scaled so that one of its nonzero coef-
ficients is inlF,. Letr be the smallest integer such
that the coefficients of lie in Fy-. Furthermore,
for anyo € Gal(Fy/Fy), o(h(X))lo(p(X)) =
p(X). Thus all conjugates df(X) are also factors

enough degree and has at least one root, then it ha®f p(X).

more than one root.

Theorem 2.2 (Chevalley-Warning [13]) Suppose
p(X) € Fy[Xq,...,X,] is a degreel polynomial.
If d < n,then

|{z € Fy o p(z) = 0} =0 mod char(F,)

If d = n, there are examples of polynomials that
have only one root. Indeed, norm polynomials have
this property. Our main lemma implies that, for
somen, ¢, the norm polynomials are trenly such
examples.

Foro € Gal(F4-/F,), o # identity, we claim that
h(X) ando(h(X)) are relatively prime. Indeed,
supposer(X) ando(h(X)) have a common fac-
tor in F,[X1,..., X,]. By the absolute irreducib-
lity of h(X), this means that(h(X)) must be a
scalar multiple ofh(X). This means that for any
two nonzero coefficients,y € Fy-, o(8)/5 =
a(v)/v, and soB/y € Fg, (the subfield offF,
fixed by o). Thus, by the initial scaling ok(X),
every coefficient oh(X) lies inFg,. By definition
of r, this means thaf,» = F7,., which implies that
o = identity, a contradiction.



We can now conclude thd] . o(h(X))[p(X).
However[] ., o(h(X)) € Fy[Xy,..., X,] andp
is irreducible. The result followdll

We can now state and prove our main lemma.

Lemma 3.2 Supposel is prime,d < 2n andq >
32nt. Letp(X) € Fy[Xi,...,X,] be a homoge-
neous degreé polynomial inn variables with coef-
ficients inF, with no nontrivialF ,-rational points.
Then there exists a homogeneous dedreelyno-
mial h(X) € Fa[X1,. .., X,,] such that:

p(X) =c [] o(h(X))

whereG = Gal(F . /F,) andc € F,.

Proof Note that there is one trivial rational point
(the origin). To prove our theorem, we will infer
facts about the factorization @f X') using the hy-
pothesis (i.e.,the absence of another rational point).

1. p(X) is irreducible over F,[X;,...,X,]:
If p(X) = 91(X)g2(X), whereg;(X) €
F,[X1,...,X,] are of positive degree, then

they are both homogeneous polynomials and at
least one of them has degreen. This poly-
nomial has a nontrivial rational point by Theo-
rem 2.2, and thus so dogsa contradiction.

. Therefore, by Lemma 3.1, for somgl, p(X)
factors as a product of conjugates, each of
degreel/r. Howeverd is prime, and se = 1
orr = d. r = 1 corresponds t@(X) being
absolutely irreducible.

3. p(X) is not absolutely irreducible: If p(X)
was absolutely irreducible, we would have a
contradiction to Theorem 2.1 with= 2.

Thusr = d and the result follows.

In fact, we can say something further abayfX).
Supposeh(X) = > I, a;X;. Then, by the ab-
sence of nontriviaF, rational points{as, ..., a,}
are linearly independent ovét,. Conversely, if
the a; are independent, thes(X) has no nontriv-

ial roots.H

The lemma says that if( X') has no rational points,
thenp(X) is a product of conjugate degréeoly-
nomials. This lays out a natural plan of attack for

our algorithm. The algorithm first pretends that
p(X) has no rational point, and through some judi-
cious substitutiorfs determines the coefficients of
the degred factors thatp(X) is supposed to fac-
tor into. Then, the algorithm will verify thai(X)

is indeed the product of these conjugate degree
polynomials via a randomized polynomial identity
test.

If p(X) has no rational point, then the substitutions
will go through successfully, we will correctly de-
termine the coefficients of the linear factors, and the
polynomial identity test will pass. If the polynomial
identity test passes with high probability, theiX )

is the product of some known degrepolynomials,
and hence we can directly check if it has a rational
point.

3.2 Substitutions

Supposep(X) has no nontrivial root. The lemma
above tells us that we may write(X)
cll,cqo(h(X)), whereG = Gal(F./F,) Let
h(X)=>"", a;X;. Indeed, there are many repre-
sentations op(X) in this form (anF,-multiple of

a product of degreé conjugate polynomials over
IFZ), and the purpose of the first phase of our algo-
rithm will be to determine one such representation
(ch(X)).

In our representation, we can assume= 1 (pos-
sibly changinge). The algorithm will rely on the
following observations.

e p(1,0,0,...,0) =c

o p(1,X2,0,0,...,0)
cllpeqo (14 azXs)
CHUGG (1 + O'(ag)Xg)

o p(1,X2,0,...,0,X,0,...,0)
cllpeqo (14 asXa + apXi)
[,eq (1 +0(az) Xz + o(ar) X)

As remarked earlier, we will only require black-
box access to evaluations of the polynomial. In
this model, note that we can efficiently compute
p(1,T,0,...,0,5,0,...,0) (whereT andS are in-
determinates) by substituting valuegfipfor T and

S and then interpolating.

2|ndeed, at this point one could use Kaltofen factorization,
but this will introduce two-sided error



3.3 The Algorithm

The algorithm has two phases. The first phase of
the algorithm will attempt to recover a represen-
tation (¢, h(X)) of p(X), as suggested in the pre-
vious subsection. We note that univariate and bi-
variate polynomial factorization and the generation
of an explicit description of field”,« can all be
done in randomized polynomial time (with zero er-
ror) [2, 8]. In our algorithm, if any of these proce-
dures fail, the algorithm REJECTSs.

We describe the first phase of the algorithm below
(hereb; will be our guess fou;):

Phase 1
1. Computec = p(1,0,...,0). If ¢ = 0, AC-
CEPT
2. Seth; =1

3. Computeg)(T') = p(1,T,0,0,...,0), whereT
is an indeterminate. §(7") = 0, ACCEPT
Factorg(T") overF 4 asc H?Zl(l + 5;T).
Setb, B1 (say). If thegs; are not all the
distinct conjugates of; overF ., ACCEPT

For eachk € {3,4,...,n}, do the following:

e Compute g (T, S) =
p(1,T,0,...,0,5,0,0), where T
and S are indeterminates, and is
substituted into thé*" input variable. If
gx(T,S) = 0, ACCEPT

e Factor g, (7, S) over F . in the form
[0, (1 + B;T + x5 S) (if possible). If
factorization into this form is not possi-
ble, ACCEPT

o Setb, = V1

7. Store(c,> ", b;X;) for use in the second
phase

In the second phase, the algorithm harvests the in-
formation gathered in the first. Using the purported
representation op(X), it verifies that it is correct
via an identity test.

Phase 2

1. If the b; are linearly dependent ovél,, AC-
CEPT

2. Perform a Randomized Identity Test (with fail-
ure probability at most /2) for the identity

“pX)=c [[ e bixi)”

ceG i=1

o If they are not equal ACCEPT
e Otherwise REJECT

The following claim completes the proof of Theo-
rem1.1.

Claim 3.3 If p(X) has no nontrivial root, then the
above algorithm REJECTs with probability If
p(X) has a nontrivial root, then the above algo-
rithm ACCEPTSs with probability at leagt/2.

Proof We consider two cases.

e Supposep(X) has no nontrivial root: Then
p(X) is of the formc [, o(h(X)) where
h(X) i a;X;, for someF,-linearly-

independent;; € F,« with a; = 1. The al-

gorithm will proceed “as planned”; in particu-
lar it will not ACCEPT during the first phase.

By the observations made earliés, will be

set tor(az) for somer € G, and further-

more for each, by will be set tor(ay). Thus

Yo biXs = 7(301L, aiX;) and sop(X) =

clyeq o>y biX;). Therefore theh; are

linearly independent ovefF,, and the algo-
rithm always REJECTS in the second phase.

Supposep(X) has nontrivial roots: Now we

do not care about what happens in the first
phase. If we do not make it to the final iden-
tity test, then we must have ACCEPTed during
some earlier step. So let us assume we have
reached the identity test; in particular, the
are linearly independent ovél,. In the final
test of p(X) againstc[] ., o (3 b: X;), ob-
serve that the second polynomial has no non-
trivial rational points, while the first does, and
hence with probability at least/2 the polyno-
mials will be exposed as unequal by the iden-
tity test, and the algorithm will ACCEPT.

This completes the proof of the claim, and hence of
Theorem 1.1H



3.4 Finding roots First for every clausec; = 7" A x7? A
xy? construct a polynomialv., (4, , iy, Tiy) =
loy (i oy (Tiy )los (zi5), Wherel,(z) is a linear
form defined byly(z) = x andl; () =1 — «. Our
first attempt for the polynomialy(x) would be to

define

Given a homogeneous degrédepolynomial inn
variables ovett,, one could also consider the al-
gorithmic question of finding a nontrivial root (if
any). The Chevalley-Warning theorem guarantees .
that everyl-dimensional projective hyperplane con- br(z) = Ne(wey, ... we,), )
tains a rational point. Our algorithm allows us to where N, is a norm polynomial. One can verify
identify a projective hyperplane of dimension at that the polynomiap(z) defined above has a root
mostd/2 with a rational point in time polynomial  in , if and only if there exists am € {0, 1}" such

in n,d,q, whend is prime andg > 32n*. In-  thatF(z) = 0. The obvious problem with this re-
deed, using the detection algorithm one can suc- duction is thatpr(z) need not be a homogeneous
cessively find smaller dimensional projective hyper- polynomial.

planes containing a rational point until the dimen-

sion becomes at mog#2. We go around this problem by defining ho-

mogenizing the polynomialpr, once with
respect to each input variable;. Intro-
4 Hardness results duce new polynomialswe, ; (i, Zi,, Ti;) =
loy,i (i )log 3 (%, oy (i,), Where Iy () is a
homogeneous linear form defined hy;(z) = =

In this section we establish Theorem 1.2 and The- andl, ,(z) = «; — x. We also define polynomials

orem 1.3, that show that relaxing the conditions in
Theorem 1.1 makek,,,,; NP complete. pr;(x) = Ne(We, jr- - - We, ), (5)
forall j € {1,2,...,m}. Essentially, the polyno-
mial pr ;(x) is obtained by homogenization of the
polynomialpr(z) defined by (4), where variable
Proof of Theorem 1.2: is used to carry out the homogenization procedure.
Consider the languagé of 3DNF formulae F Polynomialspr,; are homogeneous. However they
for which there exists an assignmentsuch that ~ May have roots that do not correspond to boolean
F(z) = 0 andz # 0. Itis easy to see that language @assignments té’ that set it to zero.

L is NP complete. We will now give a reduction  the picture below represents the structure of our
from L 10 Liroj(51)- final polynomialpr. pr is a polynomial inn =

Let F be a 3-DNF formula of lengthin variables =~ m + 7' variables, wherd’ = m(s — 1)(3t + 1).
z1,...,Tnm. AssumeF hast clauses. Clearlyp < Of these,m variables are just, ..., z, and the
landt < [. Fix some integes > 2. Fix a finite field otherT variables are labelled, . .., zr. We need

F, of size at least00s*/%. This is the right field size ~ z;'s to achieve the right ratio between the number
to meet the requirements of the theorem. However of variables and the degree of the polynomial.

one can carry out our reduction over arbitrary finite
fields independent of their size.

4.1 Proofs of hardness results

In what follows we demonstrate an efficient pro-
cedure that giver# generates an algebraic circuit
overF, computing a homogeneous polynonygl
inn =m + m(s— 1)(3t + 1) variables such that
the following holds,

Jz € {0,1}™ suchthatF'(z) = 0 andx # 0
)

&3z € Fy, suchthapp(z) = 0 andz # 0. The general idea behind our construction is

®3) the following. We combine the products



xjpr(x1,...,2,) using the norm polynomial anye > 0 to the definition ofS;. Indeed, we may
N,,. This polynomial already has the property (2). chooses to be a suitably large constant so that (6)
The only problem that we still have at this point gives us the desired bound dn

is that the degree of the norm of productsiis=

m(3t + 1) while the number of variables is only — proo¢ of Theorem 1.3:  We exhibit a reduction
m. SO we are quite far from the the desired relation from the sameNP complete language as in the
d < 2m. Toresolve this problem we add yet another proof of theorem 1.2. Given a 3DNF formulaof

norm polynomialN; on top of NV,,. Other argu- agth; we follow the procedure of theorem 1.2 to
ments ofN; are norms in new variables, .. ., 27 construct an algebraic circuit computing a polyno-
Note that for every norm gate in the- the argu- mial p(z1,...,xz,) of degreed over a field of size
ments are polynomials of the same degrees. Thusat least32n* such that the condition (2) is satisfied.
pr is @a homogeneous polynomialg is a polyno- We also requirél < (1 + ¢/2)n. The possibility of
mialinn = m—+m(s—1)(3t+1) variables of degree  such a construction is implied by the above remark.

d = sn(3t + 1). Therefore we have the relation Next we choose a primebetween(2 + ¢/2)n and

d<((s)/(s—1))n. (6) (2+ ¢)n. Note that the existence of such a prime for

sufficiently largen follows from the prime number

Recall thatpp is a polynomial oveff, whereq > theorem [5]. We can fing by brute force search
100s*®. Thus we also have the relatign> 32n*. since we are allowed to run in time polynomial in

It remains to verify that the property (2) does hold. 1. Putg = r — d. Note thaty > n. We now define

Assume we are given a nonzero boolean assign-0ur final polynomial to be
menta € {0,1}™ such thatF'(a) = 0. We set

all variablesz,...,zr to zero. We shall now PF(@1,. - 2n) = Pr(T1; - 2n)
verify that pr(a1,...,am,0,...,0) = 0. First “Ng(T1,. oo T, o150, 1),
Eg:ea;?)itj (fslrﬁv,e,rgzn)e :{1’()?7;I'.h'i’sn$1atgge2r50dei- The firstn arguments ofN, are x4, .. < En and
ther becauser — 0 or becausan — 1 and all (_)the_r arguments are;. One can e_a5|ly see th_at
J J a circuit forpr can be constructed in polynomial
prj(a1,.. ., am) COMPUtes the value df(a). Fur- g pr has prime degree and the required re-
ther recall that the norm polynomials on zero inputs lations betweem andr are satisfied. Proving the
evaluate to zero. Therefofes, . . ., a,,0,...,0)is |

condition (2) is also easy. It suffices to show that
every nontrivial root ofpg is also a nontrivial root
The other direction is slightly more complicated. of j,. This follows from the fact thatv, depends

a nontrivial zero ofpp.

Let (a1,...,am,v1,...,v7) € ;' be a nontriv-  on all the variables, . . ., z,, and always evaluates
ial zero ofpr. Note thatv; needs to be zero for all  to nonzero at nonzero inpu

i €{1,...,T},since otherwise the value f; will

be nonzero. Therefore ther_e should be a noN-zerog, .« ¢ Theorem 1.4- Again, our reduction is
value amonday, . .., a,,). Without loss of gener-

from the samé\P complete language as in the pre-
vious proofs. We fix some value ef > 0. Given
a formulaF' we use the construction from the re-

ality assume that;; # 0. Observe the following
chain of implications:

Ne=0 = Np=0 = pri(a1,...,am) =0. mark after the proof of Theorem 1.2 to get an alge-
@) braic circuit that evaluates a homogeneous polyno-
Foralli = 1.nseth; = 0if a; = 0 and mial pp(z1, ..., x,) such thapr satisfies the prop-
seth;, = 1 otf’1erwise. Observe thdt; = 1. erty (2). Moreoverdeg pr < (1 + €)n. Also, we
The structure of polynomialsu., ; implies that choose the field sizeto bego.
pra(b1,...,bm) = 0. It remains to notice that The polynomialpr has all the properties that we
by = 1 andppi(b1,...,bn) = 0 imply that want except that the degree pf- is not prime.
F(b1,...,b,)=0.1 Our idea to go around this problem is the follow-
ing. We will prove that there exists a polynomial
Remark The above proof shows that we may pg(z1,...,2,) of prime degree such that- and

even add the additional constraihitc (1 + €)n for the p are identical oveff',. Then we can can use



the circuit that computesy to computep- and our  Acknowledgement

reduction will be complete. Note that the further ar-

gument is aimed only to prove the existenceppf
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For a later part of the argument, we negédo be
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