
Equivalence of Polynomial Identity Testing and Deterministic

Multivariate Polynomial Factorization

Swastik Kopparty∗ Shubhangi Saraf† Amir Shpilka‡

Abstract

In this paper we show that the problem of deterministically factoring multivariate polyno-
mials reduces to the problem of deterministic polynomial identity testing. Specifically, we show
that given an arithmetic circuit (either explicitly or via black-box access) that computes a multi-
variate polynomial f , the task of computing arithmetic circuits for the factors of f can be solved
deterministically, given a deterministic algorithm for the polynomial identity testing problem
(we require either a white-box or a black-box algorithm, depending on the representation of f).

Together with the easy observation that deterministic factoring implies a deterministic algo-
rithm for polynomial identity testing, this establishes an equivalence between these two central
derandomization problems of arithmetic complexity.

Previously, such an equivalence was known only for multilinear circuits [SV10].

∗Department of Mathematics & Department of Computer Science, Rutgers University.
swastik.kopparty@gmail.com. Research supported in part by a Sloan Fellowship and NSF CCF-1253886.
†Department of Mathematics & Department of Computer Science, Rutgers University.

shubhangi.saraf@gmail.com. Research supported by NSF grant CCF-1350572.
‡Faculty of Computer Science, Technion – Israel Institute of Technology, Haifa, Israel,

shpilka@cs.technion.ac.il. The research leading to these results has received funding from the European
Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 257575.

1 Introduction

In this paper we study the relation between two fundamental algebraic problems, polynomial iden-
tity testing (PIT for short) and polynomial factorization. We show that the tasks of giving deter-
ministic algorithms for polynomial identity testing and for polynomial factorization are, essentially,
equivalent. We first give some background on both problems and then discuss our results in detail.

Polynomial Factorization. The problem of polynomial factorization for multivariate polynomi-
als asks the following: Given a polynomial f(X1, . . . , Xn), compute each of the irreducible factors
of f . From the arithmetic complexity point of view, it is most natural to have f be presented
as an arithmetic circuit, and ask that the algorithm returns irreducible factors of f in the form
of arithmetic circuits (this is called the white-box model). Alternatively, we could assume that
we have black-box access to f , and ask that the factorization algorithm outputs a black-box for
each of the irreducible factors. One can also consider a (simpler) decision version of this question:
given an arithmetic circuit computing a multivariate polynomial, decide whether the polynomial is
irreducible or not. In the decision version the algorithm just has to answer ‘yes’ or ‘no’ and it is
not required to find the factorization.

A surprising and fundamental result in arithmetic complexity states that factoring of multivariate
polynomials can be done efficiently in both the black-box and white-box settings [Kal89, KT90].
This implies the amazing fact that if f has a circuit of size s and degree d in n variables, then
the irreducible factors of f have arithmetic circuits of size poly(s, d, n). Both these factorization
algorithms are randomized, and just as in the case of polynomial identity testing (that we discuss
below), it is a long standing open question whether there is an efficient deterministic algorithm for
factoring multivariate polynomials (see [GG99, Kay07]). Moreover, there is no known deterministic
algorithm even for (1) the decision problem of irreducibility testing, and (2) the problem of factoring
multilinear polynomials.

An important tool in designing randomized factorization algorithms is Hilbert’s irreducibility the-
orem, which in one formulation says that restricting an irreducible polynomial to a random two-
dimensional subspace keeps the polynomial irreducible with high probability. In other words,
restricting a polynomial f to a random two-dimensional subspace does not change the number of
irreducible factors of f . Given this, multivariate factoring algorithms proceed as follows. First
restrict the polynomial to a randomly chosen two-dimensional space. Then, perform bi-variate
factorization of the restricted polynomial. Finally, “lift” each factor to the whole space. The study
of factorization of multivariate polynomials has led to significant advances in our understanding of
the quantitative aspects of Hilbert’s irreducibility theorem [Kal95].

In [SV10], Shpilka and Volkovich proved that factoring multilinear polynomials reduces to polyno-
mial identity testing for multilinear polynomials. Their algorithm relies heavily on the fact that
factors of multilinear polynomials must be supported on disjoint sets of variables, and in particular
it does not follow the usual methodology outlined above for factoring polynomials. This result has
two interesting aspects. First, it gives a close connection between these two basic problems. Second,
it shows that deterministic factorization algorithms may be hard to find, as they are equivalent
to the PIT problem for multilinear circuits, which, if found, would yield an explicit multilinear
polynomial with exponential multilinear circuit complexity. In their work Shpilka and Volkovich
left open the question of whether the same fundamental relation holds for the general case (i.e.

1

for general (non-multilinear) polynomials). In this paper we resolve this problem affirmatively by
giving a reduction from multivariate polynomial factorization to PIT for general circuits. This
highlights the significance of the polynomial identity testing problem as the problem closest to
being “complete” for the algebraic version of the class RP.

For more on polynomial factorization we refer the reader to the surveys [Kal90, Kal92, Kal03, Gat06]
as well as to the lecture notes of Sudan [Sud99]. For more on algebra in computation we refer to
the excellent book [GG99].

Polynomial Identity Testing. Let C be a class of arithmetic circuits defined over some field F.
The polynomial identity testing problem (PIT for short) for C is the question of deciding whether
a given circuit from C computes the identically zero polynomial. This question can be considered
both in the black-box model, in which we can only access the polynomial computed by the circuit
using queries, or in the white-box model where the circuit is given to us. The importance of this
fundamental problem stems from its many applications. For example, the deterministic primality
testing algorithm of [AKS04] and the fast parallel algorithm for perfect matching of [MVV87] are
based on solving PIT problems.

In this paper, we consider PIT for the class of poly(n)-size, poly(n)-degree arithmetic circuits
in n variables. PIT has a well known randomized algorithm [Sch80, Zip79, DL78], but no sub-
exponential time deterministic algorithm is known in the general case. This question received a
lot of attention recently and several deterministic black-box algorithms were devised for restricted
classes of arithmetic circuits, but the solution for the general model remains elusive. The works
of [HS80, KI04, Agr05, DSY09] proved that derandomizing PIT, either in the white-box setting
or in the black-box setting, implies lower bounds for arithmetic circuits. The work of Kabanets
and Impagliazzo (and [DSY09] for small depth circuits) also proved the reverse direction, namely,
that using a hard problem one can devise a hitting set for arithmetic circuits. I.e., given a hard
function one can use it to construct a black-box algorithm for PIT. It is interesting to note that
the PIT problem becomes very difficult already for depth 3 circuits. Indeed, [GKKS13] proved
that a polynomial time black-box PIT algorithm for depth 3 circuits (of unbounded degree) implies
an exponential lower bound for general arithmetic circuits (and hence using the ideas of [KI04] a
quasi-polynomial time PIT for general circuits). For more on PIT see the survey [SY10].

In this work we show that the two derandomization problems are (essentially) equivalent. Namely,
we show that a polynomial time deterministic PIT algorithm exists if and only if there is a de-
terministic polynomial time factorization algorithm. The result holds both in the black-box and
the white-box models. That is, if the PIT algorithm is in the black-box setting then deterministic
black-box factorization is possible and vice versa, and similarly for the white-box case. The black-
box case essentially follows by carefully inspecting the proofs of the original randomized factoring
algorithms. It is the whitebox case that is the core of the technical contribution of this work.

1.1 Our Results

Before stating our main result we first define the model of arithmetic circuits.

An arithmetic circuit in the variables X = (X1, . . . , Xn), over the field F, is a labelled directed
acyclic graph. The inputs (nodes of in-degree zero) are labelled by variables fromX or by constants

2

from the field. The internal nodes are labelled by + or ×, computing the sum and product,
respectively, of the polynomials on the tails of incoming edges (subtraction is obtained using the
constant −1). Outputs are nodes of out-degree zero.

The size of a circuit (or formula) is the number of gates in it. The depth of the circuit is the length
of a longest path between an output node and an input node.

When we say degree of a multivariate polynomial, we mean its total degree. An arithmetic circuit
C has degree bounded by d if all the gates computed by the circuit have degree bounded by d.
Finally, we shall say that C is an (n, s, d)-circuit if it is an n-variate arithmetic circuit of size s with
degree bounded by d.

Our main result states that if PIT can be solved deterministically in polynomial time, then given
as input a size-s n-variate arithmetic circuit over Fp` or Q computing a degree d polynomial f , one

can deterministically in time poly(n, s, d, p`) (in the case of Fp`) or poly(n, s, d, t) (where t is the
bit-complexity of the constants in the circuit, in the case of Q), compute the factors of f . We now
formally state our main result.

Theorem 1 (Main) Let F be either the finite field Fp` (with characteristic p) or the rationals Q.

Suppose white-box (black-box) polynomial identity testing for size s, degree d, n-variable arithmetic
circuits over F can be solved deterministically in time poly(n, s, d).

Suppose we are given white-box (black-box respectively) access to a polynomial f(X1, . . . , Xn) ∈
F[X1, . . . , Xn] computed by an arithmetic circuit of size at most s and degree at most d. Let

f =
k∏

i=1

gp
ei ·ji

i

be the factorization of f , where the gi are irreducible and p - ji for each i.

Then we can compute, for each i ∈ [k]: (i) ei, (ii) ji, and (iii) an arithmetic circuit (black-box
respectively) for the factor gp

ei

i (the factor gi respectively) in deterministic time poly(n, s, d, t),
where:

1. t = ` · p, if F = Fp` is a field of characteristic p.

2. t = maximum bit-complexity of the constants used in the circuit, if F = Q.

The main new technical content of this theorem is for the white-box case. In the process, we
also give a new (and possibly simpler) proof of Kaltofen’s result [Kal89] showing that factors of
polynomials computed by small circuits have small circuits. This new proof has the advantage of
being constructive in a certain precise sense, and this plays an important role in our main result.

The fact that we only compute arithmetic circuits for gp
ei

i in the white-box setting can be interpreted
as follows: we produce an “augmented” arithmetic circuit for each gi, which is in the form of an
arithmetic circuit, followed by a unary gate which computes the peith root. Even the randomized
white-box factorization algorithm of Kaltofen [Kal89] only achieves this kind of factorization.

Over finite fields, note that dependence on the field in the running time of the above multivariate
factoring algorithm is polynomial in p ·`, while in principle it could be simply polynomial in ` · log p.

3

This dependence on the characteristic is a well known fundamental problem: today it is not even
known how to deterministically factor univariate polynomials of degree d in time poly(d, `, log p)
(this is unknown even for d = 2!). This is the only bottleneck for our multivariate factoring
algorithm: if one could factor univariate polynomials of degree d over Fp` deterministically in time
poly(d, `, log p), then the running time in our main theorem can be improved to depend polynomially
on ` · log p (instead of depending polynomially on ` · p).

We note that the other direction in the equivalence of PIT and factorization was observed in
[SV10], namely, that deterministic factorization (even for the decision problem of irreducibility
testing) implies deterministic PIT.

Observation 1 (Observation 1 in [SV10]) Let C be a class of arithmetic circuits. Assume that
there is a deterministic algorithm for the decision version of the polynomial factorization problem.
That is, an algorithm that when given access (explicit or via a black-box) to an (n, s, d) circuit C ∈ C
runs in time T (s, d) and outputs “true” iff the polynomial computed by C is irreducible. Then, there
is a deterministic algorithm that runs in time O(T (s+ 2, d)) and solves the PIT problem for size s
circuits from C.

1.2 Proof technique

Our algorithms are closely related to the randomized black-box factorization algorithms of [Kal89,
KT90], and so we start by first giving a high level view of those algorithms. In the explanation below
we adopt the terminology of lecture 9 in [Sud99]. The initialization step in all factoring algorithms
is to massage the polynomial f to be factored to the case where it is squarefree, monic in some
variable X and satisfies ∂f

∂X 6= 0. The next step of the randomized algorithms is to restrict f to a
randomly chosen two-dimensional subspace composed of all points {(X,α1T + β1, . . . , αnT + βn)}
(where α1, . . . , αn, β1, . . . , βn are chosen at random). The idea is that for such a random subspace,
all irreducible factors of f remain irreducible with high probability. This is an “effective” version
of Hilbert’s irreducibility theorem that was proved by Kaltofen in [Kal95].

Theorem 1.1 (Effective Hilbert irreducibility) Let S ⊆ F be a finite set and g(X,A1, . . . , An)
a monic polynomial in X of total degree at most d. If g is irreducible then it holds that

Pr
α,β

[g(X,α1T + β1, . . . , αnT + βn) is not irreducible] < O(d5/|S|),

where α and β are chosen uniformly and independently from Sn.

Note that the lemma guarantees that if we pick the set S to be large enough, then with high
probability all irreducible factors of f remain irreducible when restricted to the chosen subspace.
The randomized algorithm then proceeds by factoring f over the subspace {(X,α1T+β1, . . . , αnT+
βn)}. At this stage we have a restriction of each factor to the chosen two-dimensional space. The
final step of the factorization algorithms is to use these restrictions, either via the Hensel lifting
lemma [Kal89] (in the white-box case) or via trivariate factorizations [KT90] (in the black-box
case), to find a global factor over the entire space.

4

We now explain how we derandomize these algorithms using PIT in the black-box case and in
the white-box case. Perhaps surprisingly, the proof is simpler in the black box case. This can be
explained by the fact that our assumption is also stronger - in this case we assume that we have a
black-box PIT algorithm, which is a stronger assumption than a white-box PIT algorithm.

1.2.1 The black-box case

We would like to simulate the above randomized algorithm in the black-box case. Using blackbox
PIT, one can easily do the preprocessing to make f monic and squarefree. All that remains is to
find a good two-dimensional subspace to restrict to. The main observation here is that Theorem 1.1
can be strengthened in the following way.

Theorem 1.2 (Effective and efficient Hilbert irreducibility) Let g(X,A1, . . . , An) be a
monic polynomial in X of total degree at most d, that is computed by an arithmetic circuit of size
s. If g is irreducible then there is a circuit of size poly(s, d) in 2n variables computing a polynomial
h(Z1, . . . , Zn, Y1, . . . , Yn) of degree O(d5) so that if h(α,β) 6= 0 then g(X,α1T + β1, . . . , αnT + βn)
is irreducible. Furthermore, this circuit can be computed in a black-box manner from the circuit for
g.

We do not prove this theorem here, but it is implicit in the proof of Theorem 1.1 in [Kal95] (for an
excellent exposition, see Theorem 1 of Lecture 9 of [Sud99]).

We would like to use our black-box PIT algorithm on the polynomial h given in Theorem 1.2 to find
a two-dimensional subspace that will preserve irreducibility for all irreducible factors of f (i.e. we
want to find a nonzero simultaneously for all h’s corresponding to factors of f). For this we need to
know that h has a small circuit, and this in turns requires us to know that each irreducible factor
g of f indeed has a small circuit (so that we can apply Theorem 1.2 with reasonable parameters).
Luckily, Kaltofen [Kal89] proved that if f can be computed by an arithmetic circuit of size s then
each of its factors can be computed by arithmetic circuits of size poly(s, d, n). We conclude that
there exists a circuit of degree O(d6) and size poly(s, d, n) in 2n variables such that any non-zero
assignment to it gives a “good” two-dimensional space. We can thus use the assumed black-box
PIT for such circuits to claim that the black-box PIT algorithm finds such a good pair (α,β).
Notice that we do not need to know the circuits for the factors nor the circuit of Theorem 1.2, but
rather it is enough to have a bound on its complexity to be able to use the black-box PIT algorithm
to find a good subspace. This is the main difference from the white-box model (we shall elaborate
on this point more later).

Having found a good two-dimensional subspace using the PIT algorithm, we can proceed with the
proof as in the black-box randomized case [KT90], noting that all remaining steps can be performed
in the black-box model deterministically. Putting all these steps together, the deterministic black-
box factoring algorithm follows in a straightforward way1. The rest of the paper is devoted to the
proof of the whitebox case.

1This was also independently observed by Dvir and Mendes de Oliveira (personal communication).

5

1.2.2 The white-box case

In the white-box case things are trickier. We first explain why we cannot adopt the same strategy
as in the black-box case. The natural thing would be to try and compute the circuit guaranteed
by Theorem 1.2 for each of the irreducible factors of f , and then use the white-box PIT algorithm
to find a good subspace. However, the theorem only tells us that to compute the polynomial h
(associated to an irreducible factor g of f), we need to start from a circuit computing g. But getting
a circuit for g is the original problem we are trying to solve! Rephrasing, this strategy says that in
order to factor f , we should first compute small circuits for each of its irreducible factors, which
can then help us find a subspace that will help us compute circuits for its irreducible factors. This
circularity prevents the above approach from being feasible in the white-box case.

A central piece of the deterministic black-box factorization algorithm (using PIT) is Kaltofen’s
theorem on the existence of small arithmetic circuits for the factors. Perhaps the proof of that
theorem will suggest a way to construct the small circuits for the factors deterministically (using
white-box PIT). Unfortunately, the main step in the proof of that theorem is Hilbert’s irreducibility
theorem, Theorem 1.1! One first restricts to a random 2-dimensional subspace, which with high
probability preserves the factorization pattern of the original polynomial f . The proof merely uses
the existence of such a 2-dimensional subspace, and the proof does not require nor show either how
to construct such a subspace, or even how to construct a circuit detecting such a subspace.

The above explains why the white-box case requires a new constructive ingredient over the black-
box case. The main technical contribution of this work is to show that instead of finding a good
two-dimensional subspace, one can work with a “formal” two-dimensional subspace. Concretely,
we work over the field of fractions F(A1, . . . , An) (in the formal variables A1, . . . , An; we may
think of (A1, . . . , An) as defining the “direction” of the formal subpace). That is, we define a new

polynomial f̄(X,T,A1, . . . , An)
def
=f(X,TA1, . . . , TAn) and view f̄ as a polynomial in K[X,T] over

the field of rational functions K = F(A1, . . . , An). It is not hard to prove that if f is monic in X
then irreducible factors of f map to irreducible factors of f̄ and vice versa. Thus, in some sense we
have found a way to reduce the problem to the two-dimensional case. The main issue now is that
the field is much more complicated and instead of working with constants from F we have to work
with constants from K.

The standard way to factorize a general bivariate polynomial over a field K would (1) perform a
univariate polynomial factorization over the field K (which is nearly as hard as the original problem
since K is so complicated), (2) perform Hensel lifting, (3) solve a linear system, (4) compute a GCD.
However the polynomial f̄ was chosen to have a special form, which allows the univariate polynomial
factorization over K (which is what we need) to reduce to a univariate factorization over the small
field F! We then show that the remaining steps of the bivariate factorization can be done despite
the complexity of the field K. This is where the white-box PIT comes into play; it enables us to
perform basic tasks over the field K, such as linear algebra and working with polynomials in K[X,T],
deterministically. Here we need to verify that all “constants” from K appearing in intermediate
computations can be computed by small circuits (in the variables A1, . . . , An). In other words,
while the field K = F(A1, . . . , Am) is quite complex, the elements from K that we will be using can
all be computed by small circuits, and we will be able to compute and work with those circuits
efficiently using white-box PIT.

6

1.3 Notation

We shall use capital letters X,T,Ai to denote variables. Lower case Greek letters α, β, c will be
used to denote assignments to the variables or, more generally, constants from the field. Bold face
letters α,β will denote vectors. Polynomials will be denoted by lower case letters a, b, f, g, h, and
vectors of polynomials by bold face lower case v.

1.4 Organization

In the next section we recall some algebraic tools and algebraic algorithms that will be useful for
us. We then give our factorization algorithm. We conclude with some open questions.

2 Algorithmic and Algebraic tool kit

In this section we set up our notation and give some known facts about circuits and known facts
from algebra.

2.1 Known facts about arithmetic circuits

The following well known lemma states that given access to a circuit computing a polynomial f we
can construct (in a black-box manner) a circuit for each of the homogeneous components of f . For
a proof see e.g. [SY10]. We denote the homogeneous components of f by H0(f), . . . ,Hd(f), where
H i(f) is the sum of all monomials in f of degree exactly i.

Lemma 2.1 Given an arithmetic circuit C(X,Y1, . . . , Yn), of size s, that computes a polynomial
f(X,Y1, . . . , Yn) ∈ F[X,Y1, . . . , Yn] of degree d, we can construct arithmetic circuits for the ho-
mogeneous components of f in time poly(n, d, s). Furthermore, the circuit for each H i(f) is of
size O(ds). Similarly, if we let f(X,Y1, . . . , Yn) =

∑d
i=0X

ifi(Y1, . . . , Yn) then we can in time
poly(n, d, s) compute arithmetic circuits for the polynomials fi. Furthermore, the circuit for each
fi is of size O(ds).

Another useful tool is that given a white-box PIT algorithm we can use it to find a non-zero
assignment for a given non-zero circuit.

Lemma 2.2 (Decision to search reduction for white-box PIT) Given an arithmetic circuit
C computing a non-zero n-variate polynomial f(Y1, . . . , Yn) of degree d, and a white-box PIT algo-
rithm that runs in time polynomial in the size of C, n and d, we can find a point a ∈ Fn such that
f(a) 6= 0 in time poly(|C|, n, d).

Proof Let S = {α0, . . . , αd} be a set of d+ 1 distinct values from F. Notice that we can check,
using the PIT algorithm, whether the restriction Y1 = αi ∈ S makes f vanish. Since the degree of
f is d and f 6≡ 0, there exists a value of αi ∈ S such that f(αi, Y2, . . . , Yn) 6≡ 0. Hence, by a linear
scan over S we can find such an index 0 ≤ i ≤ d such that f(αi, Y2, . . . , Yn) 6≡ 0. Fix Y1 = αi and
repeat this procedure with the other variables {Y2, . . . , Yn}. The running time is clearly bounded
by nd times the running time of the PIT algorithm.

7

2.2 Algebraic tool kit

Lemma 2.3 (Gauss’ Lemma) Let g(X,Y1, . . . , Yn) ∈ F(Y1, . . . , Yn)[X] be a monic (in X) factor
of f(X,Y1, . . . , Yn) ∈ F[X,Y1, . . . , Yn]. Then g(X,Y1, . . . , Yn) ∈ F[X,Y1, . . . , Yn].

For the proof see, e.g., Chapter 6.2 in [GG99].

The Resultant Let f =
∑d

i=0X
iai(Y1, . . . , Yn) and g =

∑e
i=0X

ibi(Y1, . . . , Yn) be polynomials
of X-degree exactly d and e respectively. Consider the (d+e)× (d+e) Sylvester matrix whose first
e rows contain e shifts of the vector of coefficients (ad, . . . , a0, 0, . . . , 0). Namely, the kth row begins
with k − 1 zeros and ends with e− k zeros. E.g., the (e)th row is (0, . . . , 0, ad, . . . , a0). The next d
rows contain shifts of the vector of coefficients (be, . . . , b0, 0, 0, . . . , 0). Thus, the (e+1)st row in the
matrix equals (be, . . . , b0, 0, . . . , 0) and the (d + e)th row contains the vector (0, . . . , 0, be, . . . , b0).
The resultant of the polynomials f(X,Y1, . . . , Yn) and g(X,Y1, . . . , Yn) with respect to the variable
X is defined to be the determinant of the Sylvester matrix defined above.

If we know that each ai is a polynomial of degree at most d and each bj is a polynomial of degree
at most e, a crude upper bound on the degree of the resultant as a polynomial in the Yis is 2de.

We have the following basic properties of the resultant (see [Sud99]).

Lemma 2.4 (Resultant facts) Let d, e ≥ 1. Let f(X,Y1, . . . , Yn) have X-degree exactly d and
let g(X,Y1, . . . , Yn) have X-degree exactly e. Let u(Y1, . . . , Yn) be their resultant with respect to the
variable X. Then:

1. u = 0 if and only if f(X,Y1, . . . , Yn) and g(X,Y1, . . . , Yn) have a nontrivial GCD in the ring
F(Y1, . . . , Yn)[X].

2. there exist polynomials v(X,Y1, . . . , Yn) and w(X,Y1, . . . , Yn) such that:

f · v + g · w = u.

The Discriminant Df (Y1, . . . , Yn). Let f =
∑d

i=0X
iai(Y1, . . . , Yn) be a degree d polynomial.

Let ∂f
∂X =

∑d
i=0 i ·Xi−1ai(Y1, . . . , Yn) be its derivative with respect to X.

The discriminant of a polynomial f(X,Y1, . . . , Yn) with respect to the variable X, denoted
Df (Y1, . . . , Yn), is defined to be the resultant of the polynomials f and ∂f

∂X . Since each ai is a
polynomial of degree at most d, a crude upper bound on the degree of Df (Y1, . . . , Yn), as a poly-
nomial in the Yis is 2d2.

Lemma 2.5 (Small circuit for the Discriminant) Let f(X,Y1, . . . , Yn) be a degree d polyno-
mial computed by an arithmetic circuit of size s. Given this arithmetic circuit, we can find in
deterministic time poly(s, n, d) an arithmetic circuit of size poly(s, n, d) that computes the discrim-
inant Df (Y1, . . . , Yn).

8

Proof The proof follows from the following two simple facts: a small arithmetic circuit computing
the coefficients of the Xi in f can be found using the arithmetic circuit for f , and, the Determinant
has small arithmetic circuits.

The main property of the discriminant that we need is that if f(X,Y1, . . . , Yn) is squarefree, then
Df (Y1, . . . , Yn) is nonzero. Furthermore, ifDf (α1, . . . , αn) 6= 0, then f(X,α1, . . . , αn) is a squarefree
univariate polynomial.

2.3 Linear Algebra using PIT

In this section we explain how to perform linear algebra when coefficients of vectors are given as
circuits.

Lemma 2.6 (Solving linear systems) Let M = (Mi,j) be a k×n matrix, with each entry being
a degree ≤ ∆ polynomial in F[A1, . . . , An]. Suppose that we have an arithmetic circuit C of size at
most s computing M . Then, given access to a PIT oracle, we can either:

1. find an arithmetic circuit of size at most poly(n, k, s,∆) computing a nonzero vector v ∈
(F[A1, . . . , An])n such that Mv = 0, or

2. declare that there are no nonzero vectors v ∈ (F[A1, . . . , An])n such that Mv = 0,

deterministically in time poly(k, n, s,∆).

Proof The idea of the proof is the following. Iteratively, for every j = 1, . . . , n we shall find an
j × j minor contained in the first j columns that is full rank. We will continue doing so until we
either reach j = n in which case it means that the matrix has full column rank and hence the only
solution is v = 0, or we get stuck at some value j = j0. Using the fact that we cannot increase j
further we will use this minor to construct the required vector v.

We now explain the process. Using PIT we look for some non-zero entry in the first column. If
no such entry is found we can simply take v = (1, 0, . . . , 0). So assume that such a non-zero entry
is found. After permuting the rows we can assume wlog that this is M1,1. Thus, we have found a
1× 1 minor satisfying the requirements. Assume that we have found an j × j full rank minor that,
wlog, is composed of the first j rows and columns. Denote this minor with Mj . Now for every
(j+1)×(j+1) submatrix ofM contained in the first j+1 columns and containingMj , we use our PIT
oracle to check if its determinant is nonzero. If any of these submatrices have nonzero determinant,
then we pick one of them and call it Mj+1. Otherwise, we have that the first j + 1 columns
of M are linearly dependent. In this case we can use Kramer’s formula to find the unique (up to
multiplication by elements of the field F(A1, . . . , An)) vector u = (u1, . . . , ur) ∈ F(A1, . . . , An)j such

that Mj ·u = (M1,j+1, . . . ,Mj,j+1). Notice that each entry of u is of the form
det(M

(i)
j)

det(Mj)
, where M

(i)
j

is the matrix obtained from replacing the ith column of Mj with the vector (M1,j+1, . . . ,Mj,j+1).

Thus the vector (det(M
(1)
j), . . . ,det(M

(j)
j),−det(Mj), 0, 0, . . . , 0) is the desired vector v. Observe

that v can be computed by a circuit of size s+ poly(n, k,∆).

9

2.4 Computing division with remainder and GCD

In this subsection we explain how to compute division with remainder and GCD (greatest common
divisor) for univariate polynomials in X, whose coefficients are given by arithmetic circuits in
variables A1, . . . , An. We rely on the description of the algorithms in Chapter 9 of [GG99]. In what
follows, each time we discuss arithmetic circuits that compute a ratio of polynomials, we can think
of the circuit as computing two outputs, one for the numerator and one for the denominator.

Lemma 2.7 Let f ∈ F(A1, . . . , An)[X] be a polynomial of degree d such that f(0) = 1. Assume
there is an arithmetic circuit of size s computing all of f ’s coefficients (possibly as a ratio of two
polynomials), of size s. Then, for every m, one can add poly(d,m) many gates to the circuit to
obtain a circuit computing all coefficients of a polynomial g (as well as the coefficient of f) such
that fg ≡ 1 mod Xm. Moreover, this new circuit can be computed in a black-box fashion, namely,
we only add gates to the circuit of f and connect them either to other new gates or to the outputs
of the circuit for f .

The upper bound that we give on the size of the circuit is very crude and it can be greatly improved,
but for sake of simplicity we give the crude bound.

Proof The proof basically follows from Algorithm 9.3 of [GG99]. In that algorithm we define

g0 = 1 and recursively compute gi+1
def
= (2gi−fg2i) mod X2i . It is shown in Theorem 9.2 there that

fgi ≡ 1 mod X2i . Thus, we only have to compute gi for 2i > m. By induction it is not hard to
see that if there is a circuit of size si that outputs all the coefficients of f and of gi (recall that
gi has degree smaller than 2i in X) then there is a circuit of size si + poly(d,m) computing the
coefficients of f and gi+1. Indeed, each coefficient of gi+1 is a sum of poly(d, 2i) terms, each of
which is a product of a coefficient of f with two coefficients of gi. As the size of the circuit grows
additively at each step, after O(logm) steps we get a circuit of size s+ poly(d,m). Thus, there is
a circuit of size s+ poly(d,m) computing gdlogme, as required.

Lemma 2.8 (Division with remainder) Let f, g ∈ F(A1, . . . , An)[X], where g is a monic poly-
nomial in X. Assume there is a circuit of size s computing all the coefficients of f and g with
respect to X (possibly each coefficient is a ratio of two polynomials). Let deg(f), deg(g) ≤ d. Then
one can add to this circuit poly(d) many gates to obtain a circuit computing all coefficients of the
polynomials h, r (as well as those of f, g) such that f = hg + r with deg(r) < deg(g). Moreover,
this new circuit can be computed in a black-box fashion, namely, we only add gates to the circuit of
f, g and connect them either to other new gates or to the outputs of the circuit for f, g.

Proof The proof follows from Theorem 9.6 of [GG99] and uses Lemma 2.7.

As we can compute division with remainder we can also compute GCD’s efficiently, using PIT.

Lemma 2.9 (GCD) Suppose we have access to a PIT oracle. Let f and g be univariate polyno-
mials of degree at most ∆ in F(T, Y1, Y2, . . . , Yn)[X]. Assume there is a size s arithmetic circuit
computing all coefficients of f and g (possibly as ratios of polynomials). Then one can compute
in time s + poly(∆) a circuit that outputs the coefficients of f , g and the (monic) GCD(f, g) in
F(T, Y1, Y2, . . . , Yn)[X].

10

Proof We note that in order to follow Euclid’s algorithm it is enough to be able to compute
division with remainder, and to detect when to stop. Computing division with remainder can be
done via Lemma 2.8, and detecting when to stop can be done using the PIT oracle. Hence, the
usual execution of Euclid’s algorithm gives the required circuit. Note that in Lemmas 2.7 and 2.8
we do not need to compute a new circuit at any step, but rather we add polynomially many new
gates to the circuit at hand. Thus the upper bound on size follows.

As noted above, all the bounds that we obtain in these lemmas are far from being optimal. One
can go more carefully over the usual algorithms for GCD, division with remainder etc. to obtain
circuits of size Õ(s).

3 White-box factorization algorithm

In this section, we give our deterministic white-box factorization algorithm (assuming a determinstic
white-box PIT algorithm).

We give the basic outline of our algorithm below. We will elaborate on the various steps of the
algorithm in the later sections.

Input: An arithmetic circuit for the polynomial f(X,Y1 . . . , Yn)

1. If the characteristic of F is p > 0 then make f not a p’th power, if the characteristic is 0 then
do nothing (See Section 3.1).

2. Make f monic in X. (See Section 3.2.)

3. Reduce to the case where f is squarefree. (See Section 3.3.)

4. Reduce to the case of bivariate factoring over a large field. (See Section 3.4.)

(a) Define f̄(X,T,A1, A2, . . . , An)
def
=f(X,TA1, TA2, . . . , TAn).

(b) Show that factors of f̄ in F(A1, A2, . . . , An)[X,T] correspond to factors of f in
F[X,Y1, Y2, . . . , Yn]

5. Univariate factorization. (See Section 3.5.)

(a) Note that f̄(X, 0, A1, A2, . . . , An) ∈ F[X].

(b) Via univariate polynomial factorization, find an irreducible factor g0(X) ∈ F[X] of
f̄(X, 0, A1, A2, . . . , An).

(c) Write

f̄(X,T,A1, A2, . . . , An) = g0(X,T,A1, A2, . . . , An) · h0(X,T,A1, A2, . . . , An) mod T.

Now view this as an equation in K[X,T].

6. Hensel Lifting. (See Section 3.6.)
For k = O(log d), Hensel lift k times to get

f̄(X,T,A1, A2, . . . , An) = gk(X,T,A1, A2, . . . , An) · hk(X,T,A1, A2, . . . , An) mod T 2k .

11

7. Solve a linear system (See Section 3.7.)

(a) Suppose gk(X,T,A1, . . . , An) =
∑

i≤d,j≤D cij(A1, . . . , An)XiT j . Consider the following
homogeneous system of linear equations over the field F(A1, . . . , An) in the variables Rij ,
Sij :

∑
i<d,j≤d

RijX
iT j =

 ∑
i≤D,j≤D

cijX
iT j

 ∑
i≤D,j≤D

SijX
iT j

 mod T 2k .

This is a system of O(D2) homogeneous linear equations in O(D2) unknowns. Solve this
system to get a nontrivial solution (if any).

(b) If there is no solution, then f̄ is irreducible.

(c) Otherwise, if there is a solution, we find a polynomial with nontrivial GCD with f̄ .

8. Compute the GCD (See Section 3.8.)
Use it to obtain a nontrivial factor of f .

9. Continue by recursion to factor f completely (See Section 3.9).

3.1 Making f not a pth power

Suppose F = Fp` is a field of characteristic p. The case where f is a perfect pth power causes
problems for the derivative-based methods that will be used. Here we see how to reduce to the case
where f is not a pth power.

We first describe how to find the largest e such that f is a perfect peth power. It is easy to see that
f is a perfect peth power (but not a pe+1th power) if and only if:

1. for every variable Xi, the coefficient of the monomial Xj
i in f(X1, . . . , Xn, Xn+1) is zero

whenever pe - j,

2. there is some some variable Xi, and some monomial M containing Xj
i (with pe+1 - j) such

that the coefficient of M in f(X1, . . . , Xn, Xn+1) is nonzero.

This can be easily checked by making poly(n, deg(f)) calls to the given PIT algorithm (via
Lemma 2.1).

Now suppose f is a perfect peth power, but not a pe+1th power. Renaming the variables
X,Y1, . . . , Yn, we may assume the variable X has a monomial Xj , with pe+1 - j, that appears
in f with a nonzero coefficient (possibly as part of a larger monomial). Let us write

f(X,Y1, . . . , Yn) =

d∑
i=0

ai(Y1, . . . , Yn)Xi.

Thus the polynomial ai(Y1, . . . , Yn) ≡ 0 whenever pe - i.

Then f(X,Y1, . . . , Yn) can be written as f∗(Xpe , Y1, . . . , Yn). Notice that f∗(Z, Y1, . . . , Yn) is not a
pth power.

12

We now show that the irreducible factors of f∗ are in 1 − 1 correspondence with the irreducible
factors of f and that if h∗ divides f∗ then the corresponding h divides f , and viceversa.

Suppose we find a factor h∗(Z, Y1, . . . , Yn) of f∗(Z, Y1, . . . , Yn). Then h∗(Xpe , Y1, . . . , Yn) divides
f∗(Xpe , Y1, . . . , Yn) = f(X,Y1, . . . , Yn).

Conversely, if h(X,Y1, . . . , Yn) is an irreducible factor of f(X,Y1, . . . , Yn). Since f is a per-
fect peth power, and h is irreducible, we have that hp

e
must divide f(X,Y1, . . . , Yn) too. Note

that hp
e
(X,Y1, . . . , Yn) is of the form h∗(Xpe , Y1, . . . , Yn), and since h∗(Xpe , Y1, . . . , Yn) divides

f(X,Y1, . . . , Yn) = f∗(Xpe , Y1, . . . , Yn), we have that h∗(Z, Y1, . . . , Yn) divides f∗(Z, Y1, . . . , Yn).

We note that if f is computed by a circuit of size s then f∗ can be computed by a circuit of size
poly(s, d). Indeed, Lemma 2.1 implies there is a circuit of size poly(s, d) computing all coefficients
ai(Y1, . . . , Yn). All that is left to do now is to multiply each ai with Xi/pe (recall that pe|i when
ai 6≡ 0).

Thus we have reduced to the case of factoring f∗, which is not a perfect pth power. However, we
can now only produce arithmetic circuits for the peth powers of the irreducible factors of f , not the
irreducible factors themselves.

Note that when F = Q then we do not have to do anything in this step.

3.2 Making f monic

Let f(X,Y1, . . . , Xn) ∈ F[X,Y1, . . . , Yn] be a polynomial of total degree d. We would like to find an
invertible linear transformation M ∈ F(n+1)×(n+1) of the variables that makes f monic in X. We
would also like to ensure that the derivative ∂f

∂X is a nonzero polynomial (which is a condition that
will be useful in Section 3.3). It is easy to convert a factorization of f(M · (X,Y1, . . . , Yn)) into a
factorization of f(X,Y1, . . . , Yn).

Consider the polynomial

g(〈Zi,j〉i,j∈[n+1], X, Y1, . . . , Yn) = f(Z · (X,Y1, . . . , Yn)),

where Z is an (n + 1) × (n + 1) matrix consisting of the formal variables Zi,j , and · represents
matrix-vector multiplication. Observe that we can construct an arithmetic circuit for g using the
given arithmetic circuit for f .

Thus (by Lemma 2.1), for each i ∈ {0, 1, . . . , d} we can construct an arithmetic circuit for the
coefficient ci(Z, Y1, . . . , Yn) of Xi in g(Z, X, Y1, . . . , Yn).

If d is the total degree of f , it is easy to see that the polynomial cd(Z, Y1, . . . , Yn) is nonzero.
Since f is not a pth power, there is some i with p - i for which either Xi or some Y i

j appears
within a monomial with a nonzero coefficient in the polynomial f(X,Y1, . . . , Yn). In particular by
substituting Z to be a suitable permutation matrix, we see that the polynomial ci(Z, Y1, . . . , Yn)
is not identically 0. We can find one such i with p - i using our given white-box PIT algorithm
polynomially many times.

Now consider the nonzero polynomial

cd(Z, Y1, . . . , Yn) · ci(Z, Y1, . . . , Yn) · det(Z),

13

(for which we have explicit circuits). Using the white-box PIT algorithm (via Lemma 2.2), we can
find a setting M of the variables Z such that:

cd(M, Y1, . . . , Yn) · ci(M, Y1, . . . , Yn) · det(M)

is a nonzero polynomial in Y1, . . . , Yn.

We then define f̃(X,Y1, . . . , Yn) to be the polynomial:

f(M · (X,Y1, . . . , Yn)).

We know that M is invertible since det(M) is nonzero. If we write:

f̃(X,Y1, . . . , Yn) =

d∑
i=0

c̃i(Y1, . . . , Yn)Xi,

then we have (by construction) that: c̃d(Y1, . . . , Yn) is a nonzero polynomial (which must in fact be
a nonzero constant in F since the total degree of f̃ is d), and c̃i(Y1, . . . , Yn) is a nonzero polynomial.

We can compute this constant c̃d explicitly by picking an arbitrary (y1, y2, . . . , yn) ∈ Fn and sub-
stituting it into the arithmetic circuit we have for c̃d(Y1, . . . , Yn).

Dividing f̃ by c̃d, we get the desired f̃ that is an invertible linear transformation of f , monic in

X, for which ∂f̃
∂X is a nonzero polynomial. Indeed the coefficient of Xi−1 in ∂f̃

∂X is i · c̃i(Y1, . . . , Yn),

which is not zero since p - i and c̃i(Y1, . . . , Yn) 6≡ 0. Finally, redefine f to equal f̃ , and note that it
suffices to factor the new f .

3.3 Reduction to the squarefree case

We now assume that we have a monic f(X,Y1, . . . , Yn) ∈ F[X,Y1, . . . , Yn] (which is not a pth
power in the event that F has characteristic p > 0), and we wish to reduce to the case that
it is squarefree, namely, that no irreducible factor of f has multiplicity larger than one. Let
f =

∑d
i=0X

ifi(Y1, . . . , Yn) and further assume that we are given a circuit computing each fi. We
can assume this wlog (see Lemma 2.1).

Observe that if f is not squarefree, i.e f = g2h where deg(g) ≥ 1, then ∂f
∂X = 2 ∂g

∂X ·gh+g2 ∂h
∂X = g ·h̃,

for h̃ = 2 ∂g
∂Xh+ g ∂h

∂X . Note that by adding d additional gates to the circuit such that the ith new

gate computes i · fi we get a circuit of size s + O(d) computing all coefficients of f and of ∂f
∂X .

Crucially, the polynomial ∂f
∂X is not the zero polynomial (because of the nonzero coefficient of Xi

for some p - i). Our initial work ensuring that f was not a pth power was in order to ensure this.

Now, using the GCD algorithm of Lemma 2.9 we get a circuit of size s + poly(d) computing
all coefficients of f, ∂f

∂X and GCD(f, ∂f
∂X). We now observe some facts about this GCD. First,

g|GCD(f, ∂f
∂X). Secondly, the degree of the GCD is smaller than the degree of f . Thirdly, using

Lemma 2.8 we can find a circuit of size s+ poly(d) computing all coefficients of f, ∂f
∂X ,GCD(f, ∂f

∂X)

and q1, where q1 is such that f = q1 · GCD(f, ∂f
∂X). Thus, we managed to express f as a product

of two distinct polynomials each having a small circuit, and each having degree at least 1.

14

We can continue in this fashion to get a circuit of size s+ poly(d) (the process can run for at most
d steps each step adding poly(d) many new gates (by Lemma 2.8)) that computes all coefficients
of polynomials q1, . . . , q` such that f = q1 · · · q` where each qi is nonconstant and squarefree.

We note that in the process above we may encounter factors of f that are perfect p powers, although
f is not and whose partial derivative wrt X is zero. Thus, we repeat the earlier steps to make each
factor have the desired properties. It is clear that this process takes polynomial time and incurs a
one time blowup to the size of the circuit.

Thus, from now on we assume wlog that we have a circuit of size s computing a squarefree monic
polynomial f(X,Y1, . . . , Yn) ∈ F[X,Y1, . . . , Yn].

3.4 Reducing to the bivariate case

As described earlier, the first step in our proof, after the preprocessing steps described above, is
translating f(X,Y1, . . . , Yn) to a bivariate polynomial.

Let f(X,Y1, . . . , Yn) ∈ F[X,Y1, . . . , Yn] be a polynomial of total degree d, which is squarefree and
monic in X. We know that the discriminant Df (Y1, . . . , Yn) of f (w.r.t the variable X) is a nonzero
polynomial, and we have an arithmetic circuit for it. Thus, using our white-box PIT algorithm
and Lemma 2.2, we can find an a ∈ Fn such that Df (a) 6= 0. By translating the origin, we assume
Df (0, . . . , 0) 6= 0. Define f̄(X,T,A1, . . . , An) ∈ F[X,T,A1, . . . , An] by:

f̄(X,T,A1, . . . , An) = f(X,A1T,A2T, . . . , AnT).

To ease notations, we shall denote K = F(A1, . . . , An).

We first prove that irreducible factors of f̄ are in 1− 1 correspondence with those of f .

Lemma 3.1 Let f and f̄ be as above. Let h̄(X,T,A1, . . . , An) ∈ F[X,T,A1, . . . , An] be a factor of
f̄(X,T,A1, . . . , An). Then there exists h(X,Y1, . . . , Yn) ∈ F[X,Y1, . . . , Yn] such that:

h̄(X,T,A1, . . . , An) = h(X,A1T,A2T, . . . , AnT).

h(X,Y1, . . . , Yn) | f(X,Y1, . . . , Yn) in F[X,Y1, . . . , Yn].

Proof Denote h̄(X,T,A1, . . . , An) =
∑

i,j X
iT j h̄i,j(A1, . . . , An). Observe that it must be the

case that h̄i,j is a homogeneous polynomial in A1, . . . , An of degree j (since f̄ is such). Let
h(X,Y1, . . . , Yn) = h̄(X, 1, A1, . . . , An). I.e., h =

∑
i,j X

ih̄i,j(A1, . . . , An). It is straightforward
to verify that h has the required properties.

Combining Gauss’ lemma (Lemma 2.3) with Lemma 3.1, and noting that f̄ is monic in X, we get:

Corollary 3.2 Let f and f̄ be as above. Let h̄(X,T,A1, . . . , An) ∈ K[X,T] be a monic (in X)
factor of f̄(X,T,A1, . . . , An). Then there exists h(X,Y1, . . . , Yn) ∈ F[X,Y1, . . . , Yn] such that:

h̄(X,T,A1, . . . , An) = h(X,A1T,A2T, . . . , AnT).

h(X,Y1, . . . , Yn) | f(X,Y1, . . . , Yn) in F[X,Y1, . . . , Yn].

Furthermore, h(X,Y1, . . . , Yn) simply equals h̄(X, 1, Y1, . . . , Yn).

15

Thus, in order to factor f(X,Y1, . . . , Yn), it suffices to factor f̄(X,T,A1, . . . , An) into its factors
in K[X,T] = F(A1, . . . , An)[X,T]. These factors in K[X,T], when made monic in X will, by the
above fact, give us the factors of f(X,Y1, . . . , Yn) in F[X,Y1, . . . , Yn]. Conversely it is easy to see
that every factor of f(X,Y1, . . . , Yn) in F[X,Y1, . . . , Yn] can be obtained in this way.

3.5 Factoring f̄ over K[X,T] 1: Univariate factorization

Consider the univariate polynomial f(X, 0, 0, . . . ,) ∈ F[X]. We know that it is a nonzero polyno-
mial of degree d (by the monicness of f in X), and that it is squarefree (by the nonvanishing of
Df (0, 0, . . . , 0)).

The next step of the algorithm is to factorize f(X, 0, . . . , 0) over F[X] using known algorithms
for univariate polynomial factorization. By the well known algorithms of Lenstra-Lenstra-
Lovasz [LLL82] and Berlekamp [Ber70], this can be performed in time poly(t, d) (where t is as
in Theorem 1).

Theorem 3.3 ([Ber70, LLL82]) Let f ∈ F[X] be a monic polynomial of degree d then there is a
deterministic algorithm computing all factors of f that runs in time poly(n, s, d, t), where:

1. t = ` · p, if F = Fp` is a field of characteristic p.

2. t = maximum bit-complexity of the constants used in the circuit, if F = Q.

Let g0(X) be an irreducible monic factor of f(X, 0, . . . , 0) in F[X]. Let h0(X) be such that:

g0(X) · h0(X) = f(X, 0, . . . , 0).

By the squarefreeness of f(X, 0, . . . , 0), we have that g0(X) and h0(X) are relatively prime in F[X].

By definition of f̄ :
g0(X) · h0(X) = f̄(X, 0, A1, . . . , An).

Therefore, we have the following identity in the ring K[X,T]:

g0(X) · h0(X) = f̄(X,T,A1, . . . , An) mod T.

3.6 Factoring f̄ over K[X,T] 2: Hensel lifting

We now perform Hensel lifting, as in Lecture 7 of [Sud99]. Define k to be an integer such that

k > 2 log d+ 1.

Let a0(X), b0(X) be univariate polynomials in F[X] such that a0g0 + b0h0 = 1. Such a0(X), b0(X)
can be efficiently found using Euclid’s algorithm. We will now show how to use Hensel lifting to
lift the solution

g0(X) · h0(X) = f̄(X,T,A1, . . . , An) mod T,

to a solution
gk(X) · hk(X) = f̄(X,T,A1, . . . , An) mod T 2k .

16

Lemma 3.4 (Lifting the solution) Given polynomials f, gi, hi, ai, bi ∈ K[X,T] such that
(a) f = gihi mod T 2i, (b) aigi + bihi = 1 mod T 2i and (c) gi is monic in X, consider the
following process:

1. mi+1 = f − gi · hi

2. ĝi+1 = gi + bi ·mi+1

3. ĥi+1 = hi + ai ·mi+1

4. vi+1 = (ĝi+1 − gi)/T 2i

5. Write vi+1 = giqi+1 + ri+1, with degX(ri+1) < degX(gi), (by the division alg. Lemma 2.8)

6. gi+1
def
= gi + T 2i · ri+1

7. hi+1
def
= ĥi+1 · (1 + T 2iqi+1)

8. wi+1 = aigi+1 + bihi+1 − 1

9. ai+1
def
=ai − aiwi+1

10. bi+1
def
= bi − biwi+1

Then (a) f = gi+ihi+1 mod T 2i+1
, (b) ai+1gi+1 + bi+1hi+1 = 1 mod T 2i+1

, (c) gi+1 is monic in
X. Also (d) gi+1 = gi mod T 2i, and (e) hi+1 = hi mod T 2i. Moreover gi+i and hi+1 are the
unique polynomials (mod T 2i+1

) satisfying properties (a), (c), (d) and (e).

Proof Straightforward calculations show mi+1 = 0 mod T 2i , ĝi+1 · ĥi+1 = f mod T 2i+1
, ĝi+1 =

gi mod T 2i , and hi+1 = hi mod T 2i . However ĝi+1 may not be monic in X. Steps 4-7 show how
to construct gi+1 and hi+1 with the same properties as ĝi+1 and ĥi+1, but now ensuring that the
property of being monic in X also holds.

Observe that since gi is monic in X and degX(ri+1) < degX(gi), then by the definition of gi+1 we
get that gi+1 is also monic in X. Moreover,

gi+1 = gi + T 2i · ri+1

= gi + T 2i · (vi+1 − giqi+1)

= gi + T 2i ·
(

(ĝi+1 − gi)/T 2i − giqi+1

)
= ĝi+1 − T 2i · giqi+1

= ĝi+1 − T 2i · ĝi+1qi+1 mod T 2i+1

= ĝi+1 · (1− T 2iqi+1) mod T 2i+1

From this and the definition of hi+1, it is easy to see that gi+1 · hi+1 = ĝi+1 · ĥi+1 = f mod T 2i+1
.

Moreover gi+1 = gi mod T 2i and hi+1 = hi mod T 2i . From the definitions of ai+1 and bi+1, it

17

is again easy to verify that ai+1gi+1 + bi+1hi+1 = 1 mod T 2i+1
. Also gi+1 is monic in X, and

degX(gi+1) equals degX(gi).

All it remains is to show that gi+1 and hi+1 are the unique polynomials (mod T 2i+1
) satisfying

properties (a), (c), (d) and (e).

If possible, let g′i+1 and h′i+1 be polynomials such that

1. g′i+1 · h′i+1 = f mod T 2i+1

2. g′i+1 = gi mod T 2i and h′i+1 = hi mod T 2i

3. g′i+1 is monic in X

Let g̃i+1 = g′i+1 − gi+1 and let h̃i+1 = h′i+1 − hi+1. Observe that g̃i+1 = h̃i+1 = 0 mod T 2i . Let

u = ai+1g̃i+1 − bi+1h̃i+1. Then,

gi+1(1 + u) = gi+1(1 + ai+1g̃i+1 − bi+1h̃i+1)

= gi+1 + ai+1gi+1g̃i+1 − bi+1gi+1h̃i+1

= gi+1 + (1− hi+1bi+1)g̃i+1 − bi+1gi+1h̃i+1 mod T 2i+1

= gi+1 + g̃i+1 − bi+1(hi+1g̃i+1 + gi+1h̃i+1) mod T 2i+1

= g′i+1 − bi+1(hi+1g̃i+1 + g′i+1h̃i+1) mod T 2i+1
since h̃i+1(gi+1 − g′i+1) = 0 mod T 2i+1

= g′i+1 − bi+1(hi+1(g
′
i+1 − gi+1) + g′i+1(h

′
i+1 − hi+1)) mod T 2i+1

= g′i+1 − bi+1(f − f) mod T 2i+1
by expanding and cancelling terms

= g′i+1 mod T 2i+1

Moreover since gi+1 and g′i+1 are both monic in X, and since gi+1 = g′i+1 = gi mod T 2i , this
implies that the X-degree of g′i+1, gi+1 and gi are all the same. Hence, considering the coefficient

of the leading monomial in X we obtain u = 0 mod T 2i+1
. Thus gi+1(1 + u) = g′i+1 mod T 2i+1

implies that gi+1 = g′i+1 mod T 2i+1
.

We are given g0, h0 in F[X]. Since f(X, 0, 0, . . . ,) is squarefree, observe that g0 and h0 are relatively
prime. Thus we can obtain a0(X), b0(X), univariate polynomials in X, such that a0g0 + b0h0 = 1.
We view g0, h0, a0, b0 as elements of F(A1, . . . , An)[X,T].

We can iterate the above lemma for i = 0, 1, . . . , k− 1, to obtain gk, hk ∈ F(A1, . . . , An)[X,T], such

that f = gkhk mod T 2k , and such that gk is monic in X, and gk = g0 mod T .

Claim 3.5 The pair gk, hk obtained above is the unique pair of polynomials (mod T 2k) such that

(a) f = gkhk mod T 2k , (b) gk is monic in X, and (c) gk = g0 mod T .

18

Proof If possible, let g′k, h′k be another distinct pair of polynomials (mod T 2k) satisfying (a), (b)
and (c). Notice that (a), (b) and (c) imply that it also must hold that h′k = hk = h0 mod T .

For 0 ≤ i ≤ k, let g̃i = gk mod T 2i , and h̃i = hk mod T 2i , g̃′i = g′k mod T 2i , and h̃′i = h′k
mod T 2i . Consider the first i for which the pair g̃i, h̃i is distinct from g̃′i, h̃

′
i. This pair would

contradict the uniqueness part of Lemma 3.4.

Lemma 3.6 (Small circuits) The polynomials gk, hk lie in F[X,T,A1, . . . , An]. Let D =
max{d, 2k}, then we can express gk and hk as the following: gk(X,T,A1, . . . , An) =∑

j,j′≤D cjj′(A1, . . . , An)XjT j′ and hk(X,T,A1, . . . , An) =
∑

j,j′≤D djj′(A1, . . . , An)XjT j′. Fur-
thermore, there is a single arithmetic circuit C in the variables A1, . . . , An where C computes all
the coefficients cjj′ of gk and djj′ of hk. C has size at most size(f) + poly(n, k, d), degree at most
d2k, and can be computed in time at most poly(n, k, d).

Proof Observe that none of the steps in Lemma 3.4 require division in K (not even
step 5 which uses the division algorithm as described in Lemma 2.8). Thus, each
mi, ĝi, ĥi, gi, hi, qi, ai, bi, vi, qi, ri, wi actually lies in F[X,T,A1, . . . , An].

Let Ci be a circuit in the input variables A1, . . . , An that outputs each of the coefficients of XjT j′

for each of the polynomials mi, ĝi, ĥi, gi, hi, qi, ai, bi, vi, qi, ri, wi that are computed at stage i. Let
si be the size of Ci, and di be the degree of Ci. Then, applying Lemmas 2.1 and 2.8 when needed,
we obtain a circuit Ci+1 that outputs each of the coefficients of XjT j′ for each of the polynomials
mi+1, ĝi+1, ĥi+1, gi+1, hi+1, qi+1, ai+1, bi+1, vi+1, qi+1, ri+1, wi+1 that are computed at stage i + 1,
where the size of Ci+1, si+1, is at most si + poly(d), and the degree of Ci+1, di+1, is at most 2di.
Moreover, given Ci, Ci+1 can be computed in time poly(d, n).

Thus by a simple induction argument we obtain the bounds in the lemma.

3.7 Factoring f̄ over K[X,T] 3: Solving a linear system

We have that f̄ = gk · hk mod T 2k , where gk is monic, and k > 2 log d+ 1. Moreover gk ∈ K[X,T]
can be expressed as gk =

∑
i≤D,j≤D cij(A1, . . . , An)XiT j , where D = max{d, 2k}, and there is a

polynomial sized arithmetic circuit (in the input variables A1, A2, . . . , An) computing the various
cij .

Now consider the following homogeneous system of linear equations over the field F(A1, . . . , An) in
the variables Rij , Sij :

∑
i<d,j≤d

RijX
iT j =

 ∑
i≤D,j≤D

cijX
iT j

 ∑
i≤D,j≤D

SijX
iT j

 mod T 2k . (1)

This is a system of O(D2) homogeneous linear equations in O(D2) unknowns.

19

If this system of linear equations has a nontrivial solution, then one such solution can be obtained
by Lemma 2.6. We will soon show how to use such a solution to obtain a factor of f̄ .

Claim 3.7 If f̄(X,T,A1, . . . , An) is reducible in F(A1, . . . , An)[X,T], then the linear system (1)
has a nontrivial solution.

Proof Suppose f̄ is reducible.

Recall that we have that f̄(X, 0, . . . , 0) is squarefree (see Section 3.4), that

f̄(X, 0, A1, . . . , An) = g0(X, 0, A1, . . . , An) · h0(X, 0, A1, . . . , An),

that g0(X, 0, A1, . . . , An) ∈ F[X] is irreducible, and that g0(X, 0, A1, . . . , An) and
h0(X, 0, A1, . . . , An) are relatively prime. Let c(X,T,A1, . . . , An) ∈ F(A1, . . . , An)[X,T] be
the unique irreducible factor of f̄(X,T,A1, . . . , An) for which g0(X, 0, A1, . . . , An) divides
c(X, 0, A1, . . . , An). Uniqueness of c follows from the fact that f̄(X, 0, . . . , 0) is squarefree. Let
c′(X,T,A1, . . . , An) be such that c · c′ = f̄ . Note that since f̄ is monic, thus by Lemma 2.3, so are
c and c′.

Let t0(X, 0, A1, . . . , An) be such that

g0(X, 0, A1, . . . , An) · t0(X, 0, A1, . . . , An) = c(X, 0, A1, . . . , An).

We want to apply Hensel lifting to this situation. Note that g0(X, 0, A1, . . . , An) and
t0(X, 0, A1, . . . , An) are relatively prime in K[X] (again, this follows since f̄(X, 0, A1, . . . , An), and
hence c(X, 0, A1, . . . , An), is squarefree). Thus there exists ã0, b̃0 ∈ K[X] such that g0 · ã0 + t0b̃0 = 1
mod T . Thus we can perform the lifting, as given in Lemma 3.4. After k steps of lifting, we get
g∗k, tk, ãk, b̃k ∈ K[X,T] such that g∗k is monic in X, and:

g∗ktk = c mod T 2k .

Thus:
f̄ = gk · hk = g∗k · tk · c′ mod T 2k . (2)

Since gk, g
∗
k are both monic in X, and gk = g∗k = g0 mod T , we conclude by Claim 3.5 that gk = g∗k

mod T 2k . Hence, Equation (2) is equivalent to

c · c′ = f̄ = gk · hk = gk · tk · c′ mod T 2k .

In other words,

c′(c− tk · gk) = 0 mod T 2k .

As c′ is monic in X it follows that

(c− tk · gk) = 0 mod T 2k .

Therefore, ∑
i<d,j≤d

RijX
iT j = c,

20

and ∑
i≤D,j≤D

SijX
iT j = tk

gives a nontrivial solution to the linear system, as desired.

We now see how to extract a factor of f̄ using any nontrivial solution to the linear system (1).

Consider a nontrivial solution and define the polynomials:

r(X,T,A1, . . . , An) =
∑

i<d,j≤d
RijX

iT j ,

s(X,T,A1, . . . , An) =
∑

i≤D,j≤D
SijX

iT j .

Claim 3.8 In the ring F(T,A1, . . . , An)[X], r(X,T,A1, . . . , An) and f̄(X,T,A1, . . . , An) have non-
trivial GCD.

Proof Let u(X,T,A1, . . . , An) ∈ F[A1, . . . , An, T] be the resultant of r(X) and f̄(X). Then,
the T -degree of u is at most 2d2. Moreover, by Lemma 2.4, there exist v(X,T,A1, . . . , An),
w(X,T,A1, . . . , An) such that:

v · r + w · f̄ = u.

Thus:

v · r + w · f̄ = u mod T 2k

v · gk · s+ w · gk · hk = u mod T 2k

gk · (v · s+ w · hk) = u mod T 2k .

Recall that the right hand side is a polynomial in F[A1, . . . , An, T], and thus does not depend on
the variable X. However the polynomial gk appearing on the left hand side is monic in the variable
X. The only way this equation can hold is if v · s + w · hk equals 0 mod T 2k , and thus u = 0
mod T 2k . By our bound on the T -degree of u, and since 2d2 < 2k,2 we get that u is identically 0.
Thus, by Lemma 2.4, r(X) and f̄(X) have a nontrivial GCD in F(T,A1, . . . , An)[X].

3.8 Factoring f̄ over K[X,T] 4: Computing the GCD

Let h̄(X,T,A1, . . . , An) be the monic GCD of r(X) and f̄(X) in F(T,A1, . . . , An)[X]. A small
arithmetic circuit (i.e. of size size(f) + poly(d, n)) for the coefficient of each monomial Xi in h̄ can
be computed using Lemmas 2.1 and 2.9. By Gauss’ Lemma (Lemma 2.3), h̄(X,T,A1, . . . , An) lies
in K[X,T]. Thus by Corollary 3.2, for h(X,Y1, . . . , Yn) = h̄(X, 1, Y1, . . . , Yn), we have that

h(X,Y1, . . . , Yn) ∈ F[X,Y1, . . . , Yn],

and
h(X,Y1, . . . , Yn) | f(X,Y1, . . . , Yn) in F[X,Y1, . . . , Yn].

2It is here where we use our choice k > 2 log d+ 1.

21

3.9 Obtaining a complete factorization

So far we only found a non-trivial factor h of f . To obtain a complete the factorization we compute
a circuit for f, h, f/h. By our result on the complexity of h and Lemma 2.8 we can achieve this
with a circuit of size size(f) + poly(d, n). Furthermore, both h and f/h are monic and squarefree.
Thus, we can continue to factor them until we are left with irreducible factors. At each step of the
factorization we can check whether we have found a trivial factor by running the PIT algorithm with
the original polynomial. For example, checking whether f = h will tell us whether f is irreducible
or not, etc.

Combining all steps above we obtain a proof of Theorem 1.

4 Open Questions

We conclude by listing some open problems.

1. If Fp` has characteristic p, and g(X1, . . . , Xn) ∈ Fp` [X1, . . . , Xn] is such that gp has a small
arithmetic circuit, then does g have a small arithmetic circuit?

2. One can consider the problem of PIT for polynomial size circuits without a polynomial bound
on the degree of the circuits. How does this problem relate to the problem of PIT with a
polynomial bound on the degree of the circuits? What can be said about the problem of
factorization of polynomials computed by polynomial size circuits (without a polynomial
bound on their degree)?

3. Suppose a multivariate polynomial f can be computed by a small formula/algebraic branching
program. Does it follow that all the factors of f can be computed by small formulas/algebraic
branching programs? What if f is computed by a small depth circuit?

4. Can factorization of univariate polynomials of degree d over the finite field Fp` be done
deterministically in time poly(d, ` log p)?

References

[Agr05] M. Agrawal. Proving lower bounds via pseudo-random generators. In Proceedings of
the 25th FSTTCS, volume 3821 of LNCS, pages 92–105, 2005.

[AKS04] M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Annals of Mathematics,
160(2):781–793, 2004.

[Ber70] E. R. Berlekamp. Factoring polynomials over large finite fields. Mathematics of Com-
putation, 24(111):713–735, 1970.

[DL78] R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing.
Inf. Process. Lett., 7(4):193–195, 1978.

22

[DSY09] Z. Dvir, A. Shpilka, and A. Yehudayoff. Hardness-randomness tradeoffs for bounded
depth arithmetic circuits. SIAM J. on Computing, 39(4):1279–1293, 2009.

[Gat06] J. von zur Gathen. Who was who in polynomial factorization:. In ISSAC, page 2, 2006.

[GG99] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University
Press, 1999.

[GKKS13] A. Gupta, P. Kamath, N. Kayal, and R. Saptharishi. Arithmetic circuits: A chasm at
depth three. In 54th Annual FOCS, pages 578–587, 2013.

[HS80] J. Heintz and C. P. Schnorr. Testing polynomials which are easy to compute (extended
abstract). In Proceedings of the 12th annual STOC, pages 262–272, 1980.

[Kal89] E. Kaltofen. Factorization of polynomials given by straight-line programs. In S. Micali,
editor, Randomness in Computation, volume 5 of Advances in Computing Research,
pages 375–412. 1989.

[Kal90] E. Kaltofen. Polynomial factorization 1982–1986. In DV Chudnovsky and RD Jenks,
editors, Computers in Mathematics. Marcel Dekker, New York, 1990.

[Kal92] E. Kaltofen. Polynomial factorization 1987–1991. In LATIN, pages 294–313. Springer,
1992.

[Kal95] E. Kaltofen. Effective Noether irreducibility forms and applications. J. of Computer
and System Sciences, 50(2):274–295, 1995.

[Kal03] E. Kaltofen. Polynomial factorization: a success story. In ISSAC, pages 3–4, 2003.

[Kay07] N. Kayal. Derandomizing some number-theoretic and algebraic algorithms. PhD thesis,
Indian Institute of Technology, Kanpur, India, 2007.

[KI04] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means prov-
ing circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

[KT90] E. Kaltofen and B. M. Trager. Computing with polynomials given by black boxes for
their evaluations: Greatest common divisors, factorization, separation of numerators
and denominators. J. of Symbolic Computation, 9(3):301–320, 1990.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261(4):515–534, 1982.

[MVV87] K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7(1):105–113, 1987.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, 1980.

[Sud99] M. Sudan. Algebra and computation. http://people.csail.mit.edu/madhu/FT98/course.html,
1999. Lecture notes.

23

[SV10] A. Shpilka and I. Volkovich. On the relation between polynomial identity testing and
finding variable disjoint factors. In ICALP (1), pages 408–419, 2010.

[SY10] A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388,
2010.

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM, pages 216–
226, 1979.

24

