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Abstract. We study tolerant linearity testing under general distribu-
tions. Given groups G and H, a distribution µ on G, and oracle access to
a function f : G→ H, we consider the task of approximating the small-
est µ-distance of f to a homomorphism h : G→ H, where the µ-distance
between f and h is the probability that f(x) 6= h(x) when x is drawn
according to the distribution µ. This question is intimately connected to
local testability of linear codes.

In this work, we give a general sufficient condition on the distribution µ
for linearity to be tolerantly testable with a constant number of queries.
Using this condition we show that linearity is tolerantly testable for
several natural classes of distributions including low bias, symmetric and
product distributions. This gives a new and simple proof of a result of
Kaufman and Sudan which shows that sparse, unbiased linear codes over
Zn

2 are locally testable.

1 Introduction

Let C be a class of functions from a finite set D to a finite set R. In the task of
tolerant testing for C, we are given oracle access to a function f : D → R, and
we wish to determine using few queries to f , whether f is well approximable by
functions in C; equivalently, to distinguish between the case when f is close to
some element of C, and the case when f is far from all elements of C. Tolerant
property testing was introduced by Parnas, Ron and Rubinfeld in [PRR06] as
a refinement of the problem of property testing [RS96], [GGR98] (where one
wants to distinguish the case of f in C from the case when f is far from C), and
is now widely studied. The usual notion of closeness considered in the literature
is via the distance measure ∆(f, g) = Prx∈D[f(x) 6= g(x)], where x ∈ D is picked
according to the uniform distribution over D.

We propose to study tolerant property testing under general distributions.
Given a probability measure µ on D, the µ-distance of f from g, where f, g :
D → R, is defined by

∆µ(f, g) = Pr
x∈µ

[f(x) 6= g(x)].



Then the measure of how well f can be approximated by elements of C is via
the µ-distance

∆µ(f, C) = min
g∈C

∆µ(f, g).

The new goal in this context then becomes to approximate ∆µ(f, C) using only
a few oracle calls to f . In this paper, we study a concrete instance of the above
framework. We consider the original problem considered in the area of property
testing, namely the classical problem of linearity testing.

The problem of linearity testing was introduced by Blum, Luby and Rubinfeld
in [BLR93]. In this problem, we are given oracle access to a function f : G→ H,
where G and H are abelian groups, and want to distinguish between the case
that f is a homomorphism from G to H and the case that f is far from the class
C = Hom(G,H), of all homomorphisms from G to H. [BLR93] gave a simple 3-
query test T that achieves this. In fact, this test also achieves the task of tolerant
linearity testing; i.e., for any function f : G→ H, letting δ = Pr[T f rejects], we
have

C1 · δ ≤ ∆UG
(f,Hom(G,H)) ≤ C2 · δ,

where C1 and C2 are absolute constants, and UG is the uniform distribution on
G. Hence the test of [BLR93], in addition to testing linearity, actually estimates
how well f can be approximated by functions in C = Hom(G,H).

Here we initiate the study of tolerant linearity testing over general probability
distributions. Let µ be a probability distribution on an abelian group G. In the
problem of tolerant linearity testing under µ, we wish to estimate the how well
f may be approximated under µ by homomorphisms from G to H. For a given
family (Gn, Hn, µn)n, we say linearity is tolerantly testable under µ = µn with
q queries, if there exists a q-query tester Tn and constants C1, C2 such that for
any f : Gn → Hn, letting δ = Pr[T fn rejects], we have

1. Perfect completeness: δ = 0 if and only if ∆µ(f,Hom(Gn, Hn)) = 0.
2. Distance approximation: δ approximates ∆µ(f,Hom(Gn, Hn)):

C1 · δ ≤ ∆µ(f,Hom(Gn, Hn)) + on(1) ≤ C2 · δ. (1)

We argue that this is indeed a natural definition under which to study linear-
ity testing under general distributions. For one, this definition ensures that any
“useful” queries made by the tester essentially have to be distributed according
to µ. Without the “tolerant” aspect of the definition, a tester could potentially
get access to “advice” by querying f at locations where µ has no support. For
example, consider a scenario where f is given by a black box that runs in ex-
pected polynomial time under the distribution µ. In this setting, it is meaningful
to ask how well f is approximated by linear functions under µ, although it is
not as reasonable to expect access to evaluations of f at points not distributed
according to µ. More importantly, the tolerant aspect of this definition give it a
strong connection to locally testable codes (which we discuss shortly).

The problem of linearity testing (without the tolerant aspect) was studied
in the setting of general distributions by [HK07]. They gave a simple 3-query



test that, given oracle access to the function f : G → H, distinguishes between
f ∈ Hom(G,H) and f that are far from Hom(G,H). In fact this tester does not
even require an explicit description of µ, it simply requires access to samples
from µ!3 However, unlike the BLR test, the [HK07] test is intolerant: the queries
it makes are not according to the distribution µ.

The main question is to determine for which µ is linearity tolerantly testable
under µ. This seems to be a basic question worthy of further study. Furthermore,
the notion of linearity being tolerantly testable under general distributions is
intimately connected with the concept of locally testable linear codes [GS02],
and we now elaborate on this connection.

Connection to locally testable codes: Let C ⊆ ZN2 be a linear code (we restrict to
binary codes in this discussion). C is called locally testable if there is a constant
query tester, that given oracle access to any r : [N ]→ Z2, distinguishes between
the case that r ∈ C and r being far from C (in Hamming distance).

Now let C be any linear code, and let s1, . . . , sN ∈ Zn2 be the columns of
a generator matrix for C. Let µ be the uniform distribution over {s1, . . . , sN}.
Then, if linearity is tolerantly testable under µ, then C is locally testable. Indeed,
given any r : [N ]→ Z2, we may define the function f : Zn2 → Z2 by f(x) = r(j)
if x = sj , and f(x) = 0 otherwise. By the tolerant testability of linearity under
µ, any useful query made by a tolerant linearity tester for µ must be to one of
the sj . The distance of f from linear under µ then translates directly into the
Hamming distance of r from C, and the very same tester that tolerantly tests
linearity under µ shows that C is locally testable.

A more general goal behind the study of linearity testing under general distri-
butions is to develop a better understanding what makes a code locally testable.
We also believe that the theory of property testing under nonuniform distribu-
tions for other classes of functions C will be a fruitful and enlightening pursuit.

1.1 Main Notions and Results

Our main contribution is to highlight a simple criterion, which we call uniform-
correlatability, that lets us design and analyze tolerant linearity tests under a
given distribution. Roughly speaking, a distribution µ over an abelian group
G is uniformly-correlatable if one can “design” a distribution of small random
matrices with entries from G with each entry of the matrix distributed according
to µ, while all the row-sums and column-sums are nearly uniformly distributed.
In this case, we show that linearity is tolerantly testable under µ with few queries
(see Theorem 1). We complement this by demonstrating that many natural
distributions satisfy this criterion (see Theorems 2, 3, 4).

Definition 1 (Uniformly-correlatable distribution). Let µ be a probability
distribution on an abelian group G. We say that µ is (ε, k)-uniformly-correlatable
if there is a random variable X = (Xij)i,j∈[k] taking values in Gk×k such that:

3 Tolerant linearity testing, however, necessarily requires more information about µ.



1. For each i, j ∈ [k], Xi,j is distributed according to µ.
2. For i ∈ [k], let Yi be the random variable

∑
j∈[k] Xij. For j ∈ [k], Zj be the

random variable
∑
i∈[k] Xij. Then the distribution of ((Yi)i∈[k], (Zj)j∈k) is

ε-close to the uniform distribution over the set {((yi)i∈[k], (zj)j∈[k]) ∈ G2k |∑
i∈[k] yi =

∑
j∈[k] zj}.

Our main result, given below, is that uniformly correlatable distributions are
tolerantly testable.

Theorem 1 (Uniformly correlatable distributions are tolerantly testable).
Let µ be a distribution over G that is (ε, k)-uniformly-correlatable. Then there is
a 4k query tester T such that for any f : G→ H, letting δ = Pr[T f rejects], we
have:

1. Perfect completeness: δ = 0 if and only if ∆µ(f,Hom(G,H)) = 0
2. Distance approximation:

δ − 4ε
4k

≤ ∆µ(f,Hom(G,H)) ≤ 6k
1− 12εk

· δ.

Thus, for any µ which is (ε, k)-uniformly-correlatable for constant k and
ε = o(1), we conclude that linearity is tolerantly testable under µ (in the sense of
Equation (1)). We supplement the above theorem with following results, showing
that some general classes of µ are all (ε, k)-uniformly-correlatable for suitable
ε, k, and thus showing that linearity is tolerantly testable under all such µ.

Theorem 2 (Low-bias distributions are uniformly correlatable). Let µ
be a probability distribution on G such that for all nontrivial characters χ : G→
C×,

| E
x∈µ

[χ(x)]| < |G|−γ .

Then for k = Ω(1/γ), µ is (|G|−Ω(kγ), k)-uniformly-correlatable.

Using the above theorem, we conclude that linearity is tolerantly testable
under any low-bias distribution.

Corollary 1 (Low-bias distributions are tolerantly testable). Let G be
an abelian group, and let µ and γ be as in Theorem 2. Then there are constants
C1 = C1(γ), C2 = C2(γ), and a O(1/γ)-query test T such that for any abelian
group H and any function f : G→ H, letting δ = Pr[T f rejects], we have

C1δ ≤ ∆µ(f,Hom(G,H)) + o(1/|G|) ≤ C2δ.

For the special case of G = Zn2 , H = Z2, and µ being the uniform distribution
over some set, via the connection described in Section 1, this gives a new proof of
a result of Kaufman and Sudan [KS07], who proved that sparse, low-bias linear
codes are locally testable (in particular, that sparse random linear codes are
locally testable). Their proof used the machinery of Krawtchouk polynomials



and nontrivial information about the distribution of their roots. The corollary
above gives a new and simple proof of this fact4, and generalizes it to arbitrary
G and H.

In the next theorem, we show that product distributions over Zn2 are uni-
formly correlatable, whenever the individual distributions are not too biased.
We then use our main theorem to conclude that linearity is tolerantly testable
under such distributions. The proof is by reducing to the n = 1 case, and is
omitted in this version of the paper.

Theorem 3 (Product Distributions are uniformly correlatable). Let
G = Zn2 and let p1, . . . , pn ∈ [γ, (1 − γ)]. For each i ∈ [n], let µi be the dis-
tribution over Z2 with µi(1) = pi, Let µ be the product distribution

∏n
i=1 µi on

G. Then µ is (0, O(1/γ))-uniformly-correlatable.

Corollary 2 (Product Distributions are tolerantly testable). Let µ and
γ be as in Theorem 3. Then there are constants C1 = C1(γ), C2 = C2(γ),
and a O(1/γ)-query test T such that for any abelian group H and any function
f : G→ H, letting δ = Pr[T f rejects], we have

C1δ ≤ ∆µ(f,Hom(G,H)) ≤ C2δ.

In the next theorem, we consider distributions on Zn2 that are symmetric
under permutations of the coordinates. For technical reasons, we only show cor-
relatability for distributions supported on words of even Hamming weight, but
this suffices to show testability for general symmetric distributions µ. The proof
is by a volume growing argument, and is omitted in this version of the paper.

Theorem 4 (Symmetric distributions are uniformly correlatable). Let
G′ = Zn2 and let G be the subgroup of G′ consisting of even weight words. Let µ
be a distribution on G, symmetric under permutations of the coordinates of G′,
and supported on words whose weights lie in the interval [γn, (1− γ)n]. Then µ
(viewed as a distribution on G) is (0, O(1/γ))-uniformly-correlatable.

Corollary 3 (Symmetric distributions are tolerantly testable). Let µ
be a symmetric distribution on G = Zn2 such that supported on words whose
weights lie in the interval [γn, (1 − γ)n]. Then there are constants C1 = C1(γ),
C2 = C2(γ), and a O(1/γ)-query test T such that for any abelian group H and
any function f : G→ H, letting δ = Pr[T f rejects], we have

C1δ ≤ ∆µ(f,Hom(G,H)) ≤ C2δ.

1.2 Other Related Work

Kiwi [Kiw03] considered puncturings of the Hadamard code and gave a sufficient
condition for certain codes to be locally testable. There has been a large body
4 The o(1/|G|) term in this corollary, combined with the perfect completeness of the

test, in fact shows that the corresponding code is “strongly” locally testable.



of work constructing short locally testable codes [GS02], [GR05], [BSSVW03],
[BSGH+04], [BSS05], [Din06], [Mei08]. In our framework, these correspond to
distributions µ over Zn2 supported on sets of size poly(n) under which linearity
is tolerantly testable. It would be interesting to obtain a better understanding of
which µ with such small support/min-entropy are such that linearity is tolerantly
testable under µ.

Property testing under nonuniform distributions has arisen naturally and
studied in several other contexts (in addition to [HK07]). The problem of dicta-
torship testing under the p-biased distribution arose in the work of Dinur and
Safra [DS02] on the inapproximability of VERTEX-COVER. Subsequently, the
problem of junta-testing [KS03] was also considered under the p-biased distribu-
tion.

In [AKK+03], Alon et. al. gave a constant query test for low degree poly-
nomials over F2 (this was later extended to larger fields by [KR04], [JPRZ04],
[KS08]). A suitable application of this test shows that for any p of the form a

2b for
constant b, there is a constant query test for low degree polynomials under the
p-biased distribution. This lends optimism to the goal of understanding the more
general question of testing low degree polynomials under general distributions.

Paper organization: In Section 2, we give an overview of our proofs. In Section 3,
we prove that uniformly-correlatable distributions are tolerantly testable (The-
orem 1). The proof of Theorem 2 appears in Section 4. Finally in Section 5, we
discuss some problems and directions for further study.

2 Overview of Proofs

We first give some intuition for the uniform correlatability criterion. For T to be
a tester for linearity under µ, it needs to satisfy the following minimum require-
ments: (1) each query made by the tester needs to be distributed essentially
according to µ (so that the probability of rejection is upper bounded by the
distance), and (2) the queries need to satisfy some linear relations (so that the
tester has something to test). This already indicates that a tester will need to
“design” a query distribution very carefully, so that both the above require-
ments are satisfied. This is where the uniformly-correlatable criterion comes in:
given the uniformly-correlated distribution on matrices, it allows us to design
other correlations quite flexibly, and in particular to produce queries distributed
according to µ that satisfy linear relations.

The proof of Theorem 1 follows the rough outline of the original “self-
correction” proof of the BLR linearity test (for linearity testing under the uni-
form distribution)5. It proceeds in 3 steps: we first define a “self-corrected”
version of the function being tested and show that the function being tested
is µ-close to that function. We then show that the self-corrected version is in
fact self-corrected with overwhelming probability. Finally we use the above two
5 Note that the uniform distribution is (0, 1)-uniformly-correlatable, and for this case,

the test given by Theorem 1 essentially reduces to the BLR linearity test.



facts to show that the self-corrected function is in fact a homomorphism. We
use the correlated matrix (given by uniform correlatability) to construct two
tests: each of these tests helps with a particular step of the proof. In contrast,
the BLR [BLR93] linearity test makes only one kind of test which miraculously
suffices for all steps of the analysis.

We show Theorem 2 on uniform-correlatability of low-bias distributions by
Fourier analysis, using a version of the Vazirani-XOR lemma. For Theorem 3,
we use the closure property of uniform-correlatability under products, and it
thus suffices to show that the p-biased distribution on Z2 is uniformly corre-
latable. We then exhibit such a correlation by a direct construction. Finally, to
show Theorem 4, we use the closure property of uniform-correlatability under
convex combinations. This reduces the question to showing that for any even
w ∈ [γn, (1−γ)n], the uniform distribution on vectors in Zn2 of Hamming weight
exactly w is uniformly correlatable (to get a uniform distribution on all words
of even weight). This is a technically involved step, and is achieved by carefully
analyzing the set of possible row-sums and column-sums of matrices with all
entries being words of weight w. The correlatability of symmetric distributions
supported on even weight words, along with an additional trick, then allows us
to deduce that linearity is tolerantly testable under any symmetric distribution
over words with weights in [γn, (1− γ)n].

3 Uniformly Correlatable Distributions are Testable

Let µ be (ε, k)-uniformly-correlatable. Fix a distribution µmat over Gk×k wit-
nessing this property. Without loss of generality, we may assume that all the
rows and columns of µmat are identically distributed, and let µrow be this distri-
bution (indeed, we may take a random sample from µmat, randomly permute the
rows and columns, and then transpose it with probability 1

2 : the distribution of
the resulting matrix witnesses the correlatability property, and also has identical
row and column distributions). We now define a few distributions related to it:

1. Distribution µmat
(r,s): For r, s ∈ Gk with

∑
i∈[k] ri =

∑
j∈[k] sj , µ

mat
(r,s) is the

distribution of samples X from µmat conditioned on
∑
j∈[k]Xij = ri and∑

i∈[k]Xij = sj .
2. Distribution µrow

r : For r ∈ G, µrow
r is the distribution of samples x from

µrow conditioned on
∑
i∈[k] xi = r.

3. Distribution µ∗r: This is the distribution of the random variables (y, z) ∈
Gk ×Gk produced by the following random process. Let UG be the uniform
distribution on G. First sample r′ from UG. Then independently sample y
from µrow

r+r′ and z from µrow
r′ . In particular,

∑
i yi −

∑
j zj = r.

We may now describe the linearity test under µ.
Test T: With probability 1/2, perform Test T1, and with probability 1/2 per-
form Test T2.

– Test T1: Sample r from µ. Sample (y, z) ∈ G2k from µ∗r . If
∑
i∈[k] f(yi) −∑

i∈[k] f(zi) = f(r), then accept, else reject.



– Test T2: Sample r from UG. Independently sample (y, y′) and (z, z′) from
µ∗r . If

∑
i∈[k] f(yi)−

∑
i∈[k] f(y′i) =

∑
i∈[k] f(zi)−

∑
i∈[k] f(z′i), then accept,

else reject.

It is clear that this test has perfect completeness.
The following fact basic fact about distributions will be useful while analyzing

the test.

Fact 5 Let R,S be random variables, and let h be function such that the distri-
bution of h(R) is ε-close to the distribution of S. Consider the distribution of R′

sampled as follows: first pick S, and then let R′ be a sample of R conditioned on
h(R) = S. Then the distribution of R′ is ε-close to the distribution of R.

We now prove that the Test T is indeed a tester for linearity under µ, hence
completing the proof of Theorem 1.

Theorem 6. Let f : G→ H and let δdef= Pr[T f rejects]. Then,

δ − 4ε
4k

≤ ∆µ(f,Hom(G,H)) ≤ 12k
1− 24εk

· δ.

Proof. Let f : G→ H and let δ = Pr[T f rejects]. Notice that by Fact 5, each k-
tuple of queries made by the test T is ε-close to the distribution µrow. Therefore,
the probability that no query is made to an element of G where f disagrees with
its nearest homomorphism in Hom(G,H) is at most 4k ·∆µ(f,Hom(G,H)) + 4ε.
Thus δ ≤ 4k ·∆µ(f,Hom(G,H)) + 4ε, which is the first inequality.

We now show the second inequality. If δ ≥ 1
12k − 2ε, then the claim is trivial

(since ∆µ(·, ·) ≤ 1). Suppose δ ≤ 1
12k − 2ε. Let δ1 be the probability that Test

T1 rejects. Let δ2 be the probability that Test T2 rejects. Then δ = 1
2 (δ1 + δ2).

For x ∈ G, define the “self-corrected” value g(x) to be the most probable
value of

∑
i∈[k] f(yi)−

∑
i∈[k] f(zi), where (y, z) ∈ µ∗x.

Lemma 1 (g is close to f). ∆µ(f, g) < 2δ1.

Proof. Let B = {x ∈ G : g(x) 6= f(x)}.
For any x ∈ G, define

px = Pr
(y,z)∈µ∗x

∑
i∈[k]

f(yi)−
∑
j∈[k]

f(zj) 6= f(x)

 .
Notice that for any x ∈ B, px ≥ 1/2. By definition, δ1 = Ex∈µ[px]. Applying
Markov’s inequality, we conclude that

Pr
x∈µ

[x ∈ B] ≤ Pr
x∈µ

[px ≥ 1/2] ≤ 2δ1.

We now show that g is in fact a homomorphism.



Lemma 2 (Majority votes of g are overwhelming majorities). For all
x ∈ G,

Pr
(y,z)∈µ∗x

[
∑
i∈[k]

f(yi)−
∑
j∈[k]

f(zj) 6= g(x)] ≤ 2δ2.

Proof. Let x ∈ G. Take two independent samples (y1, z1) and (y2, z2) from µ∗x.
We will show that

Pr

∑
i∈[k]

f(y1
i )−

∑
j∈[k]

f(z1
j ) 6=

∑
i∈[k]

f(y2
i )−

∑
j∈[k]

f(z2
j )

 ≤ 2δ2. (2)

The lemma follows immediately from this.
We now prove Equation 2. By definition, (y1, z1) was generated by picking

r1 ∈ UG, and then picking y1 ∈ µrow
r1+x and z1 ∈ µrow

r1 . Similarly (y2, z2) was
generated by picking r2 ∈ UG, and then picking y2 ∈ µrow

r2+x and z2 ∈ µrow
r2 .

Observe that both (y1, y2) and (z1, z2) come from the distribution µ∗r1−r2 (albeit
not independently). Let (w1, w2) be another sample from µ∗r1−r2 (independent
of (y1, y2) and (z1, z2)).

We now rewrite and then bound the left hand side of Equation (2) by:

Pr

∑
i∈[k]

f(y1
i )−

∑
j∈[k]

f(z1
j ) 6=

∑
i∈[k]

f(y2
i )−

∑
j∈[k]

f(z2
j )


= Pr

∑
i∈[k]

f(y1
i )−

∑
i∈[k]

f(y2
i ) 6=

∑
j∈[k]

f(z1
j )−

∑
j∈[k]

f(z2
j )


≤Pr

∑
i∈[k]

f(y1
i )−

∑
i∈[k]

f(y2
i ) 6=

∑
j∈[k]

f(w1
j )−

∑
j∈[k]

f(w2
j )


+ Pr

∑
i∈[k]

f(z1
i )−

∑
i∈[k]

f(z2
i ) 6=

∑
j∈[k]

f(w1
j )−

∑
j∈[k]

f(w2
j )



Finally, note that r1−r2 is uniformly distributed over G. Since (y1, y2), (w1, w2)
are independent samples from µ∗r1−r2 (and similarly for (z1, z2), (w1, w2)), this
implies that both the terms in the last expression above equal the rejection
probability of Test T2 (= δ2). This completes the proof of the lemma.

Lemma 3 (g is linear). g ∈ Hom(G,H).

Proof. Pick any x, x′ ∈ Gk, and let t =
∑k
i=1 xi −

∑k
i=1 x

′
i. We will show that∑k

i=1 g(xi)−
∑k
i=1 g(x′i) = g(t).

We now describe a random process. Pick (α, β) ∈ µ∗t . Pick r ∈ UG. Pick
r1, s1, r2, s2 uniformly fromGk conditioned on

∑
i∈[k] r

1
i =

∑
i∈[k] s

1
i = r,

∑
i∈[k] r

2
i =

r −
∑
i∈[k] αi, and

∑
i∈[k] s

2
i = r −

∑
i∈[k] xi.



Now pick random matrices A ∈ µmat
(r1,s1), A

′ ∈ µmat
(r2,s1−α), B ∈ µ

mat
(r1−x,s2), and

B′ ∈ µmat
(r2−x,s2−β).

A11 A12 · · · A1k A
′
11 A

′
12 · · · A′1k α1

A21 A22 · · · A2k A
′
21 A

′
22 · · · A′2k α2

...
...

. . .
...

...
...

. . .
...

...
Ak1 Ak2 · · · Akk A′k1 A′k2 · · · A′kk αk
B11 B12 · · · B1k B

′
11 B

′
12 · · · B′1k β1

B21 B22 · · · B2k B
′
21 B

′
22 · · · B′2k β2

...
...

. . .
...

...
...

. . .
...

...
Bk1 Bk2 · · · Bkk B′k1 B′k2 · · · B′kk βk
x1 x2 · · · xk x′1 x′2 · · · x′k t

Arrange these random variables in a matrix, as shown in the figure.
First notice that by Fact 5, the distribution of each αi is ε-close to the

distribution µ. Similarly, the distribution of each βi is ε-close to the distribution
µ.

Let us study the row distribution. Again by Fact 5, for each i ∈ [k], the distri-
bution of (Ai•, A′i•) is 4ε-close to µ∗αi

. Similarly, for each i ∈ [k], the distribution
of (Bi•, B′i•) is 4ε-close to µ∗βi

.
Now consider the distribution of the columns. For each j ∈ [k], the distribu-

tion of (A•j , B•j) is 4ε-close to µ∗xj
. Similarly, for each j ∈ [k], the distribution

of (A′•j , B
′
•j) is 4ε-close to µ∗x′j .

Summarizing, each row distribution (Ai•, A′i•, αi) and (Bi•, B′i•, βi) is 5ε-close
to the distribution of the distribution of queries of Test T1. Thus by a union
bound, with probability at least 1−2k ·(δ1 +5ε), both the following events occur:

– Event 1: For each i ∈ [k],
∑
j∈[k] f(Aij)−

∑
j∈[k] f(A′ij) = f(αi),

– Event 2: For each i ∈ [k],
∑
j∈[k] f(Bij)−

∑
j∈[k] f(B′ij) = f(βi).

Each column distribution (A•j , B•j) is 4ε-close to µ∗xj
, and each column dis-

tribution (A′•j , B
′
•j) is 4ε-close to µ∗x′j

. Thus by Lemma 2 and a union bound,
with probability at least 1− 2k · (2δ2 + 4ε), both the following events occur.

– Event 3: For each j ∈ [k],
∑
i∈[k] f(Aij)−

∑
i∈[k] f(Bij) = g(xj),

– Event 4: For each j ∈ [k],
∑
i∈[k] f(A′ij)−

∑
i∈[k] f(B′ij) = g(x′j),

Finally, since (α, β) was picked from µ∗t , Lemma 2 tells us that the following
event occurs with probability at least 1− 2δ2:

– Event 5:
∑
j∈[k] f(αj)−

∑
j∈[k] f(βj) = g(t),

Thus Events 1,2,3, 4 and 5 all occur with probability at least 1− (2k+ 1) · (δ1 +
2δ2 + 5ε) > 0, since we assumed that δ = δ1+δ2

2 < 1
12k − 2ε. In this case, we see



that

g(t) =
k∑
i=1

f(αi)−
k∑
i=1

f(βi) Event 5

=
k∑
i=1

 k∑
j=1

(f(Aij)− f(A′ij))

− k∑
i=1

 k∑
j=1

(f(Bij)− f(B′ij))

 Events 1 and 2

=
k∑
j=1

(
k∑
i=1

(f(Aij)− f(Bij)))

)
−

k∑
j=1

(
k∑
i=1

(f(A′ij)− f(B′ij))

)
rearranging terms

=
k∑
j=1

(g(xj)− g(x′j)) Events 3 and 4.

Hence, Pr[g(t) =
∑k
j=1(g(xj) − g(x′j))] > 0. However, this statement is a

deterministic statement, and hence we conclude that g(t) =
∑k
j=1(g(xj)−g(x′j))

Since this holds for every choice of x, x′, g must be a homomorphism.

Thus, ∆µ(f,Hom(G,H)) ≤ ∆µ(f, g) ≤ 2δ1 ≤ 4δ ≤ 6k
1−12εk · δ.

4 Low bias distributions are uniformly correlatable

In this section we prove Theorem 2.
Theorem 2 Let µ be a probability distribution on G such that for all non-

trivial characters χ : G→ C×,

| E
x∈µ

[χ(x)]| < |G|−γ .

Then for k = Ω(1/γ), µ is (|G|−Ω(kγ), k)-uniformly-correlatable.

Proof. We begin with a lemma, which gives a simple criterion for checking that
a distribution is close to uniform on a subgroup of Gt. It is an intermediate
claim in the usual proof of the Vazirani XOR lemma [Gol95] which bounds the
distance to uniform in terms of the maximum bias of the distribution. The full
Vazirani XOR lemma turns out to be too weak for our purposes.

Lemma 4. Let S = {(y1, . . . , yt, z1, . . . , zt) ∈ G2t |
∑
i∈[t] yi =

∑
i∈[t] zi}. Let

(Y1, . . . , Yt, Z1, . . . , Zt) be an S-valued random variable. Suppose

∑
α1,...,αt,β1,...,βt∈Ĝ not all equal

∣∣∣∣∣∣E
∏
i∈[t]

χαi
(Yi) ·

∏
j∈[t]

χβj
(Zj)

∣∣∣∣∣∣
2

≤ λ.

Then the distribution of (Y1, . . . , Yt, Z1, . . . , Zt) is
√
λ-close to the uniform

distribution over S.



We omit the proof of this lemma.
We can now prove the theorem. Let η = |G|−γ . The distribution X =

(Xij)i,j∈[k] is given by picking each Xij independently from µ. For i ∈ [k], let
Yi be the random variable

∑
j∈[k] Xij . For j ∈ [k], Zj be the random variable∑

i∈[k] Xij . We wish to show that (Y1, . . . , Yk, Z1, . . . , Zk) is |G|−Ω(kγ)-close to
uniformly distributed on S.

In order to apply Lemma 4, we compute

∑
α1,...,αk

β1,...,βk

n.a.e.

∣∣∣∣∣∣E
∏
i∈[k]

χαi
(Yi) ·

∏
j∈[k]

χβj
(Zj)

∣∣∣∣∣∣
2

=
∑

α1,...,αk

β1,...,βk

n.a.e.

E

∏
i,j

χαi−βj
(Xij)

2

=
∑
α,β

∏
i,j

E[χαi−βj (Xij)]

2

(since the Xij are independent)

≤
∑
α,β

(
η|{(i,j)∈[k]2:αi 6=βj}|

)2

Consider the term corresponding to α1, . . . , αk and β1, . . . , βk. We classify
the terms into 3 kinds, and separately bound the total contribution of terms of
each kind.
Case A: the most frequently occurring element in α1, . . . , αk occurs at most
2k/3 times. Then |{(i, j) ∈ [k]2 : αi 6= βj}| ≥ k · k/3 = k2/3. Thus the sum of
all terms in case A is at most |G|2k · η2k2/3.
Case B: the most frequently occurring element in α1, . . . , αk occurs at least
2k/3 times, and that same element occurs in β1, . . . , βk at most 2k/3 times.
Then |{(i, j) ∈ [k]2 : αi 6= βj}| ≥ (k/3) · (2k/3) = 2k2/9. Thus the sum of all
terms in case B is at most |G|2k · η2k2/9.
Case C: Now suppose we are not in either of the above two cases. Suppose
the most frequently occurring element in α1, . . . , αk occurs a > 2k/3 times,
and that same element appears in β1, . . . , βk occurs b > 2k/3 times. Note that
by the not all equal assumption, at most one of a, b can be equal to k. Then
|{(i, j) ∈ [k]2 : αi 6= βj}| ≥ a · (k− b) + b · (k− a). Thus the total contribution of
terms from Case C is at most (here we subtracted off the terms with a = b = k):

k∑
a=2k/3

k∑
b=2k/3

(
k

a

)(
k

b

)
|G|k−a|G|k−b|G|ηa(k−b)ηb(k−a) −

(
k

k

)(
k

k

)
|G|.

This can be bounded from above by

|G| ·

 k∑
a=2k/3

k∑
b=2k/3

(
k

a

)(
k

b

)
|G|k−a|G|k−bη(k/2)(k−b)η(k/2)(k−a) − 1

 ,



which in turn may be upper bounded by

|G| ·
(

(1 + |G|η(k/2))k(1 + |G|η(k/2))k − 1
)

≤ |G| · (8k|G|ηk/2),

where the last inequality uses the fact that k = Ω(1/γ), and hence ηk/2 �
(|G|k)−1. Summarizing, the sum of all the terms is at most |G|2ηΩ(k)+|G|2kηΩ(k2).
For k = Ω(1/γ), this quantity is at most |G|−Ω(γk). Lemma 4 now implies the
desired result.

5 Discussion, Problems and Directions

We believe that there are many fruitful and interesting questions waiting to be
explored in tolerant property testing under nonuniform distributions in general
and tolerant linearity testing under nonuniform distributions in particular.

As far as we know, every distribution of linear min-entropy with bias at most
0.9 (say) is uniformly (o(1), O(1))-uniformly correlatable, and hence tolerantly
testable. In fact, we do not even know of a single µ of linear min-entropy under
which linearity is not tolerantly testable.

Question 1. Let µ be a probability distribution on Zn2 with min-entropy Ω(n).
Find necessary and sufficient conditions on µ for linearity to be tolerantly testable
under µ.

Via the connection between tolerant linearity testing and local testability of
codes, we even venture the following conjecture.

Conjecture 1. Every linear code C ⊆ ZN2 withNO(1) codewords is locally testable!
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