
On the Complexity of Powering in Finite Fields

Swastik Kopparty
∗

Institute for Advanced Study
swastik@ias.edu

ABSTRACT
We study the complexity of computing the kth-power of an
element of F2n by constant depth arithmetic circuits over
F2 (also known as AC0(⊕)). Our study encompasses the
complexity of basic arithmetic operations such as comput-
ing cube-root and computing cubic-residuosity of elements
of F2n . Our main result is that these problems require ex-
ponential size circuits.

We also derive strong average-case versions of these re-
sults. For example, we show that no subexponential-size,
constant-depth, arithmetic circuit over F2 can correctly com-
pute the cubic residue symbol for more than 1/3+o(1) frac-
tion of the elements of F2n . As a corollary, we deduce a
character sum bound showing that the cubic residue char-
acter over F2n is uncorrelated with all degree-d n-variate
F2 polynomials (viewed as functions over F2n in a natural
way), provided d � nε for some universal ε > 0. Classical
methods (based on van der Corput differencing and the Weil
bounds) show this only for d� log(n).

Our proof revisits the classical Razborov-Smolensky method
for circuit lower bounds, and executes an analogue of it in
the land of univariate polynomials over F2n . The tools we
use come from both F2n and Fn2 . In recent years, this in-
terplay between F2n and Fn2 has played an important role
in many results in pseudorandomness, property testing and
coding theory.

Categories and Subject Descriptors
F.2.1 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Numerical Algorithms and Prob-
lems, Computations in finite fields

General Terms
Theory

∗The author is supported by National Science Foundation
Grant No. DMS-0835373.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’11, June 6–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0691-1/11/06 ...$10.00.

Keywords
Finite fields, Circuit Complexity, Pseudorandomness, Razborov-
Smolensky method

1. INTRODUCTION
In this paper, we study the complexity of powering over

F2n . In the powering by k problem, where k is an integer
between 0 and 2n − 1, we are given as input x ∈ F2n , and
we want to compute xk. Powering contains as special cases
several basic arithmetic operations. Powering x by 2n − 2
is the same as computing the inverse of x. For n odd (so
that every element of F2n is a perfect cube), powering x by
(2 · 2n − 1)/3 is the same as computing the cube-root of x.
Similarly, for n even (so that not every element of F2n is
a perfect cube), powering x by (2n − 1)/3 is the problem
of computing the cubic residue symbol of x (which tells us
whether x is a cubic residue or not).

The powering problem is well known to be solvable in
polynomial time by the repeated-squaring method. The fo-
cus of this paper is the parallel complexity of the problem,
or equivalently, the complexity of this problem for low-depth
circuits. Specifically, the model of computation we con-
sider is the class of arithmetic circuits over F2 with gates
of unbounded fan-in. Here the wires carry elements of F2,
and we are allowed addition and multiplication gates with
unbounded fan-in. Equivalently, it is the class AC0(⊕),
which consists of polynomial-size, bounded-depth circuits
with unbounded fan-in AND, OR, NOT and PARITY gates.
Throughout we will work with non-uniform circuit families.

Elements of F2n are represented in some pre-decided ba-
sis for F2n over F2 (for example, one could use the ba-
sis {1, y, . . . , yn−1}, working mod an irreducible polynomial
e(y) of degree n). In this setting, AC0(⊕) is very well suited
for computation over F2n . Addition, multiplication and even
iterated addition of elements of F2n can be trivially done by
AC0(⊕) circuits. Although there is an arbitrary choice of
basis involved in representing elements of F2n , AC0(⊕) can
switch representations from one basis to another, and this
makes the question “Can C(X) be computed by polynomial
size AC0(⊕) circuits?” have an answer that is invariant un-
der the choice of representation.

Our main result is a lower bound, which states that AC0(⊕)
circuits of depth d for powering over F2n must have size
at least exp(nΩ(1/d)). This lower bound also holds for the
problems of computing qth-root and qth-residuosity (but we
do not know if it also holds for the problem of comput-
ing the inverse). These latter lower bounds admit a self-
amplification, and this enables us to deduce strong average-

case lower bounds, as well as bounds on some new kinds of
character sums.

Related Work.
There have been two lines of work that considered prob-

lems of this kind.
Fich and Tompa [7], Eberly [6], and von Zur Gathen [21]

study the problem of whether small, low-depth arithmetic
circuits over Fp can power elements of Fpn . The main result
here is that for constant p, powering has arithmetic circuits
of bounded fan-in with size poly(n) and depth O(log(n)).
For circuits with bounded fan-in, this depth is clearly opti-
mal.

Our main result implies that even for arithmetic circuits
over F2 with unbounded fan-in, there are no polynomial size

circuits for powering over F2n of depth smaller than log(n)
log logn

.
Another line of work has focussed on finding the lowest

uniform Boolean circuit complexity class in which one can
perform basic operations over F2n (and other natural alge-
braic structures).

Most relevant for us is the work of Healy and Viola [10],
who considered various questions about implementing arith-
metic over F2n in AC0(⊕). Although the main results there
were on uniform upper bounds, [10] also proved, via reduc-
tion from Majority, that some problems closely related to
powering are hard for AC0(⊕). They showed that there are
no AC0(⊕) circuits of polynomial size that compute iterated
multiplication over F2n . The more general problem of expo-
nentiation, where we are given as input both x ∈ F2n and
k ∈ Z, and we want to compute xk was also shown to be
hard for AC0(⊕) by [10]. On the other hand, results of [10,
11] imply that both these problems are in TC0.

One of the motivations behind this work was a suggestion,
from [3], that the algebraic world of F2n is a good place to
find functions that are hard on average for AC0(⊕) circuits.
In [3], it was shown that therein one can find functions which
are hard on average for the (weaker) class of F2-polynomials
of degree � log(n). Our results validate this suggestion to
some extent, but it seems likely that there is much more to
be said about this.

Residuosity.
It is of much interest to understand what kind of pseudo-

random objects can be constructed in low complexity classes.
In this context, Gutfreund and Viola [9] showed that certain
arithmetic constructions over F2n , which could be imple-
mented in AC0(⊕), were powerful enough to express some
interesting pseudorandom phenomena.

One very powerful source of pseudorandom constructions
comes from characters over finite fields. Multiplicative char-
acters of finite fields display highly pseudorandom proper-
ties, and yet are tractable for analysis (through tools like the
Weil-bound for character sums). These pseudorandom prop-
erties of characters have been used in the construction of
some remarkable pseudorandom graphs (the Paley graphs,
see [8, 15]), as well as other combinatorial objects like ε-
biased sets [1, 2]. It is therefore natural to ask whether
pseudorandom constructions based on multiplicative char-
acters can be executed in AC0(⊕).

Shparlinski [18] showed, via a reduction from Majority,
that the quadratic-residue character over Fp, for prime p,
cannot be computed in AC0(⊕). However, it remained open

whether AC0(⊕) could compute multiplicative characters in
fields of small characteristic.

Our results imply that the cubic-residue (and higher-residue)
multiplicative characters over F2n cannot be computed in
AC0(⊕). In particular, the adjacency relation of the Paley
graphs over F2n cannot be computed in AC0(⊕).

In the process, we show yet another pseudorandom prop-
erty of the cubic (and higher) residue characters: they do
not correlate with low-degree polynomials over F2. Specif-
ically, let η : F2n → Fn2 be an F2-linear isomorphism. We
show that there is an ε > 0 such that for every polynomial
p : Fn2 → F2 of degree at most nε,∣∣∣Ex∈F2n [χ(x)(−1)p(η(x))]

∣∣∣ < 1

nε
.

Previously, such correlation bounds for the cubic character χ
were only known for polynomials p of degree less than logn.
Curiously, the proof of this improved number-theoretic char-
acter sum bound is based on complexity-theoretic considera-
tions: representations of circuits by polynomials, the “versa-
tility argument”(to be explained), and random self-reducibility.
These tools seem to be new to this domain (for a survey
of classical, elementary techniques for bounding character
sums, see [13]).

1.1 Methods
The heart of our method is to translate the whole set-

ting into the language of univariate polynomials over F2n .
At first glance, this seems untenable; operations in AC0(⊕)-
circuits inherently depend on the individual bits that are
being carried around on the wires. Nevertheless, some sort
of translation is possible. The Razborov-Smolensky approx-
imation method tells us that everything computed by an
AC0(⊕) circuit is almost everywhere described by a low-
degree polynomial over F2. For circuits with n output bits
(such as a circuit computing the cube-root of an element of
F2n), it guarantees that each output bit has such a poly-
nomial. In recent years, a number of works in pseudoran-
domness, property testing and coding theory have looked
at precisely this situation: they take an n-tuple of n-variate
polynomials over F2, view the entire tuple as a mapping from
the big field F2n to the big field F2n , represent this mapping
as a univariate polynomial over F2n , and reason about it.
Via this connection, we are able to work with AC0(⊕) cir-
cuits, in a basis-independent fashion, entirely in terms of
univariate polynomials over F2n .

In this land of univariate polynomials over F2n , we execute
the second step of the Razborov-Smolensky argument. This
involves showing that if X1/3 or the cubic-residue character
can be computed by AC0(⊕), then a large number of other
functions can be computed “easily”, and this violates the ba-
sic counting bound that most functions cannot be computed
easily.

1.2 Results
We now formally state our main result. It shows that for

certain (explicit) α ∈ [2n − 1] (these are the α relevant for
computing roots and residuosity), the map sending x ∈ F2n

to xα is hard on average for AC0(⊕) circuits.

Theorem 1 (AC0(⊕) complexity of powering). Let
a, b, q ∈ Z be constants with q odd, q > 1 and 0 < |a|, |b| < q.
Let n be such that α = (a2n + b)/q is an integer.

Define Λ : F2n → F2n by Λ(X) = Xα.

Then for every AC0(⊕) circuit C : F2n → F2n of depth d

and size M ≤ 2n
1/5d

, for sufficiently large n, we have:

Pr
x∈F2n

[C(x) = Λ(x)] ≤ 1− ε0,

where ε0 > 0 depends only on q and d.

Using this theorem, along with a random self-reducibility
argument, we show that taking roots is very hard on average
for AC0(⊕) circuits.

Theorem 2 (AC0(⊕) complexity of taking roots).
Let q > 1 be odd. Let n be such that q is relatively prime to
2n − 1. Let α be the multiplicative inverse of q in Z2n−1.

Define Λ : F2n → F2n by Λ(X) = Xα.
Then for every AC0(⊕) circuit C : F2n → F2n of depth d

and size M ≤ 2n
1/6d

, for sufficiently large n, we have:

Pr
x∈F2n

[C(x) = Λ(x)] ≤ 2−n
ε

,

where ε > 0 depends only on q and d.

Next we state a similar hardness-amplified version of the
main theorem for computing the q-th residue symbol. Let
q|2n − 1 (so that F×2n has a subgroup G of index q). For
our purposes, a function Λ : F2n → {0, 1}t is a qth residue
symbol if it sends elements of distinct cosets of G in F×2n to
distinct images ∈ {0, 1}t.

Theorem 3. (AC0(⊕) complexity of the q-th residue
symbol). Let q > 1 be an odd prime. Let n be sufficiently
large with q|(2n − 1).

Let t = dlog qe. Let Λ : F2n → {0, 1}t be a qth residue
symbol.

Then for every AC0(⊕) circuit C : F2n → {0, 1}t of con-

stant depth d and size M ≤ 2n
1/20d

, we have:

Pr
x∈F2n

[C(x) = Λ(x)] ≤ 1

q
+O(n−

1
20d).

Finally, we give a new character sum bound that these
results lead to.

Theorem 4. (Bounds on a Multiplicative Charac-
ter Sum). There exists a constant ε > 0 such that the
following holds. Let q be a constant. Let n be sufficiently
large with q|(2n − 1).

Let p(x1, . . . , xn) ∈ F2[x1, . . . , xn] with deg(p) ≤ nε. Let
η : F2n → Fn2 be an F2-linear isomorphism. Let χ : F2n → C
be a nontrivial qth-residue character. Then:∣∣∣Ex∈F2n [χ(x)(−1)p(η(x))

]∣∣∣ ≤ n−ε.
Organization of this paper.

In the next section, we give an overview of our methods.
In Sections 3, 4 and 5, we prove the main lower bound,
Theorem 1. In Section 6, we amplify this lower bound to
prove Theorem 2, Theorem 3 and Theorem 4. We conclude
with some open questions.

2. OVERVIEW OF THE PROOF
A basic principle that lies behind many unconditional

lower bounds today is the fact that not all functions can
be computed efficiently. While this does not itself give us
an explicit function that is hard to compute, it lends itself
to that task quite nicely.

Informally, we call a function Λ versatile if for every func-
tion f , one can easily compute f when given oracle access to
Λ. If Λ is versatile, this automatically implies that Λ cannot
be computed efficiently (provided that “efficiently”, “easily”
etc. are all defined suitably), for otherwise we could easily
compute every function f . Depending on the actual setting,
implementing such an argument can require varying degrees
of sophistication.

Our lower bounds for finite field operations over AC0(⊕)
will also follow the versatility argument, modelled along lines
of the original arguments of Razborov and Smolensky [16,
19] showing AC0(⊕) lower bounds for the modular counting
(Modq) and Majority (Maj) functions (see also the discus-
sion of these arguments in [17]). Before giving an outline of
our proof, we quickly recall this short and elegant argument.

2.1 The Razborov-Smolensky proof of Maj 6∈
AC0(⊕)

The basis for all our understanding of the power of AC0(⊕)
comes from the Razborov-Smolensky method of polynomial
approximation, which says that AC0(⊕) circuits are com-
puted by low-degree polynomials over F2 on a large fraction
of their domain.

Theorem 5 (Razborov-Smolensky [16, 19]). Let C :
{0, 1}n → {0, 1}m be an AC0(⊕) circuit of size M and
depth d. Then for every t > 0, there exist polynomials
p1, . . . , pm ∈ F2[x1, . . . , xn] and a set S ⊆ {0, 1}n such that

• deg(pi) ≤ O(td),

• |S| ≥
(
1− M

2t

)
2n,

• For every x ∈ S, we have (p1(x), . . . , pm(x)) = C(x),

We begin by reviewing [20] which shows that Maj 6∈ AC0(⊕)
(and which also shows that Maj does not correlate with
AC0(⊕) circuits). This will use the Razborov-Smolensky
polynomial approximation in conjunction with a lemma that
shows that Maj is versatile (in a certain sense).

Lemma 6 (Majority is versatile).
For every f : {0, 1}n → {0, 1}, there exist polynomials g, h ∈
F2[x1, . . . , xn] of degree at most n/2 such that for every x ∈
Fn2

f(x) = g(x) ·Maj(x) + h(x).

We include a short proof of this in the appendix.
Now suppose Maj had a small AC0(⊕) circuit. By the

Razborov-Smolensky method of polynomial approximations
(Theorem 5), there is a set S ⊆ {0, 1}n of cardinality (1 −
o(1)) · 2n and a polynomial p of degree at most polylog(n)
such that Maj(x) = p(x) for each x ∈ S. By Lemma 6, every
function from S to F2 can be computed by a polynomial of
the form g(x) · p(x) + h(x), which is an F2 polynomial of
degree at most n/2 + polylog(n). However, there are many
functions from S to F2, and not that many polynomials of
degree at most n/2 + polylog(n). This is a contradiction.

This proof even shows that for any AC0(⊕) circuit C, the
fraction of inputs x ∈ {0, 1}n on which C(x) = Maj(x) is at

most 1
2

+ polylog(n)√
n

.

2.2 Hardness of Cubic residuosity
Following the previous argument as a model, we will show

that if detecting whether an element of F2n (where n is even)
is a cubic residue or not is easy, then this will help us com-
pute a large number of functions easily. The core of our
work is a precise version of this statement that is sufficient
for the subsequent lower bound argument, and also true.

We now work towards presenting this statement. Given a
function g : F2n → F2n , we will be interested in viewing it
as a map from n-bit strings to n-bit strings. Fix arbitrary
representations of F2n as Fn2 (in an F2-linear manner). View
g as n-tuple of functions (g1, . . . , gn) : Fn2 → Fn2 , where each
gi : Fn2 → F2. We define the F2-degree of the function g,
denoted degF2(g), to be maxi deg(gi) (where deg(gi) is the
degree of gi as a polynomial in F2[x1, . . . , xn]).

Now define Λ : F2n → F2n by Λ(x) = x(2n−1)/3. This
is the (F2n -valued, as opposed to C-valued) cubic residue
character. The key properties of Λ are (i) for x ∈ F×2n ,
Λ(x) ∈ {1, ω, ω2}, where ω is a nontrivial cube-root of unity
in F2n , (ii) Λ(xy) = Λ(x)Λ(y), and (iii) computing Λ is
AC0(⊕)-equivalent to the problem of deciding whether an
element is a cubic residue or not.

The following lemma now quantifies what we mean when
we say that computing Λ(x) easily allows one to compute
all functions from F2n to F2n easily.

Lemma 7 (Cubic Residuosity is quite versatile).
There exists a F2n -linear space V of functions from F2n to
F2n , such that for every f : F2n → F2n , there exist func-
tions g, h : F2n → F2n with F2-degree ≤ n/2 and a function
e : F2n → F2n such that

f(x) = g(x) + Λ(x) · h(x) + e(x), (1)

where:

• e ∈ V

• dim(V) ≤ 1
4
· 2n.

The 3 main differences between this Lemma and the ver-
sion used in the previous subsection are (1) the space of
functions that we work with are F2n -valued, (2) correspond-
ingly, the multiplication “·” refers to multiplication over the
big field F2n , and (3) the presence of the helper function
e which comes from a somewhat low dimensional space of
helper functions V .

Given Lemma 7, we deduce the hardness of computing
cubic residuosity for AC0(⊕) as follows. Suppose there was
a circuit C : {0, 1}n → {0, 1}2 computing cubic residuosity
(in the sense that elements of different cosets of the group
of cubic residues get mapped to different strings in {0, 1}2).

Using the cube-roots of unity {1, ω, ω2} ⊆ F2n , we can
modify this circuit to produce another AC0(⊕) circuit C′ :
{0, 1}n → {0, 1}n such that for all x ∈ F2n , C′(x) = Λ(x)
(here we identify {0, 1}n and F2n in an F2-linear fashion).
We then apply the Razborov-Smolensky polynomial approx-
imation to C′(x) and get a set S ⊆ {0, 1}n with |S| =
(1 − o(1)) · 2n, and a collection of polynomials (p1, . . . , pn)
of degree at most polylog(n) such that for every x ∈ S,
(p1, . . . , pn)(x) = C′(x) = Λ(x).

Now pick an arbitrary function f : S → {0, 1}n and invoke
the lemma. We get that f can be computed as g+ Λ ·h+ e.
For x ∈ S, we know that Λ(x) = (p1, . . . , pn)(x), and thus
on S, f can be computed as r + e, where r : {0, 1}n →
{0, 1}n is an n-tuple of polynomials of degree at most n/2 +
polylog(n) (here we used the fact that the F2n -multiplication
“·”appearing in Equation (1) is a bilinear operation over F2).

Now, there are many functions from S to {0, 1}n, but the
number of functions that can be written as r+e, where r is an
n-tuple of F2-polynomials of degree at most n/2+polylog(n),
and e is an element of a small dimensional space of functions,
is not that large. This is the desired contradiction. Thus,
computing the cubic residue character Λ cannot be done by
small AC0(⊕) circuits.

We now briefly comment on how Lemma 7 is proved.
Lemma 7 deals with the interaction of the function Λ, whose
definition is intrinsic to the F2n setting, with functions of low
F2-degree, which is a notion best understood by viewing F2n

as Fn2 .
Such interaction between F2n and Fn2 is facilitated by a

simple characterization of the F2-degree of a function g :
F2n → F2n in terms of the representation of g as a univariate
polynomial over F2n . Via this characterization, the proof
of Lemma 7 goes by analyzing the univariate polynomial
representation of an arbitrary function f : F2n → F2n , and
explicitly determining from it the functions g, h of low F2-
degree. The crucial step is to bound the dimension of V ,
which reduces to a certain additive-combinatorial problem
on Z2n−1: we need to understand the joint distribution of
Hamming weights of base-2 representations of the integers
x and (x + (2n − 1)/3) mod (2n − 1), when x is picked
uniformly at random from {0, 1, . . . , 2n − 1}. We do this in
Section 4 by studying the the Markov chain implementing
random integer addition in base 2.

In recent years, the interplay between F2n and Fn2 has
played an important role in many results in pseudorandom-
ness, property testing and coding theory [5, 12, 4, 3]. Our
application to circuit complexity seems to be a natural set-
ting for this: the powering problem over F2n inherently deals
with F2n , while the power of AC0(⊕) is best understood
through polynomials over Fn2 .

3. THE VERSATILITY OF POWERING
In this section, we show that powering is versatile. We

begin by reviewing the dictionary that translates between
multivariate polynomials over Fn2 and univariate polynomi-
als over F2n .

3.1 F2n vs. Fn2
We have the basic fact that every function from F2n to

F2n can be computed by a univariate polynomial over F2n .

Lemma 8. Every f : F2n → F2n can be written uniquely

as f(X) =
∑2n−1
i=0 aiX

i, where each ai ∈ F2n .

We will now relate the notion of F2-degree of a function
f : F2n → F2n to the representation of f as a univariate
polynomial.

Let us recall the definition of F2-degree. Pick an arbitrary
F2-linear isomorphism η : F2n → Fn2 , and consider the the
map (f1, . . . , fn) : Fn2 → Fn2 given by:

(f1, . . . , fn)(x) = η(f(η−1(x))).

Then the F2-degree of f , denoted degF2(f), is defined to
be maxi∈[n] deg(fi), where deg(fi) refers to the degree of
the unique multilinear F2-polynomial representation of fi :
Fn2 → F2.

Given a function f : F2n → F2n , consider its representa-
tion as a univariate polynomial of degree ≤ 2n− 1 over F2n .

Suppose f(X) =
∑2n−1
i=0 aiX

i, with ai ∈ F2n . In terms of
this representation, the F2-degree of f has a simple expres-
sion: amongst all the i for which ai is nonzero, let d be the
largest value of the Hamming weight of the base-2 represen-
tation of i. Then the F2-degree of f equals d (for a proof,
see [12, 14]).

Let wt(i) denote the Hamming weight of the integer i.
Define Md = {i ∈ {0, 1, . . . , 2n − 2} | wt(i) ≤ d}. Thus we
have:

Lemma 9. Let 0 ≤ d ≤ n− 1. A function g : F2n → F2n

has F2-degree at most d if and only if g(X) can be written as
an F2n -linear combination of the monomials {Xi | i ∈Md}.

We view Md as a subset of Z2n−1. We have the following
observations:

• |Md + α| = |Md| (this is clear).

• 2 ·Md = Md (because multiplying by 2 in Z2n−1 does
not change the Hamming weight).

3.2 Versatility of powering
We are now ready to show that the map x→ xα is versa-

tile whenever α satisfies a suitable pseudorandomness con-
dition. In the next section, we verify that the α’s we are
interested in satisfy this condition (a random α does).

Theorem 10. Let α ∈ Z2n−1 such that:

|Mn/2 ∪ (α+Mn/2)| ≥ (
1

2
+ ε0)2n, (2)

where Mn/2 is viewed as a subset of Z2n−1.
Let Λ : F2n → F2n be given by Λ(x) = xα.
Then there exists an F2n -linear space V of functions from

F2n to F2n such that for every f : F2n → F2n , there are
functions g, h, e : F2n → F2n such that for every x ∈ F2n :

f(x) = g(x) + Λ(x) · h(x) + e(x),

where:

• degF2(g),degF2(h) ≤ n/2,

• e ∈ V ,

• dim(V) ≤ (1
2
− ε0) · 2n + 2.

Proof. Let J = Mn/2 ∪ (α + Mn/2) ⊆ Z2n−1. By as-
sumption, |J | ≥ (1

2
+ ε0) · 2n.

Now view J as a subset of {0, 1, . . . , 2n − 1}. Let

J∗ = {0, 2n − 1} ∪ {0, 1, . . . , 2n − 1} \ J.

We define V to be the F2n -span of the functions {Xi | i ∈
J∗}. Notice that V has the right dimension.

Notice that the set of all functions f that can be written
in the form g+Λ ·h+e, where degF2(g), degF2(h) ≤ n/2 and
e ∈ V is an F2n -vector space. Thus, by Lemma 8, it suffices
to show that for each i ∈ {0, 1, . . . , 2n − 1}, the function
f(X) = Xi is of the form g(X) + Λ(X) · h(X) + e(X).

If i ∈ J∗, then we may write the function f(X) = Xi in
the form f = g+ Λ · h+ e, where g = h = 0 and e(X) = Xi

is in V . Thus the function f(X) = Xi is of the required
form.

Otherwise i ∈ J \ {0, 2n − 1}. So either i ∈ Mn/2 or
i ∈Mn/2 + α.

If i ∈Mn/2, then we may write f(X) = g+Λ ·h+e, where

g(X) = Xi has degF2(g) ≤ n/2, and h = e = 0.
To treat the final case, suppose i ∈ α + Mn/2 with i 6∈
{0, 2n − 1} (recall that here we treated Mn/2 as a subset
of Z2n−1; thus i is of the form α + j mod 2n − 1, where
j ∈ Mn/2). In this case, the function f(X) = Xi can be
written as

f = g + Λ · h+ e,

where h(X) = Xj has degF2(h) ≤ n/2, and g = e = 0. To
see why this representation is valid, we have that for every
x ∈ F2n ,

g(x) + Λ(x) · h(x) + e(x) = xα · xj

= xα+j

= x(α+j) mod (2n−1)

= xi

= f(x),

where we used the basic fact that if r is not divisible by
2n − 1, then for every x ∈ F2n we have:

xr = xr mod (2n−1),

and the fact that i = α+ j is not divisible by 2n − 1.
Thus for every function f : F2n → F2n , we conclude that

there are g, h, e with f(x) = g + Λ · h + e, where g, h have
F2-degree at most n/2 and e ∈ V .

4. ADDING INTEGERS
Because of the the result of the previous section, we are

interested in α for which |Mn/2 ∪ (α + Mn/2)| is large. We
now give a simple criterion on α for this to occur.

Theorem 11. Let t, t′ be constants. Let σ0 ∈ {0, 1}t be

a bit-string with σ0 6= 0t, 1t, and let σ′ ∈ {0, 1}t
′
.

Let σ ∈ {0, 1}n be a bit-string of the form σ′σ`0 (thus
n = t′ + `t). Let α be the positive integer whose base 2
representation is σ. We view α as an element of Z2n−1.

Let Mn/2 ⊆ Z2n−1 be the set of all x whose binary repre-
sentation has Hamming weight at most n/2.

Then for all sufficiently large (depending on σ0, σ
′) n, we

have

|Mn/2 ∪ (α+Mn/2)| ≥ (
1

2
+ ε0) · 2n,

where ε0 > 0 depends only on σ0, σ
′.

Proof. Note that |Mn/2| = |α+Mn/2| =
(

1
2

+O(1

n1/2)
)
·

2n.
We want to show that the union of Mn/2 with α+Mn/2 is

noticeably larger than Mn/2. This is equivalent to showing
that the intersection of Mn/2 with α + Mn/2 is noticeably
smaller than Mn/2. Equivalently, we want to show that a
constant fraction of the elements of Mn/2 are not elements
of α+Mn/2.

The proof proceeds by studying the following experiment.
Pick R ∈ Z2n−1 uniformly at random. Let S = α + R ∈

Z2n−1. Let WR and WS be the Hamming weights of R and
S respectively. We will show that

Pr[R ∈Mn/2∧S ∈Mn/2] = Pr[WR < n/2∧WS < n/2] <
1

2
−ε0,

(3)
for some ε0 > 0 depending only on σ0, which implies the
theorem.

We will now try to understand the joint distribution of
(WR,WS). It will turn out that the distribution of (WR,WS),
suitably translated and scaled, is very close to a (correlated)
bivariate Gaussian distribution. By estimating the correla-
tion of WR and WS , we will be able to deduce (3).

The key observation is that addition of the random num-
ber R to the periodic number α can be described by a sim-
ple Markov chain. Let ` = bn/tc. Recall that σ is of the
form σ′σ0σ0 . . . σ0σ0 (where there are ` blocks of σ0). Write
R = R′R`−1R`−2 . . . R1R0, where each Ri ∈ {0, 1}t, and
S = S′S`−1S`−2 . . . S1S0, where each Si ∈ {0, 1}t.

Let us carefully understand how the Si are generated from
the Ri, following the elementary-school addition algorithm.
First R0 is added to σ0 to get S0 and a carry bit c1. Then
c1, R1 and σ0 are added to get S1 and a carry bit c2, and
so on. until c`−1, R`−1 and σ0 are added to get the carry
bit c′. Finally, c′, R′ and σ′ are added to get S′ and a
carry bit c. However, since c is the bit that would land in
the 2n’s place of the binary representation of S, and since
we are working mod 2n − 1, this is equivalent to adding
c to the integer S. Our analysis of this will mainly study
R`−1R`−2 . . . R0 and S`−1S`−2 . . . S0 (before the carry bit c
gets added on), and we will later describe how to account
for R′, S′ and the carry bit c. The core of the argument
is that after conditioning on the carry bits ci, the different
(Ri, Si) become independent. In order to formalize this, we
now view this process of addition as a Markov chain.

Consider a Markov chain with state-space {(x, b) | x ∈
{0, 1}t, b ∈ {0, 1}}. In state (x, b), the transition rule is as
follows: if adding b, x and σ0 produces carry bit b′, then
jump to a uniformly random element of {(x′, b′) | x′ ∈
{0, 1}t}. We start the Markov chain at a uniform element
of {(x, 0) | x ∈ {0, 1}t}.

Consider ` steps of this Markov chain (x0, b0), (x1, b1),
. . ., (x`−1, b`−1). For each i ∈ {0, 1, . . . , ` − 1}, define yi to
equal the t-bit sum (without carry) of bi, xi and σ0. By
design, the distribution of (x`−1x`−2 . . . x0, y`−1y`−2 . . . y0)
is identical to the distribution of (R`−1 . . . R0, S`−1 . . . S0).

Let α0 be the integer whose base-2 representation is σ0;
by assumption 0 < α0 < 2t − 1.

We now look at ` steps of the Markov chain and expose
only at the sequence of b’s b0, b1, . . . , b`−1. The process
that generates b is itself a very simple 2-state Markov chain:

b0 = 0; if bi = 0, then bi+1 = 0 with probability 2t−α0
2t

and
bi+1 = 1 with probability α0

2t
; if bi = 1, then bi+1 = 0 with

probability 2t−1−α0
2t

and bi+1 = 1 with probability α0+1
2t

.

Since 0 < α0 < 2t − 1, all these transition probabilities are
positive; this tells us that the Markov chain behaves “well”.
Let π be the stationary distribution for this 2-state Markov
chain. For b, b′ ∈ {0, 1}, let πbb′ be π(b) times the proba-
bility of jumping from state b to state b′ (thus in a random
walk, we expect to see about πbb′ occurrences of the transi-
tion b→ b′).

Therefore, with probability 1−`−ω(1), the sequence b0, b1, . . . , b`−1

will be such that for all b, b′ ∈ {0, 1}, the number of i with

bibi+1 = bb′ is πbb′ · `±
√
` · polylog`.

We now choose x0, . . . , x`−1 given these bi. Observe that
the distribution of the xi given the sequence b0, . . . , b`−1

depends only on bi and bi+1 (in particular, the xi are all in-
dependent given the sequence b0, . . . , b`−1. For b, b′ ∈ {0, 1},
define

Ubb′ = {x ∈ {0, 1}t | adding b, x and σ0 produces carry bit b′}.

Then the distribution of xi given the sequence b0, . . . , b`−1

is uniform over the set Ubibi+1 . Given xi, then yi is simply
the t-bit sum of bi, xi and σ0 (without the carry bit).

To summarize, given the sequence b0, . . . , b`−1, the tu-
ple (Wx,Wy) = (wt(x`−1 . . . x0),wt(y`−1 . . . y0)) can be ex-
pressed as the sum of ` independent random variables ηi.
Each ηi is distributed according to one of the four distribu-
tions:

ηbb′ =distribution of (wt(x),wt(y)),

where x is uniformly picked from Ubb′

and y = b+ x+ σ0 (without carry) .

By the earlier observation, with very high probability over
the choice of bi, the number of copies of ηbb′ in this sum is
very close to πbb′ · `.

We already know the mean of (Wx,Wy): it is simply `t/2
(because Wx,Wy are the Hamming weights of random `t-bit
integers).

Thus, by the 2-dimensional central limit theorem, the dis-
tribution of 1√

`
(Wx − `t/2,Wy − `t/2) is close to the distri-

bution of a 2-dimensional Gaussian distribution with mean
0 and covariance matrix

∑
b,b′∈{0,1} πbb′Cov[ηbb′]. We know

the variance of Wx and the variance of Wy: they both equal
`t/4 (again because Wx,Wy are the Hamming weights of
random `t-bit integers).

The next lemma shows that Wx and Wy are not perfectly
correlated or perfectly anticorrelated (by showing that at
least one of η00 and η01 does not have perfect correlation or
anticorrelation between its coordinates).

Lemma 12. There strings x′, x′′ ∈ {0, 1}t with the same
Hamming weight, such that the t-bit x′ + σ0 (without carry)
and the t-bit x′′+σ0 (without carry) have different Hamming
weights.

Proof. σ0 has some bit i equal to 0. Let x′ have a 1 in
coordinate i and be 0 in all other coordinates.
σ0 has some bit j equal to 1. Let x′′ have a 1 in coordinate

j and be 0 in all other coordinates.
Then wt(σ0+x′) = wt(σ0)+1, but wt(σ0+x′′) ≤ wt(σ0).

Recall the elementary fact that for a 2-dimensional Gaus-
sian (G1, G2) with mean 0, and with each coordinate having
positive variance, but both coordinates not perfectly corre-
lated or anticorrelated, we must have

Pr[G1 < 0 ∧G2 < 0] < 1/2.

By smoothness of the density, we even have that there exists
ε > 0 such that

Pr[G1 < ε ∧G2 < ε] < 1/2− ε.

We can thus conclude the same (for a slightly smaller ε) for
the distribution of 1√

`
(Wx − `t/2,Wy − `t/2) for sufficiently

larger ` (or equivalently, sufficiently large n):

Pr[Wx < `t/2 + ε
√
` ∧Wy < `t/2 + ε

√
`] < 1/2− ε. (4)

We now address the leftover issue of dealing with R′, S′

and the carry bit c. The number of bits in R′ and S′ is at
most t′, which is a constant, and hence the Hamming weights
of x and R differ only by at most a constant. Similarly
for y and S. Equation (4) leaves enough margin to let us
conclude that WR < n/2 +O(

√
n) and WS < n/2 +O(

√
n)

still occurs with probability at most 1/2 − ε/2. For the
carry bit c, observe that this can only reduces the Hamming
weight of S by k if the last k bits of S are all 1’s. Taking
k = Θ(log2 n), we see that the probability that the carry
bit reduces the Hamming weight of S by more that log2 n
is negligible, and thus even taking the effect of the carry bit
into account we have

Pr[R ∈Mn/2∧S ∈Mn/2] = Pr[WR < n/2∧WS < n/2] <
1

2
−ε0.

Remark The previous lemma assumed that α has base-2
representation of the form σ′σ`0. This implies the lemma also
applies when α has base-2 representation of the form σ`0σ

′.
Indeed, recall that multiplying an element of Z2n−1 by 2
rotates its base-2 representation cyclically. Thus Mn/2 =

2 ·Mn/2 = 2i ·Mn/2 for any i, and for any set A ⊆ Z2n−1,

|A| = |2A| = |2i ·A|.
Taking an α ∈ Z2n−1 with base-2 representation of the

form σ`0σ
′, we have that α′ = 2n−t

′
α has base-2 representa-

tion of the form σ′σ`0, and thus by the previous lemma:

|Mn/2 ∪ (α+Mn/2)| = |2n−t
′
· (Mn/2 ∪ (α+Mn/2))|

= |Mn/2 ∪ (α′ +Mn/2)|

≥
(

1

2
+ ε0

)
· 2n.

5. PROOF OF THE MAIN THEOREM
In this section, we complete the proof of the Main Theo-

rem, Theorem 1.
Summing up what we have proved in the earlier sections:

whenever α looks periodic in its base-2 representation, we
have |Mn/2 ∪ (α+Mn/2)| large. This implies that the map
x → xα is versatile (in the sense that an oracle for xα can
be used to compute every function from F2n → F2n in a
simple form). This will be used to place a lower bound on
the complexity of computing the map x→ xα.

Proof of Theorem 1: Recall the basic fact that the
binary representation of a/q is periodic non-terminating bit
string of the form ±0.σ0σ0 . . ., where σ0 ∈ {0, 1}t and t
equals the multiplicative order of 2 mod q. Since q 6= 1, we
have σ0 6= 0t, 1t.

Thus the binary representation of the integer β = (a ·
2n + b)/q (reduced mod 2n − 1 so that it lies in the interval
{0, 1, . . . , 2n − 2}) is of the form σ0σ0 . . . σ0σ

′, where σ′ ∈
{0, 1}t

′
for some constant t′.

By Theorem 11 and the remark after it,

|Mn/2 ∪ (β +Mn/2)| ≥ (
1

2
+ ε0) · 2n.

Given this, we may invoke Theorem 10 and conclude that
there is an F2n -linear space of functions V , with dim(V) ≤

(1
2
− ε0) · 2n, such that for every f : F2n → F2n , there exists

g, h of F2n -degree at most n/2 and e ∈ V with:

f(x) = g(x) + Λ(x) · h(x) + e(x), (5)

for all x ∈ F2n .
Now let C : Fn2 → Fn2 be an AC0(⊕)-circuit of depth d

and size M . Then by the Razborov-Smolensky polynomial
approximation, Theorem 5 (invoked with t = log2(M)), we

know that there is a set S ⊆ F2n with |S| ≥
(

1− 1

Mω(1)

)
·2n,

and an n-tuple of polynomials (p1, . . . , pn) over F2, each of
degree at most log2d(M), such that for every x ∈ S, we have
C(x) = (p1(x), . . . , pn(x)).

Now let T be the set of x ∈ F2n where C(x) = Λ(x)
(again, we identified Fn2 with F2n in an arbitrary F2-linear
way). Thus for every x ∈ S∩T , we have (p1(x), . . . , pn(x)) =
C(x) = Λ(x). Now view (p1, . . . , pn) : Fn2 → Fn2 as a func-
tion p : F2n → F2n ; we know that p has F2-degree at most
log2d(M). We just showed that p(x) = Λ(x) for all x ∈ S∩T .

We will now show that S ∩ T is small, which will then
imply that T is small. Consider an arbitrary function from
S ∩ T to F2n . By (5), we see that this function can be
represented in the form g + Λ · h + e. Using the fact that
p = Λ on S ∩ T , we get that every function from S ∩ T to
F2n can be represented in the form

g + p · h+ e.

We will now study how many functions can be represented
in this form, and thus get an upper bound on the number of
functions from S ∩ T to F2n . g has F2-degree at most n/2.
Now by definition, p·h has F2-degree at most n/2+log2d(M).
e lies in an F2n -linear space of dimension (1

2
− ε0) · 2n. The

sum of the first two terms is a function of F2-degree at most
n/2 + log2d(M), and thus by Lemma 9 lies in an F2n -linear

space of dimension at most
(

1
2

+ log2d(M)√
n

)
· 2n. Thus the

collection of all possible functions representable in form g+
p · h + e lies in an F2n -linear space of dimension at most(

1− ε0 + log2d(M)√
n

)
· 2n.

On the other hand, we know that the space of all functions
from S∩T to F2n is an F2n -linear space of dimension |S∩T |.

Thus

|S ∩ T | ≤
(

1− ε0 +
log2d(M)√

n

)
· 2n,

and so

|T | ≤
(

1− ε0 +
log2d(M)√

n
+

1

Mω(1)

)
· 2n.

Thus, for M ≤ 2n
1/5d

, we have

Pr
x∈F2n

[C(x) = Λ(x)] ≤ 1− ε0
2
.

6. RANDOM SELF-REDUCTIONS
In this section, we observe that the problems of comput-

ing the q-th root and computing the q-th residue symbol
are random self-reducible in AC0(⊕), and we thus derive
improved average-case hardness for these functions.

6.1 Roots
We first consider the maps x → x1/q. Recall that we are

working in a field F2n where 2n − 1 is relatively prime to q,
so that this map is always defined.

Proof of Theorem 2: Recall that we have Λ(x)q = x
for all x ∈ F2n .

Let C : F2n → F2n be an AC0(⊕) circuit of size M and

depth d. Suppose Prx∈F2n [C(x) = Λ(x)] ≥ 2−n
1/(6d)

. Let
S ⊆ F2n be the set of points where C is correct:

S = {x ∈ F2n | C(x) = Λ(x)}.

Thus, |S| ≥ 2−n
1/(6d)

· 2n.
Construct the AC0(⊕) circuit C′ as follows. Fix t =

22n1/(6d)

. C′ will take as advice certain b1, . . . , bt ∈ F2n ,
along with c1, . . . , ct ∈ F2n where ci = 1

Λ(bi)
.

Circuit C′, given input x ∈ F2n :

• For each i ∈ [t], compute ai = C(bi · x).

• If for any i ∈ [t], we have (ci · ai)q = x, output ci · ai.

The size of C′ is t ·M , and it had depth d+ 1.
We will show that there exist b1, . . . , bt ∈ F2n such that

the resulting circuit C′ satisfies:

Pr
x∈F2n

[C′(x) = Λ(x)] ≥ 1− o(1).

Observe that C′ will correctly compute the qth-root of x iff
there is some i ∈ [t] for which bix ∈ S. For any fixed x,
if b1, . . . , bt are picked uniformly at random from F2n , the
probability of this occurring is 1− (1− |S|/2n)t ≥ 1− o(1).
Thus, there exists b1, . . . , bt such that for at least (1−o(1))-
fraction of the elements x ∈ F2n , C′ correctly computes the
qth-root of its input x. This is a contradiction to Theo-
rem 1.

6.2 Residuosity
We now consider residuosity.
Proof of Theorem 3: The proof is similar to the proof

of Theorem 2. The main difference is that the qth-residue
symbol cannot be easily checked (unlike the qth-root). In-
stead the random self-reduction will involve a suitable plu-
rality vote which will be correct with high probability.

Let C : F2n → {0, 1}t be an AC0(⊕) circuit of size M and
depth d. Suppose

Pr
x∈F2n

[C(x) = Λ(x)] ≥ 1

q
+ n−1/(10d).

We begin by replacing Λ with the more algebraically pleas-
ant function Λ : F2n → F2n given by Λ(x) = x(2n−1)/q

(which always outputs a qth-root of unity in F2n). It is clear
that one can suitably modify C without increasing its size
by more that O(nq), so that C also maps F2n to F2n , C al-
ways outputs a qth-root of unity in F2n , and C still predicts
Λ on a 1

q
+ n−1/(10d) fraction of F2n .

Construct the AC0(⊕) circuit C′ as follows. Fix t =

n1/(10d). C′ will take as advice certain b1, . . . , bt ∈ F2n , cer-
tain e1, . . . , et ∈ {1, 2, . . . , q − 1} as well as c1, . . . , ct ∈ F2n ,
where ci = 1

Λ(bi)
.

Circuit C′, given input x ∈ F2n :

• Let e′i ∈ {1, 2, . . . , q − 1} equal the multiplicative in-
verse of ei mod q.

• For each i ∈ [t], compute ai = C(bi · xe
′
i)ei .

• Output the most frequent value of ai · ceii , as i varies
in [t].

The size of C′ is t ·M +O(2t) (the t ·M term is for the t
invocations of C, and the 2t term is for computing the most
frequent value), and it had depth d + 1. Furthermore, C′

always outputs a qth-root of unity.
Again, we will show that there exists a choice of b1, . . . , bt ∈

F2n and e1, . . . , et ∈ {1, . . . , q − 1} such that the resulting
circuit C′ satisfies:

Pr
x∈F2n

[C′(x) = Λ(x)] ≥ 1− o(1).

To show this, pick b1, . . . , bt independently and uniformly
at random from F2n and e1, . . . , et independently and uni-
formly at random from {1, . . . , q − 1}. Fix any x ∈ F2n .
We now show that the distribution of ai has the following
properties:

Pr[ai = Λ(bi)
ei · Λ(x)] ≥ 1

q
+ n−1/(10d),

and for every qth-root of unity ω 6= 1, we have:

Pr[ai = ω · Λ(bi)
eiΛ(x)] ≤ 1

q
− (q − 1)n−1/(10d)

q
.

Indeed,

Pr[ai = Λ(bi)
ei · Λ(x)] = Pr

bi,ei
[C(bix

e′i)ei = Λ(beii x)]

= Pr
bi,ei

[C(bix
e′i)ei = Λ(bix

e′i)ei]

= Pr
y∈F2n

[C(y) = Λ(y)] ≥ 1

q
+ n−1/(10d)

(since bi is uniformly distributed in F2n).

Similarly,

Pr[ai = ω · Λ(bi)
ei · Λ(x)] = Pr

bi,ei
[C(bix

e′i)ei = ω · Λ(beii x)]

= Pr
bi,ei

[C(bix
e′i)ei = ω · Λ(bix

e′i)ei]

= Pr
y∈F2n ,ei

[C(y) = ωe
′
i · Λ(y)]

=
1

q − 1
· Pr
y∈F2n

[C(y) 6= Λ(y)]

≤ 1

q
− (q − 1)n−1/(10d)

q
.

Given this claim about the distribution of the ai, it follows
that the most frequent value (as i varies over [t]) of ai · ceii
will equal Λ(x) with probability at least 1− o(1).

Thus, there is a fixed choice of the bi and the ei, such
that for at least (1 − o(1))-fraction of x ∈ F2n the circuit
C′ on input x computes Λ(x). This is a contradiction to
Theorem 1.

6.3 Bounds on multiplicative character sums
We now use the average-case hardness of residuosity that

we just derived to prove the multiplicative character sum
bound, Theorem 4. This is an instantiation of the general
principle that distinguishability implies predictability.

Proof of Theorem 4: We will show the Theorem with
ε = 1/40. Suppose not; i.e., there is a polynomial p(x1, . . . , xn) ∈
F2[x1, . . . , xn] of degree at most nε such that:∣∣∣Ex∈F2n [χ(x)(−1)p(η(x))

]∣∣∣ > n−ε.

Here p can be thought of as distinguishing between the qth-
residue character and a uniformly random qth-root of unity.
We will use this “distinguisher” p to construct an AC0(⊕)
circuit C which predicts the value of χ with probability no-
ticeably larger than 1/q, thus contradicting Theorem 3.

Let θ′ = Ex∈F2n
[
χ(x)(−1)p(η(x))

]
(recall that we assume

that |θ′| > n−ε). Set θ = θ′
|θ′| . Therefore

Ex∈F2n [θ · χ(x)(−1)p(η(x))] = |θ′|,

and so

Ex∈F2n [<(θ · χ(x))(−1)p(η(x))] = |θ′| > n−ε.

We now construct the circuit C.
Randomized AC0(⊕) circuit C(x, r)
Input x ∈ F2n , random bits r

• Compute p(η(x)). p is a polynomial with at most
(
n
≤nε
)

monomials, and hence can be computed by a depth 2

AC0(⊕) circuit of size 2n
2ε

.

• Pick I ∈ {0, 1, . . . , q − 1} according to the probability
distribution

Pr[I = i] =
1

q

(
1 + <(θ · ωi)(−1)p(η(x))

)
.

(it suffices that these probabilities are accurate upto
± exp(−n) additive error, which can be done by a
poly(n)-size AC0(⊕) circuit).

• Output ωI .

Observe that C is a circuit of depth ≤ 3 and size ≤ 2n
2ε

.
By construction, for each x ∈ F2n , we have:

Pr
r

[C(x, r) = χ(x)] =
1

q

(
1 + <(θ · χ(x))(−1)p(η(x))

)
.

Thus

Ex∈F2nEr[1C(x,r)=χ(x)] = Ex[
1

q

(
1 + <(θ · χ(x))(−1)p(η(x))

)
]

=
1

q
(1 + |θ′|)

≥ 1

q
(1 + n−ε).

Therefore, there is a choice of r0 such that:

Pr
x∈F2n

[C(x, r0) = χ(x)] =
1

q
(1 + n−ε).

This contradicts Theorem 3 (for ε small enough, ε = 1/40
suffices), as desired.

7. OPEN PROBLEMS
We now conclude with some open problems.

1. Can the inverse over F2n be computed in AC0(⊕)?
This seems like a very basic question. Computing the
inverse is a special case of powering, but our techniques
fall short of proving its hardness (in particular, the
inverse map is not versatile in the sense of Lemma 7).

2. Is the cubic residue character Λ exponentially hard on
average for AC0(⊕)? Concretely, is it the case that for
every AC0(⊕) circuit of polynomial size:

Pr
x∈F2n

[C(x) = Λ(x)] ≤ 1

3
+ n−ω(1)?

We conjecture that it is so.

A well known conjecture asserts the same for the Mod3

function. Perhaps the algebraic setting of F2n makes
more tools available to us and will be easier to handle?

Such hardness on average would be relevant to the con-
struction of pseudorandom generators against AC0(⊕).

8. ACKNOWLEDGEMENTS
I am very grateful to Eric Allender, Noga Alon, Paul

Beame, Eli Ben-Sasson, Jean Bourgain, Shubhangi Saraf,
Srikanth Srinivasan, Madhu Sudan and Emanuele Viola for
useful feedback and encouragement.

9. REFERENCES
[1] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta.

Simple constructions of almost k-wise independent
random variables. In IEEE, editor, Proceedings of the
31st Annual Symposium on Foundations of Computer
Science, pages 544–553, St. Louis, MS, Oct. 1990.
IEEE Computer Society Press.

[2] Y. Azar, R. Motwani, and J. Naor. Approximating
probability distributions using small sample spaces.
Combinatorica, 18(2):151–171, 1998.

[3] E. Ben-Sasson and S. Kopparty. Polynomials
uncorrelated with polynomials, 2008. Unpublished
Manuscript.

[4] E. Ben-Sasson and S. Kopparty. Affine dispersers from
subspace polynomials. In STOC, pages 65–74, 2009.

[5] J. Bourgain. On the construction of affine extractors.
Geometric And Functional Analysis, 17:33–57, 2007.

[6] W. Eberly. Very fast parallel polynomial arithmetic.
SIAM J. Comput., 18(5):955–976, 1989.

[7] F. E. Fich and M. Tompa. The parallel complexity of
exponentiating polynomials over finite fields. J. ACM,
35(3):651–667, 1988.

[8] R. L. Graham and J. H. Spencer. A constructive
solution to a tournament problem. Canad. Math.
Bull., 14:45–48, 1971.

[9] D. Gutfreund and E. Viola. Fooling parity tests with
parity gates. In K. Jansen, S. Khanna, J. D. P. Rolim,
and D. Ron, editors, APPROX-RANDOM, volume
3122 of Lecture Notes in Computer Science, pages
381–392. Springer, 2004.

[10] A. Healy and E. Viola. Constant-depth circuits for
arithmetic in finite fields of characteristic two. In
B. Durand and W. Thomas, editors, STACS, volume

3884 of Lecture Notes in Computer Science, pages
672–683. Springer, 2006.

[11] W. Hesse, E. Allender, and D. A. M. Barrington.
Uniform constant-depth threshold circuits for division
and iterated multiplication. J. Comput. Syst. Sci,
65(4):695–716, 2002.

[12] T. Kaufman and M. Sudan. Algebraic property
testing: the role of invariance. In STOC, pages
403–412, 2008.

[13] S. V. Konyagin and I. E. Shparlinski. Character sums
with exponential functions and their applications,
volume 136 of Cambridge Tracts in Mathematics.
Cambridge University Press, Cambridge, 1999.

[14] S. Kopparty. Algebraic Methods in Randomness and
Pseudorandomness. PhD thesis, MIT, 2010.

[15] M. Naor, A. Nussboim, and E. Tromer. Efficiently
constructible huge graphs that preserve first order
properties of random graphs. In J. Kilian, editor,
TCC, volume 3378 of Lecture Notes in Computer
Science, pages 66–85. Springer, 2005.

[16] A. Razborov. Lower bounds on the size of bounded
depth circuits over a complete basis with logical
addition. MATHNASUSSR: Mathematical Notes of
the Academy of Sciences of the USSR, 41, 1987.

[17] A. A. Razborov and S. Rudich. Natural proofs. J.
Comput. Syst. Sci., 55(1):24–35, 1997.

[18] I. E. Shparlinski. Number theoretic methods in
cryptography: complexity lower bounds, volume 17 of
Progress in computer science and applied logic.
Birkhäuser Verlag, 1999.

[19] R. Smolensky. Algebraic methods in the theory of
lower bounds for boolean circuit complexity. In STOC,
pages 77–82, 1987.

[20] R. Smolensky. On representations by low-degree
polynomials. In FOCS, pages 130–138, 1993.

[21] J. von zur Gathen. Efficient exponentiation in finite
fields (extended abstract). In FOCS, pages 384–391,
1991.

APPENDIX
A. VERSATILITY OF MAJORITY

Proof of Lemma 6: Let f : Fn2 → F2 be any function.
Define S0 = {x ∈ Fn2 | Maj(x) = 0}. Define S1 = {x ∈

Fn2 | Maj(x) = 1}.
The crucial fact is that S0 and S1 are interpolating sets

for polynomials of degree at most n/2 (namely, for every
f0 : S0 → F2, there is a unique polynomial p0 : Fn2 → F2 of
degree at most n/2 such that p0|S0 = f0; and similarly for
every f1 : S1 → F2 there exists a p1).

This fact has a simple proof. We focus on S0 (the case of
S1 being identical). For every I ⊆ [n], |I| < n/2, let xI be
the monomial

∏
i∈I xi, and let vI ∈ Fn2 be the point with 1’s

in coordinates in to I and 0’s in the remaining coordinates.
Then the 2n−1×2n−1 matrix with rows and columns indexed
by subsets I ⊆ [n] with |I| < n/2, and whose I, J entry is
xI(vJ) is upper triangular with 1s on the diagonal (where
the subsets are in order of nondecreasing size). Thus the
functions xI |S0 are linearly independent, and by dimension
counting, they form a basis for all functions on S0.

Thus there exists a p0 : Fn2 → F2 of degree at most n/2
such that p0|S0 = f |S0 , and a p1 such that p1|S1 = f |S1 .
Then for all x ∈ Fn2 ,

f(x) = p0(x) · (1−Maj(x)) + p1(x) ·Maj(x)

= (p1 − p0)(x) ·Maj(x) + p0(x).

