
Lecture 9: Pseudo-random generators against space bounded com-
putation, Primality Testing

Topics in Pseudorandomness and Complexity (Spring 2018)
Rutgers University
Swastik Kopparty

Scribes: Harsha Tirumala, Jiyu Zhang

1 Pseudo Random Generators against small space branching pro-
grams

In the previous lectures, we have seen constructions of efficient randomness extractors which help
extract random bits from a weakly random source. In this lecture, we will use these randomness
extractors to show that read-once branching programs operating on low space can be simulated
(with very little error) using at most O(log n2) random bits.

1.1 definitions

Definition 1. A random variable X on {0, 1}n has minimum entropy H∞(X) ≥ k if
∀x ∈ {0, 1}n Pr[X = x] ≤ 2−k

Definition 2. A function E : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) extractor if :
∀ random variable X with H∞(X) ≥ k,

∆(E(X,Ud), Um) ≤ ε

The randomness extractor E helps extract the randomness hidden in a weak random source X
by investing d bits of randomness (which are recovered in the process). We have already seen the
existence of expander-based extractors with the following guarantees :
∃E : {0, 1}n × {0, 1}d → {0, 1}m which is a (k, ε) extractor for d = O(n− k + log(1ε))

We will use the above expander-based extractor to construct a pseudo-random generator that fools
LOGSPACE read-once branching programs.

Fact 3. If X1 and X2 are independent random variables with H∞(X1) ≤ k1 and H∞(X2) ≤ k2,
then f(X1, X2) has H∞ ≤ k1 + k2

Theorem 4. For any δ > 0, there is a pseudorandom generator taking a uniformly random seed
of length O(log2n) and producing n bits that δ-fool any s = O(log n) space read-once branching
program.

Proof. The construction is as follows. Let t, d be constants to be fixed later. Let G0 : {0, 1}t →
{0, 1} be a function that returns the first bit of the input; i.e.

G0(x) = x1

1

Let Gi{0, 1}t+id → {0, 1}2
i

be a function such that

Gi(x, y) = Gi−1(x)Gi−1(Ei−1(x, y)),

where x is the first t + (i − 1)d bits of input, and Ei : {0, 1}t+(i−1)d × {0, 1}d → {0, 1}t+(i−1)d is a
(t+ (i− 1)d− 2s, ε′)-extractor, with ε′ to be chosen later.

We can take Ei to be the adjacency map of a good absolute eigenvalue expander. Let k =
t + (i − 1)d − 2s, and let n′ = t + (i − 1)d. If Ei : {0, 1}n′ × {0, 1}d → {0, 1}t+(i−1)d, then we
get d = O(n′ − k + log(1

ε′)) = O(2s− log(1
ε′)).

To fool a read-once branching program B : {0, 1}n → {0, 1}, we will need to use Glogn, which will
use t+ d log n random bits. It will turn out that we can take ε′ = 1

poly(n) , so d = O(log n). So, we

will need an O(log2 n) length random seed.

Claim 5. Gi (ε′ + 2−s)(2i+1 − 1)-fools read-once branching programs of space s.

We will prove the claim by induction on i.
For v in layer 2i−1 of the branching program, let w − Gi−1(x), and let pv = Pr[B(w) = v] . Let
Xv = X|B(w)=v.

Claim 6. H∞(Xv) ≥ t+ (i− 1)d− log(1
pv

).

Call v unimportant if pv ≤ 2−2s. Then the probability of ending up in any unimportant state at
all is given by Σvpv ≤ 2s2−2s ≤ 2−s. For important states v, we have H∞(Xv) ≥ t+ (i− 1)d− 2s.

Pick v according to pv. By induction, this is (ε′+2−s)(2i+1−1)close to the v chosen from B(z), for
uniformly random z. If v is good, then E(x, v) is ε′-close to Ut+(i−1)d, so Gi−1(E(xv, y)) is ε′-close
o Gi−1(Ut+(i−1)d).

Let Bv be the length 2i−1 branching program starting at v. We know Bv(Gi−1(Ut+(i−1)d)) is ε′-close
to Bv(Gi−1(U2i−1)). By induction, Bv(Gi−1(Ut+(i−1)d)) is (ε′ + 2−s)(2i − 1)-close to Bv(U2i−1).

So, for v chosen from the distribution of Gi−1(Ut+(i−1)d) and v′ chosen from the distribution of
B(U2i−1), we have that (v,Bv(Gi−1(E(x, y)))) is (ε′+2−s)(2i−1)+2−s+ε′+(ε′+2−s)(2i−1)-close
to (v′, Bv(U2i−1)).

Since i ≤ log n, provided that s is a sufficiently large multiple of log n and ε′2logn is sufficiently
small relative to ε, it follows that Glogn ε-fools any branching program of size s, using O(log2 n)
random bits.

2 Primality Testing

Problem: Given an integer n, decide if n is prime.
Moreover, we want to decide this in time poly(log n). (Since the input size is log n)

2

History of Algorithmic Approach
1976 Miller-Rabin (Randomized)
1999 Agrawal, Biswas (Randomized)
2002 Agrawal, Biswas (Deterministic)

Randomized Algorithm[AB99]

We will now discuss the randomized algorithm due to Agrawal and Biswas.
Consider the polynomial (x+ 1)n, which expanded to be xn +

(
n
1

)
xn−1 + · · ·+

(
n
n−1

)
x+ 1. We have

the following facts:

1. If n is prime, then for all 0 < i < n, n |
(
n
i

)
. (By ′′|′′ we mean n divides

(
n
i

)
) Then we have

2. If n is prime, (x+ 1)n ≡ xn + 1 (mod n).

Note that the congruence relation above is a congruence of polynomials with integer coefficients:
A(x) ≡ B(x) (mod n) if A(x)−B(x) = nC(x) for some C(x) ∈ Z[x].

Lemma 7. n is prime iff (x+ 1)n ≡ xn + 1 (mod n)

Proof: Given the fact 2 above, we want to prove the other direction by contraposition. To be
specific, we want to show that if n is composite, then ∃i, 0 < i < n such that n -

(
n
i

)
.

Here is a quick observation: if p | n, then
(
n
p

)
= n(n−1)···(n−p+1)

p···1 where the n above is divided by p

below, so n no longer divides
(
n
p

)
.

A Naive Algorithm

A naive algorithm is to think that we can utilize methods in polynomial identity testing. To be
specific, the algorithm goes as below:

1. Pick random x ∈ {0, . . . , n− 1}

2. Check if (x+ 1)n − xn − 1 ≡ 0 (mod n)

But this approach doesn’t work. Why? Because in polynomial identity testing we need n to be
prime as prerequisite to ensure that we choose x from a field.(This may not seem obvious but we
have another reason as follows). In addition, we require that the degree of the polynomial is low
in the sense that it must be less than the field size(or the number of possible values) of x. While
in the above naive algorithm, the size and degree are both n, and in fact n can be extremely large.

Instead, we have the following modified algorithm due to Agrawal and Biswas.

3

Agrawal and Biswas’ Algorithm

1. Pick random polynomial Q(x) of degree ≤ d where d is of size O(log n).

2. Check if (x+ 1)n − xn − 1 ≡ 0 (mod n,Q(x)).

3. If yes, then output Prime, else output Composite.

Proof of Correctness:
It is easy to see that there’s no false negative given the lemma above. That is to say, when n is
prime it always outputs the correct answer. We’d like to show that if n is indeed composite, then
with high probability over the choice of Q(x), (x+ 1)n − xn − 1 6≡ 0 (mod n,Q(x)) holds.
Now consider a prime p where p |n(so n is composite). Let pi be the largest power of p that divides

n, so n = pis for some s. Consider
(
n
pi

)
= n(n−1)···(n−pi+1)

pi(pi−1)···1 , it’s easy to see that
(
n
pi

)
6≡ 0 (mod p).

This indicates that given composite integer n, then both (x + 1)n − xn − 1 6≡ 0 (mod n) and
(x+ 1)n − xn − 1 6≡ 0 (mod p) hold.
Now given n is composite, we want to show that if we pick Q(x) at random, then with high prob-
ability (x + 1)n − xn − 1 6≡ 0 (mod Q(x), p). By above discussion we have (x + 1)n − xn − 1 6≡
0 (mod Q(x), n) with high probability.
Notice that picking a Q(x) of degree d = O(log n) and do operations modulo p is the same as
picking a Q(x) of degree d with coefficients in Zp. (that is to say, pick Q(x) from Fp[x]).
Assume that the algorithm outputs Prime with probability at least α, that is,

Pr
Q(x)∈Z[x],deg(Q)≤d

[(x+ 1)n − xn − 1 ≡ 0 (mod Q(x), n)] ≥ α

which is equivalanet to

Pr
Q(x)∈Fp[x],deg(Q)≤d

[Q(x)|(x+ 1)n − xn − 1] ≥ α

then

Pr
Q

[Q(x) is not irreducible] + Pr
Q

[Q(x) is irreducible but Q(x) - (x+ 1)n − xn − 1] ≤ 1− α

(Note that (x+ 1)n − xn − 1 has unique factorization of irreducible polynomials. Also in above we
write range Q below Pr just for convenience, the range is the same as above.)

Fact 8. Pr
Q(x)∈Fp[x],deg(Q)=d

[Q(x) is an irreducible polynomial] ≥ 1
d

Therefore,
Pr
Q

[Q(x) is irreducible and Q(x) | (x+ 1)n − xn − 1] ≥ 1
d − (1− α)

Now we prove by contradiction. If α ≥ 1 − 1
2d ,then the above probability is at least 1

2d . So we

have at least pd−1

2d such Q(x) that divides (x+ 1)n − xn − 1. Given (x+ 1)n − xn − 1, there are at

most n/d irreducible factors of degree at most d. Therefore, we should have pd−1

2d ≤
n
d . But since

4

we have d = poly(log n), we reach a contradiction. Therefore we have

Pr
Q(x)∈Z[x],deg(Q)≤d

[(x+ 1)n − xn − 1 6≡ 0 (mod Q(x), n)] ≤ 1
2d

The remaining key issue in analysis of this algorithm is that how to compute (x + 1)n − xn −
1 mod Q(x) mod p in a reasonable time. But we shall see that this can be done by repeatedly
squaring, and it is in time O(log n).

5

