
Lecture 7 : Improved δ-almost k-wise independence and K-universal
set

Topics in Pseudo-randomness and Complexity Theory (Spring 2018)
Rutgers University
Swastik Kopparty

Scribe: Vishwas Bhargava, Vibha Sridhar

1 Review:

In last lecture we saw an explicit construction of ε-biased sets and used them generate δ-almost
k-wise independence. Specifically, we proved the following lemma. Specifically, we proved the
following lemma.

Lemma 1. We can obtain a δ-almost k-wise independent distribution which we can sample with
2 log n+ log 1

δ + k random bits.

This followed simply by taking µ to be an ε-biased distribution on Fn2 and sampling elements from
it. A natural question arises from this: Can this be done using less randomness?

2 Improved δ-almost k-wise independence

We have δ-almost k-wise independence using O(log n+log 1
δ +k) random bits. We want to generate

a distribution δ-close to uniform on {0, 1}n How many random-bits?

Recall, if X,Y are random variables on {0, 1}n such that X,Y are δ close in statistical distance, that
is ∆(X,Y) ≤ δ. Then for any f : {0, 1}n −→ {0, 1}, ∆(f(X), f(Y)) ≤ δ.

Since, in proof of Lem. 1 we didn’t use the full power of ε-biased sets, perhaps we can have δ-almost
k-wise independence with much less randomness. Let’s follow the most natural plan:

Find a distribution Y that is (0.01) close to Un =uniform on {0, 1}n. then, ∆(f(Un), f(Y)) ≤ 0.01.
Hopefully, Y needs fewer bits to sample.

Recall, any distribution with support size ≥ 2n−1 has ∆(Y,Un) ≤ 1
2 . So, if δ < 1

2 , we need n
random-bits to be δ-close to uniform.

So, we cant improve k. But we can improve O(log n) to O(log log n).

Plan : To produce a (X1, X2 . . . Xn) distribution s.t. ∀T ⊆ [N] 1 ≤ |T | ≤ k

Pr
[
⊕i∈T Xi = 1

]
∈
(1− ε

2
,
1 + ε

2

)
(1)

1

Property 1 inherits the notion of being ε-biased for small sets(of size k).

In order to construct such a distribution we will need a matrix M ∈ Fk logn×n2 , such that every k
column of M are linearly independent. That is,

M =

 . . .

v1
. . . vn
. . .


where vi ∈ {0, 1}k logn and every k column are linearly independent. We will defer explicit con-
struction of M to next subsection.

Now, consider an ε-biased distribution Z on {0, 1}k logn

Output: ZM ∈ {0, 1}n.

Claim 2. The distribution ZM is δ-almost k-wise independence.

Proof. Let (X1, X2 . . . Xn) = ZM. Take T ⊆ [n], 1 ≤ |T | ≤ k. We need to study,

⊕
i∈T

Xi = ⊕
i∈T
〈vi, z〉,

where vT 6= 0. Notice that, Pr
[
⊕
i∈T
〈vi, z〉 = 1

]
∈ (1−ε2 , 1+ε2) by ε-biasedness of z.

Property 1 =⇒ (X1 . . . Xn) is (ε2−k/2)-almost k wise independent so, set ε = δ2−k/2)

We need to sample a z ∈ {0, 1}k logn which is ε-biased. This needs O(log k log n + log 1
ε) bits.

Therefore, the total amount of randomness used is O(log log n+ log 1
ε + k).

Construction of M

Let m = log n. Recall that, φ : F2m −→ Fm2 is a linear bijection, as discussed in previous lecture.

M =

elements of F2m︷ ︸︸ ︷
φ(1) φ(1)
φ(α1) φ(αn)

...
...

...
...

φ(αk−11) φ(αk−1n)


Here α1 . . . αn are elements of F2m . Since, φ(αi) ∈ Fm2 , φ(αi) represents a block of size log n. Thus
M is a {0, 1} matrix.

2

3 K-Universal Set

Consider a subset of {0, 1}n such that for any S ⊆ [n], |S| ≤ k and any y ∈ {0, 1}S , there is some
x ∈ X such that x|S = y.

Observation: Support of a 1
22k

- almost k-wise independent distribution is k-universal.

There are explicit such distributions that can be sampled with O(k + log(logn)) random bits.
Size of support is now 2O(k) poly-log n versus O(2k log n) for non explicit distributions.

3.1 Designing Tests

F is a collection of functions from {0, 1}n → {0, 1}.

Definition 3. A distribution (x1, x2, ...xn) ε - Fools F , if f ∈ F such that

|Pr[f(x1, ...xn) = 1] − Pr[f(Un) = 1]| ≤ ε.

Examples:

1. F = all functions such that (x1, ...xn) is any distribution ε-close to Un.

2. F = linear function (f(x) = 〈, x〉) such that (x1, ...xn) is ε-biased.

3. F = k-juntas, (x1, ...xn) is ε-almost k-wise independent.

Definition 4. A k-junta is a f : {0,1}n → {0,1} such that f is dependent on only k variables.

Even though a k-junta takes in ’n’ input values, the function depends only on some k variables.

Consider the Probability masses p, q where D → [0,1] and f : D → R. For ∆(p,q) :

∆(f(p), f(q)) =
∑
r∈R

∣∣Pr[r under p] - Pr[r under q]
∣∣

=
∑
r

∣∣ ∑
d∈f−1(r)

∣∣p(d)− q(d)
∣∣

≤
∑

r,
∑
d∈f−1(r)

∣∣p(d)− q(d)
∣∣ (by triangle inequality)

= ∆(p, q)

Here, f−1 corresponds to the inverse of f.

So, ∆(p, q) = max
s⊆D

[p(s) - q(s)].

Theorem 5. Let F be a collection of functions. Then ∃ a multiset S ⊆ {0,1}n,

3

| S | ≤ log(F)
ε , such that

the uniform distribution over S, ε-fools F .

Proof. Take x1, . . . , xt ∈ {0, 1}m uniformly at random. Fix f ∈ F . The probability that

Pr
x1,...xt

[| 1
t

∑t
i=1 f(xi) - E [[] f(y)]

y∈{0,1}n
| ≥ ε] ≤ e−ω(ε

2t)

Here, f(xi) measures the probability of seeing 1 when you feed in a uniform string from x1,...xt, if
the distribution was uniform distribution of x1, . . . , xt.

For a fixed f the probability that x1, . . . , xt doesn’t work is really small.

Taking Union Bound over all F ∈ F .

Prx1,...,xt [∃F ∈ F such that x1, . . . , xt is bad for F] ≤ |F |e−ω(ε2t)

So, ∃ x1, . . . , xt such that for all f ← F , x1, . . . , xt is not bad for f .

Example: F = all functions computable by a Boolean circuit of size n10.

Here, n is the number of input, so there will be n10 gates, with each gate choosing which source it
comes from.

F ≤ (n102
n10

) ≤ 2n
11

So, ∃ S of size O(n11) such that uniform distribution over S, (0.1)-fools F .

If we could deterministically enumerate S on poly(n) time, then we can derandomize any randomized
algorithm that runs in time On10 and uses n random bits.

For specific F of certain sizes, there are lower bounds.

4 Low Space Algorithms

A Low Space Algorithm uses at most log n of it’s own space.

1. L - denotes a function that can be computed by deterministic log space algorithm.

2. BPL - denotes a function that can be computed by a randomized algorithm using O(log n)
space and poly(n) time.

4

4.1 Layered Branching Programming

Definition 6. Layered Branching Programs are branching programs where the nodes are partitioned
into a number of layers, and edges go only from nodes in one layer to nodes in the next. The start
node is in the first layer and the sink nodes in the last.

There are at most Poly(n) states per layer.

Goal: Produce distribution (x1, ...xn) such that (x1, ...xn) ε-fools read-once branching program
that reads x1, x2,...xn in that order.

5

5 Randomness Extractors

Definition 7. A randomness extractor, is a function, which being applied to output from a weakly
random entropy source, together with a short, uniformly random seed, generates a highly random
output that appears independent from the source and uniformly distributed i.e, it takes in some
pretty random bits and outputs very random bits.

Example Application : To sample uniformly random n-bit prime.

The two approaches discussed in class are :

Approach 1 :

1. Pick a uniform random number

2. Check if it is prime. If so, output it.

3. Else, repeat.

Approach 2 : This approach is more efficient and reduces the amount of randomization used.

1. Sample an n-bit integer X

2. If X is prime, output X. Done.

3. Else, Extract randomness from X.

4. Repeat using this randomness and possibly more randomness.

Definition 8. A deterministic 1-bit extractor from a k-bit source is a function f : {0,1}n →
{0,1} such that for any distribution X which is uniform over a set of size 2k, f(X) is (0.1)-close
to uniform on {0,1}.

6

