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1 Review: ϵ-Biased Sets

Definition 1. A collection (x1, . . . , xn) ∈ {0, 1}n of random variables is called ϵ-biased if ∀y ∈
{0, 1}n,Pr[⟨y, x⟩ = 0] ∈ [1−ϵ

2 , 1+ϵ
2 ].

Fact 2. A 0-biased distribution is uniform.

This fact will be proven later on.

Theorem 3. There are ϵ-biased distributions on {0, 1}n which are uniform over a multiset of size
O( n

ϵ2
).

2 Constructing ϵ-Biased Sets

The construction of ϵ-Biased sets has been consistently improving. A simple O(n
2

ϵ2
) will be shown

here. However, the following are known:

1. Before 2013: O(n
2

ϵ2
) or O( n

ϵ3
).

2. 2013, by Ben-Aroya and Ta-Shma: O( n
ϵ2

1.25).

3. 2017, by Ta-Shma: O( n
ϵ2+o(1) ).

We do now know if there is a construction of an ϵ-biased distribution of size O( n
ϵ2
) though we know

they exist.

We now present the construction of an ϵ-biased distribution of size O(n
2

ϵ2
) by Alon-Goldreich-

Halsted-Peralta.

2.1 Aside: Fn
2 and F2n

For a prime p, we can consider Z/pZ. This is the construction of Fp: with operations modulo p.

Similarly, we can take F2[x], the polynomials with coefficients in F2. Here, let q be an irreducible
polynomial (one that does not factor) and have degree n. q(x)F2[x] ⊂ F2[x] is an ideal and we can
define F2n = F2[x]/q(x)F2[x]. This looks like F2n = {a(x) ∈ F2[x] : deg(a) < n}.
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As an additive group, F2n
∼= Fn

2 as polynomial addition can be viewed as component-wise addition.
In fact, we define ϕ : F2n → Fn

2 to be this linear map in F2.

Multiplication is not so nice, though a formula depending on q exists. This is an invertible operation
thanks to the GCD algorithm and the division theorem and their applicability in F2[x].

2.2 The Construction

Let S = {(⟨ϕ(α), z⟩, ⟨ϕ(α2), z⟩, . . . , ⟨ϕ(αn), z⟩)∀α ∈ F2m , z ∈ Fm
2 }

|S| = 22m.

We now prove that S is ϵ-biased.

Proof. What we want is Prx∈S [⟨x, y⟩ = 0] being close to 1/2 for y ̸= 0. The following equivalences
give us all we need:

Pr
x∈S

[⟨x, y⟩ = 0] = Pr
α∈F2m ,z∈Fm

2

[

n∑
i=1

⟨ϕ(αi), z⟩yi = 0] = Pr
α,z

[⟨ϕ(
n∑

i=1

yiα
i), z⟩ = 0]

We define py(t) =
∑n

i=1 yit
i, a polynomial that we evaluate at α. In addition, we condition on

whether ϕ(py(α)) = 0. This is relevant since y ̸= 0 so ϕ(py(α)) is not zero everywhere.

Pr
α,z

[⟨ϕ(
n∑

i=1

yiα
i), z⟩ = 0] = Pr

α,z
[⟨ϕ(py(α)), z⟩ = 0] = Pr

α
[ϕ(py(α)) = 0] ∗ 1 + Pr

α
[ϕ(py(α)) = 0] ∗ 1

2

We can bound p = Prα[ϕ(py(α)) = 0] ≤ n
2n since a py has at most n zeros out of the 2n possible

values. Then, Prα,z[⟨ϕ(py(α)), z⟩ = 0] = p+ 1−p
2 = 1+p

2 . 1+p
2 ∈ [12 , 1 +

n
2m ].

We can choose m = log(nϵ ) so that S is ϵ-biased of size O(n
2

ϵ2
).

We note that S can contain duplicates so it better thought of as a multi-set. For z = 0, regardless
of α, we get the 0 vector in Fn

2 as our entry in S.

We also note that there are deterministic ways to get q ∈ F2[x] in poly-n time.

3 ϵ-Biased Sets and Expander Graphs

Let S ⊂ Fn
2 be an ϵ-biased set. We consider the Cayley graph.

Definition 4. The Cayley graph of a group G and some T ⊂ G, is called Cay(G;T ) and defined
to be a graph with vertices in G and edge set {(a, a+ x) : a ∈ G, x ∈ S}.

2



Fact 5. We have the following clear facts about Cayley graphs:

• The graph is |S|-regular. This is possibly around O( n
ϵ2
).

• Over Fn
2 , this is undirected since x = x−1.

• 2n vertices when formed over Fn
2

We now put G = Cay(Fn
2 ;S) and consider its eigenvalues. In doing so, we define the additive

character.

Definition 6. Let y ∈ F2n. Let ψy : F2n → R with ψy(a) = (−1)⟨y,a⟩. ψ is called an additive
character and we know that ψy(a+ b) = ψy(a)ψy(b) and that ψx+y(a) = ψx(a)ψy(a).

Claim 7. For all y ∈ F2n, ψy is an eigenvector of G.

Proof. Let M be the normalized adjacency matrix of G. (Mψy)(a) = Eb adjacent to a[ψy(b)], where
Mψy(a) is formed by evaluating ψy at every point in F2n and taking the matrix-vector product.
Then, using lots of linearity (LOL), we can establish:

(Mψy)(a) = E
x∈S

[ψy(a+ x)] = E
x∈S

[ψy(a)ψy(x)] = ψy(a) E
x∈S

[ψy(x)]

so ψy is an eigenvector of eigenvalue Ex∈S [ψy(x)]. This eigenvalue is bounded by: |Ex∈S [ψy(x)]| =
|Ex∈S [(−1)⟨y,x⟩]| < ϵ if y ̸= 0. Ex∈S [(−1)⟨y,x⟩] = 1 if y = 0.

Hence, Cay(F2n ;S) is a |S|-regular ϵ-expander.

4 Size of ϵ-biased sets

Claim 8. Any ϵ-biased set S ⊆ {0, 1}n has size at least O(n/ϵ2).

Proof. Let S be an ϵ-biased subset of {0, 1}n. Consider the distribution S + S + · · ·+ S (S added
to itself t times). This the is random variable µt = x1+x2+ · · ·+xt, where each xi is uniform over
S. We also define the function µt(z) to be the probability mass function of µt. For any y ∈ {0, 1}n,
Ez∈µt [(−1)⟨z,y⟩] = Ex1,...,xt [(−1)⟨x1+···+xt,y⟩] = Ex1,...,xt [(−1)

∑t
i=1 ⟨xi,y⟩] = Ex1,...,xt [

∏t
i=1(−1)⟨xi,y⟩] =∏t

i=1 Exi [(−1)⟨xi,y⟩], which is at most ϵt in absolute value by relation to the tth power of Cay(Fn
2 ;S).

Note that µt(z) =
1

|S|tCard{(x1, . . . , xt) :
∑t

i=1 xi = z}.

Definition 9. Let f and g be functions from Fn
2 to R. We define the convolution of f and g as

(f ⋆ g)(a) = Eb1,b2:b1+b2=a[f(b1)g(b2)].

Notice that (̂f ⋆ g)(y) = Ea[(f ⋆ g)(a)ψy(a)] = Ea,b1,b2:b1+b2=a[f(b1)g(b2)ψy(a)] =

Eb1,b2 [f(b1)ψy(b1)g(b2)ψy(b2)] = Eb1 [f(b1)ψy(b1)]Eb2 [g(b2)ψy(b2)] = f̂(y)ĝ(y).

For example, let f = 2n

|S|1S . Then (f ⋆ f)(a) = Eb1,b2:b1+b2=a[f(b1)f(b2)] =

(2
n

|s| )
2 1
2n

∑
b1,b2:b1+b2=a 1S(b1)1S(b2) = (2

n

|s| )
2 1
2nCard{(b1, b2) ∈ S × S : b1 + b2 = a} =

2n

|S|2Card{(b1, b2) ∈ S × S : b1 + b2 = a} = 2nµ2(a).
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More generally, f convoluted with itself t times is f⋆t(a) = (f ⋆ · · · ⋆ f)(a) =
Eb1,...,bt:

∑t
i=1 bi=a[

∏t
i=1 f(bi)] =

1
2n(t−1)

∑
b1,...,bt:

∑t
i=1 bi=a(

2n

|S|)
t
∏t

i=1 1S(bi) =
2n

|S|tCard{(b1, . . . , bt) ∈ St :
∑t

i=1 bi = a} = 2nµt(a). Notice that f⋆t/2n = µt is ϵ
t-biased.

Definition 10. The support of µt, written supp(µt), is the number of points z where µt(z) ̸= 0.

Since t is much smaller than |S|, supp(µt) ≤
∑t

k=0

(|S|
k

)
≤ t

(|S|
t

)
.

Notice that µ̂t(y) = Ea[µt(a)ψy(a)] =
1
2n

∑
a µt(a)ψy(a) =

1
2n Ea∈µt µt(a)ψy(a) ≤ ϵt

2n .

Then supp(µt) ≥
((∑a µt(a))2∑

a µ2
t (a)

)
= 1∑

a µ2
t (a)

.

Since Ea[µ
2
t (a)] =

∑
y µ̂

2
t (a) =

1
2n + 2n−1

2n ϵ2t, supp(µt) ≥ 2n

1+(2n−1)ϵ2t
.

The inequalities t
(|S|

t

)
≥ 2n

1+(2n−1)ϵ2t
and ( |S|t )t ≤

(|S|
t

)
≤ ( e|S|t )t imply that t( e|S|t )t ≥ 2n

1+(2n−1)ϵ2t
.

Take t such that ϵ2t ∈ Θ( 1
2n ), that is, t =

n
2 log(1/ϵ) .

Since t
√
2n = 1/ϵ2, |S| ≥ ( 2n

O(1)t)
t t
e ∈ O( n

2e log(1/ϵ)ϵ2
) = O( n

ϵ2 log(1/ϵ)
), as desired.

Claim 11. If µ is 0-biased, then µ is uniform.

Proof. Let µ be a 0-biased distribution. Let y be nonzero. Since µ is 0-biased, by definition, we
have that Ex[µ(x)ψy(x)] =

1
2n

∑
x µ(x)ψy(x) =

1
2n Ex∈µ[ψy(x)] ≤ 0, so ⟨µ, ψy⟩ = 0 for all nonzero

y. This implies that µ is parallel to ψ0, so µ is uniform, as desired.

5 Relation to k-wise independence

Claim 12. If µ is ϵ-biased, then ∥µ− U∥1 ≤ ϵ2n/2.

Proof. By definition, ∥µ− U∥1 =
∑

x |µ(x)− (1/2n)| ≤
√∑

x(µ(x)−
1
2n )

2
√
2n. Therefore,

E[(µ− U)2] = ⟨µ− U, µ− U⟩ =
∑

y(
̂(µ− U)(y))2 =

∑
y(µ̂(y)− Û(y))2 ≤ (2n − 1)( ϵ

2n )
2 ≤ (ϵ2/2n).

Hence, if y ̸= 0, then |µ̂(y)| ≤ ϵ/2n and Û(y) = 0 and if y = 0, then |µ̂(y)| = |Û(y)| = 1/2n.∑
x(µ(x)− 1/2n)2 ≤ ϵ2, so ∥µ− U∥1 ≤ ϵ2n/2, as desired.

Let µ be an ϵ-biased distribution on Fn
2 . Let x1, . . . , xn be randomly sampled from µ. Then for

I ⊆ [n] such that |I| ≤ k, the distribution (xi1 , xi2 , . . . , xiℓ) is ϵ2
k/2-close to uniform over F|I|

2 by the
claim above. Taking ϵ = δ2k/2, we can obtain a δ-almost k-wise independent distribution which we
can sample with 2 log n

ϵ = 2 log n+ k + 2 log(1/δ) random bits.
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