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1 Review: e-Biased Sets

Definition 1. A collection (x1,...,z,) € {0,1}" of random variables is called e-biased if Yy €
{0,13", Pr{y,z) = 0] € [}3%, 1.

Fact 2. A 0-biased distribution is uniform.

This fact will be proven later on.

Theorem 3. There are e-biased distributions on {0,1}™ which are uniform over a multiset of size

O(%).

2 Constructing e-Biased Sets

The construction of e-Biased sets has been consistently improving. A simple O(Z—;) will be shown
here. However, the following are known:

1. Before 2013: 0(2—22) or O(%).

2. 2013, by Ben-Aroya and Ta-Shma: 0(6%1'25).

3. 2017, by Ta-Shma: O(5¢qy)-
We do now know if there is a construction of an e-biased distribution of size O(G%) though we know
they exist.

We now present the construction of an e-biased distribution of size O(Z—;) by Alon-Goldreich-
Halsted-Peralta.

2.1 Aside: F} and Fy»

For a prime p, we can consider Z/pZ. This is the construction of F,: with operations modulo p.

Similarly, we can take Fy[x], the polynomials with coefficients in Fo. Here, let ¢ be an irreducible
polynomial (one that does not factor) and have degree n. q(x)Fz[z] C Falz] is an ideal and we can
define Fan = Fa[x]/q(z)Fa[z]. This looks like Fon = {a(x) € Falz] : deg(a) < n}.



As an additive group, Fon = 3 as polynomial addition can be viewed as component-wise addition.
In fact, we define ¢ : Fon — F5 to be this linear map in Fo.

Multiplication is not so nice, though a formula depending on ¢ exists. This is an invertible operation
thanks to the GCD algorithm and the division theorem and their applicability in Fa[z].

2.2 The Construction

Let S = {({6(a), 2), (#(a2), 2),..., ($(a™), 2))Va € Fam, z € FJ'}
15| = 22m.

We now prove that S is e-biased.

Proof. What we want is Pr,cg[(x,y) = 0] being close to 1/2 for y # 0. The following equivalences
give us all we need:

Pri(e,y)=01= _Pr__ % (¢(a"),z)yi=0]= gg[@ﬁ(z yia'),z) = 0]
=1

€S a€Fom ,z€Fy" 4 ]
1=

We define p,(t) = >_° ; yit', a polynomial that we evaluate at o. In addition, we condition on
whether ¢(py(a)) = 0. This is relevant since y # 0 so ¢(py()) is not zero everywhere.

(63" o), 2) = 0] = Pr{(6(py (), 2) = 0] = Prl6(py(a) = 0] 1 + Pro(py () = 0] * 3
=1

)

e a py has at most n zeros out of the 2" possible

We can bound p = Pra[qb(p ( )) 0] < *271 si
1 14+ 1+ 1 n

y
values. Then, Pr, . [(¢(py(a)), z) = 0]

We can choose m = log(%) so that S is e-biased of size O(%)
O

We note that S can contain duplicates so it better thought of as a multi-set. For z = 0, regardless
of o, we get the 0 vector in F§ as our entry in S.

We also note that there are deterministic ways to get ¢ € Fo[z] in poly-n time.

3 e-Biased Sets and Expander Graphs

Let S C IF} be an e-biased set. We consider the Cayley graph.

Definition 4. The Cayley graph of a group G and some T C G, is called Cay(G;T) and defined
to be a graph with vertices in G and edge set {(a,a+z):a € G,z € S}.



Fact 5. We have the following clear facts about Cayley graphs:

e The graph is |S|-reqular. This is possibly around O(Z).

e Over FY, this is undirected since v =z~ 1.

o 2" vertices when formed over Fy

We now put G = Cay(F5;S) and consider its eigenvalues. In doing so, we define the additive
character.

Definition 6. Let y € Fan. Let b, : Fon — R with ¢, (a) = (=1)W%. o is called an additive
character and we know that y(a + b) = ¢y (a)y(b) and that Y4y (a) = Yp(a)y(a).

Claim 7. For all y € Fon, 1y is an eigenvector of G.

Proof. Let M be the normalized adjacency matrix of G. (M1y)(a) = Ep adjacent to o[¥y(b)], where
M1y(a) is formed by evaluating 1, at every point in Fon and taking the matrix-vector product.
Then, using lots of linearity (LOL), we can establish:

(My)(a) [thy(a + )] [thy(a)iby(x)] = y(a) IIES[%(@]

= E = E
€S z€S

S0 1y is an eigenvector of eigenvalue Ezcs[¢y()]. This eigenvalue is bounded by: | Exesty(z)]] =
|Eres[(=1)W™]] < eif y # 0. Eres[(—1)""] =1if y = 0.

Hence, Cay(Fan; S) is a |S|-regular e-expander. O

4 Size of e-biased sets

Claim 8. Any e-biased set S C {0,1}" has size at least O(n/e?).

Proof. Let S be an e-biased subset of {0,1}". Consider the distribution S + S+ ---+ S (S added
to itself ¢ times). This the is random variable p; = x1 + 22+ - - - + x4, where each z; is uniform over
S. We also define the function p(z) to be the probability mass function of ;. For any y € {0,1}",
Eecpu[(—1)9) = Bay o (1)@ H200)) = By [(—1) Tt @0)] = By, [Ty (1) 0] =
[1i, Ex,[(—1)0¥)], which is at most €® in absolute value by relation to the tth power of Cay(Fy; S).
Note that pu(z) = ﬁCard{(a:l, ) S = 2}

Definition 9. Let f and g be functions from Fy to R. We define the convolution of f and g as
(f *g)(a) = Eb1,b2ib1+b2:a[f(bl)g(bQ)]'

Notice that (f* g)(y) = Ea[(f * 9)(a)1hy(a)] = Eaby byt +b2=alf (b1)g(b2) oy (a)] =

Eby 5o [f (01)y (b1) g (b2) by (b2)] = Ep, [f (1) 1y (01)] Eay [9(b2)1hy (b2)] = () (y).-

For example, let f = %15. Then (f x f)(a) = By bo:by+bo=alf(b1) f(b2)] =
(E1)% 95 2ot bybrtbg—a 15 (01)15(b2) = ()% 5 Card{ (b1, ba) € S x 5 : by +by = a} =

Is| Is|

%Card{(bl,b2) S S X S : b1 -+ b2 = (I} = 2”#2(a)



More generally, f convoluted with itself ¢ times is f*(a) = (fx--- % f)(a) =
Ebl,...,bt:zgzlbi:amle fi)] = Wl—n Zbl,...,bt:zgzl bi:a(ﬁ@)t Hle Ls(bi) =
%Card{(bl, b)) €S b = a} = 2" (a). Notice that f*/2" = p; is e'-biased.

Definition 10. The support of u, written supp(pt), is the number of points z where pu(z) # 0.

Since ¢ is much smaller than |S|, supp(u:) < 35— ('i‘) < t('f').

t

Notice that fir(y) = Balue(@)ty(a)] = g 3 (@)t (a) = o Facy 1e(a)thy(a) < 5.

a 2
Then supp(pu) > ((ZEZlZZ((a))) ) _ 1

NN
Since Ea[ﬂ?(a)] = Zy ﬂ%(a) = Qin + 27;;15%7 supp(p¢) > ﬁ

t

. s s n s s S|\ s n
The inequalities t(‘t‘) > W and (|—t|)t < ('tl) < (#)t imply that t(#)t > W
Take ¢ such that €% € @(2%), that is, t = ﬁ(l/e).
Since V2" = 1/€%, |S| > (5(177)" ¢ € Olgoogtizge) = Olziogrizeg)» as desired. =

Claim 11. If u is 0-biased, then p is uniform.

Proof. Let i be a 0-biased distribution. Let y be nonzero. Since p is 0-biased, by definition, we

have that Eq (@), (@)] = 2 3, #(0)ty (1) = 2 Eaeulthy (1) < 0, 50 {i1,1,) = 0 for all nonzero
y. This implies that p is parallel to v, so p is uniform, as desired. O

5 Relation to k-wise independence

Claim 12. If u is e-biased, then ||p — U||; < 2™/,

Proof. By definition, ||u—Ulj1 =), |u(z) — (1/2™)] < \/Zm(,u(:r) — 55)2v/27. Therefore,

El(n—U)?) = (n=Up=U) = £, (6= D)))* = 5, (aly) = U)* < (2" = () < (2/2").
Hence, if y # 0, then |a(y)] < €/2" and U(y) = 0 and if y = 0, then |a(y)| = |U(y)| = 1/2™.

S () —1/27)2 < €2, s0 ||u— Uy < €2™/2, as desired. O
Let p be an e-biased distribution on F}. Let z1,...,z, be randomly sampled from p. Then for
I C [n] such that |I| < k, the distribution (x;,, Zi,, . .., z;,) is €2k/2_close to uniform over IF‘QH by the

claim above. Taking e = §2%/2, we can obtain a d-almost k-wise independent distribution which we
can sample with 2log 2 = 2logn + k + 2log(1/d) random bits.



