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1 Review: k-wise independent

Definition 1. A random variable (x1, . . . , xn) ∈ Σn is called k-wise independent if for all S ⊆ [n]
with |S| ≤ k, we have that (xj)j∈S are independent and uniformly distributed.

Last class, we proved the following theorem.

Theorem 2. We can sample an n bit 2-wise independent random variable using log2 n independent
uniformly random bits.

The construction is as follows. Let t = log2 n. Pick y1, . . . , yt uniformly independently at random.
Output (

⊕
i∈V

yi) where V ranges over all nonempty subsets of [t].

2 Application: derandomizing a MaxCut approximation algorithm

Given a graph G on a vertex set V , MaxCut is the problem of finding a partition of V so that the
number of edges cut is as large as possible.

MaxCut has a simple random approximation algorithm. Given a graph G = (V,E), output a
random partition (R,B) of V . Specifically, for each vertex v ∈ V , put v in R or B with probability
1
2 .

Theorem 3. The expected number of edges cut by this algorithm is at least 1
2 |E|, that is

E[number of edges cut] ≥ 1

2
|E|.

Proof. For an edge e ∈ E, define the random variable

Ze =

{
1, if e is cut

0, if e is not cut

Then, we have

E[number of edges cut] = E[
∑
e∈E

Ze].

By linearity of expectation, we have

E[
∑
e∈E

Ze] =
∑
e∈E

E[Ze].
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Fix some edge e ∈ E which goes from vertex a to vertex b. Recall, we partition V into two sets R
and B. Since a and b are put into R or B independently with probability 1

2 , we have that

Pr[e is cut] = Pr[a ∈ R and b ∈ B] + Pr[a ∈ B and b ∈ R] =
1

4
+

1

4
=

1

2

and

Pr[e is not cut] = Pr[a, b ∈ R] + Pr[a, b ∈ B] =
1

4
+

1

4
=

1

2
.

Thus

E[Ze] =
1

2
.

Hence we have

E[number of edges cut] =
∑
e∈E

E[Ze] =
∑
e∈E

1

2
=
|E|
2

We want to minimize the amount of randomness we use in our algorithm. Currently, our algorithm
requires deciding for each vertex v ∈ V whether v ∈ R or v ∈ B. Letting n = |V |, this means we
need a n-bits of randomness. In the proof above, however, the only time we use the randomness of
the bits is when we show that

Pr[e is cut] = Pr[e is not cut] =
1

2
.

Proving this only relied on the fact that for an edge e from a to b, the two bits that determine if
a and b are in R or B are uniform and independent. Thus, if our algorithm uses n bits which are
2-wise independent, we have the same guarantee that in expectation |E|2 edges are cut.

Thus, we have a new algorithm. Given a graph G with n vertices, generate n 2-wise independent
random bits x1, ..., xn, and use them to partition G. By Theorem 2, this algorithm requires only
log2 n bits of randomness, and by the same proof as before, we have that the expected number of

edges cut is at least |E|2 .

Finally, we are ready to make this algorithm deterministic. Since we use only log2 n bits of random-
ness, there are only 2log2 n = n possibilities for x1, . . . , xn. Try all of them, and in each case find the
number of edges cut. Return the partition which cuts the most edges. Since the expected number
of edges cut for the previous algorithm is at least |E|2 . There is at least one partition which cuts at
least E

2 edges, so this deterministic algorithm returns a partition which cuts at least E
2 edges.

3 Finite Fields

Fact 4. Fix a prime p. The Fp = {0, 1, . . . , p − 1} with the operations +, addition mod p, and ×
multiplication mod p is a field.

A field F satisfies some properties:

• It has some elements named 0 and 1
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• 0× a = 0 for any a ∈ F

• 0 + a = a for any a ∈ F

• 1× a for any a ∈ F

• a× b = 0 =⇒ a = 0 or b = 0

• If a ∈ F and a 6= 0, then there exists a b ∈ F such that a× b = 1

Fact 5. Fp[x] = {polynomials with coefficients in Fp} is a field.

Theorem 6 (Division Theorem for Fp[x]). For all a(x), b(x) ∈ Fp[x] there exists q(x), r(x) ∈ Fp[x]
such that

a(x) = b(x)q(x) + r(x)

where degree(r) < degree(b).

Theorem 7 (Remainder Theorem for Fp[x]). Suppose p(x) ∈ Fp[x] and a ∈ Fp. Then p(a) = 0 if
and only if (x− a) divides p(x).

Theorem 8 (Unique factorization for Fp[x]). Every polynomial in Fp[x] is a product of a unique
set of irreducible polynomials (polynomials which cannot factor).

Theorem 9 (At most degree zeroes for Fp[x]). Suppose p(x) ∈ Fp[x] has degree d. Then

|{a ∈ Fp : p(a) = 0}| ≤ d > 0.

Fact 10. For any prime p and m ≥, there is a set Fpm with operations +,× such that

• |Fpm | = pm

• Fpm is a field.

4 Constructing a k-wise independent random variable

We describe an algorithm to sample a k-wise independent random variable. Fix F be a finite field,
and fix n distinct elements a1, . . . , an ∈ F.

Now, we start to use randomness. Pick b0, b1, . . . , bd ∈ F uniformly at random. Define

Q(x) = b0 + b1x+ · · ·+ bdx
d.

Theorem 11. (Q(a1), . . . , Q(an)) are d+ 1-wise independent.

Proof. To gain some intuition, we first consider the d = 1 case. We must show that the random
variables are uniform and independent.

First, we show that Q(ai) is uniform over F for an arbitrary i, that is for every c ∈ F

Pr[Q(ai) = c] =
1

|F|
.
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Fix i and c. For a uniformly random b0, b1 ∈ F, we have

Pr[Q(ai) = c] = Pr[b0 + b1ai = c] = Pr[b0 = c− b1ai].

Since b0 is chosen uniformly at random,

Pr[b0 = c− b1ai] =
1

F

as desired.

Next, we must show independence, that is for i 6= j and any ci, cj ∈ F, we must show that

Pr[Q(ai) = ci ∧Q(aj) = cj ] =
1

|F|2
.

Fix i, j, ci, and cj .

Pr[Q(ai) = ci ∧Q(aj) = cj ] = Pr[b0 + b1ai = ci ∧ b0 + b1aj = cj ]

If b0 + b1ai = ci and b0 + b1aj = cj , we have that (since ai, aj are distinct)

b1 =
ci − cj
ai − aj

, b0 = ci − ai
ci − cj
ai − aj

.

Since ai, aj , ci, and cj are all fixed, and b0 and b1 are picked uniformly at random from F, this
means that

Pr[Q(ai) = ci ∧Q(aj) = cj ] = Pr[b0 + b1ai = ci ∧ b0 + b1aj = cj ] =
1

|F|2

as desired.

Now, we consider the case for general d > 1. A similar proof to d = 1 case shows that Q(ai) is
uniform over F for all i. It remains to show the independence portion. Let S ⊂ [n]. We must show
that for any choice of |S| elements cj ∈ F indexed by j ∈ S

Pr[Q(aj) = cj for all j ∈ S] =
1

|F||S|
.

It suffices to prove the case when |S| = d+ 1, because if independence holds for all S′ of size d+ 1
and S < d+ 1, then we have

Pr[Q(aj) = cj for all j ∈ S] =
∑
cj∈F

indexed by
j∈(S′\S)

Pr[Q(aj) = cj for all j ∈ S′]

=
∑
cj∈F

indexed by
j∈(S′−S)

1

|F|d+1

=
1

|F||S|
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where we pick some S′ ⊆ [n] with S ⊆ S′ and |S′| = d + 1. Thus is suffices to consider S of size
d+ 1.

Fix S ⊆ [n] of size d+ 1. And fix |S| = d+ 1 elements (cj)j∈S of F.

Pr[Q(aj) = cj for all j ∈ S] =
number of polynomials Q(x) such that Q(aj) = cj for all j ∈ S

|F|d+1
.

Since ∏
j∈S

Pr[Q(aj) = cj ] =
1

Fd+1
,

we must show that there is exactly one such Q(x), which follows from the Fact 12.

Fact 12. Let F be a field. Let e1, . . . , ed+1 ∈ F all be distinct. Let c1, . . . , cd+1 ∈ F. There is exactly
one polynomial Q(x) ∈ F[x] of degree at most d such that Q(ei) = ci for i = 1, . . . , d+ 1.

Proof. Proof of uniqueness is simple. Suppose Q(x), R(x) ∈ F[x] are polynomials of degree at most
d with Q(ei) = R(ei) = ci for all i. Let S(x) = Q(x)−R(x). Then S(x) is a polynomial of degree
at most d, and

S(ei) = Q(ei)−R(ei) = 0.

Thus S(x) is a polynomial of degree at most d with d + 1 zeroes, so by Theorem 9, S(x) = 0, so
Q(x) = R(x).

Existence is a bit tougher. One can construct a polynomial explicitly using Lagrange polynomials,
which we will not describe here, but one can look up.

Alternatively, we can do a linear algebra proof. One can view a polynomial evaluation as a matrix
evaluation. Let f(x) =

∑d
i=0 bix

i. Then

F (x) =
(
xd xd−1 . . . x 1

)


bd
bd−1

...
b1
b0


Thus, finding a polynomial Q(x) =

∑d
i=0(bix

i) with Q(ei) = ci for all i = 1, . . . , d+ 1. is equivalent
to finding a vector (b0, . . . , bd) such that

ed1 ed−1
1 . . . e1 1

ed2 ed−1
2 . . . e2 1

...
...

...
...

...

edd ed−1
d . . . ed 1

edd+1 ed−1
d+1 . . . ed+1 1




fd
fd−1

...
f1

f0

 =


c1

c2
...
cd
cd+1


Let E be the d + 1 × d + 1 matrix above. Showing that there is exactly one such polynomial is
equivalent to showing that E is invertible. E is matrix of a special type, a Vandermonde matrix,
and has a special formula for its determinant

det(E) =
∏

1≤i<j≤n
(ej − ei)

which is non-zero because the ei are distinct, so E is invertible.
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Thus, letting k = d + 1 and n = |F|, we can get n F-valued k-wise independent random variable
using k log2 n bits of randomness.

In fact, we cannot hope to do better than with k log n bits of randomness. The question now is
how can we use the above bits to create k-wise independent bits. One proposal is to take a prime
p > n and create k-wise independent Fp valued x1...xn, each uniform in {0...p− 1}. The issue here
is that we cannot map from field of odd size to the set of {0, 1} without bias. There will always
be more number of elements in either of the split. To resolve the problem, we force the field to be
of even size. Hence, instead of considering field Fp, we consider the field Fp2n . So we create k-wise
independent Fp2n valued x1...xn. Write each xi as a vector of length m for m > log n , this gives
m.2m k-wise independent bits and uses k log n bits of randomness.

5 A theoretical application of K-wise Independence

Most of the application of K-wise independence follow a general approach to de-randomize an
algorithm. We analyze a randomized algorithm and notice that we are not using full independence of
variables. We then devise an algorithm that uses partial independence and use K-wise independence
to reduce the randomness. Reduction in randomness allows us to enumerate and evaluate solutions
over all settings of randomness. Hence we obtain a fast deterministic algorithm. In this section,
we will follow this template to solve (almost) a common problem associated with Ramsey Graphs.

Theorem 13 (Ramsey’s Theorem). If G is a graph on n vertices, then G contains either a clique
or an independent set of size > Ω(log n).

The proof of the theorem is based on induction and pigeon-hole principle and is an interesting read
in itself. A closely related statement was given by Erdos:

Theorem 14 (Erdos). There exists graph G on n vertices such that G does not contain a clique
or an independent set of size > O(log n).

Proof. Consider the graph G(n, 0.5) which is a random graph on n- vertices where each edge appears
randomly with probability 0.5. This is same as picking one adjacent matrix uniformly at random

from amongst all 2(nx) possible adjacency matrices. We wish to analyze the probability of the bad
event that it has a clique or independent set and want to show that it is small. We fix a subset
S ∈ V of size t, then the probability that S is a clique or an independent set is given by:

Pr[S is clique or independent set] = 2

(
1

2

)(t
2)

(1)

A union bound over all such subsets S ∈ V of size t results in a total probability:

Pr[∃ S ∈ V s.t. |S| = t and S is clique or independent set] ≤ 2

(
n

t

)
2−(t

2) (2)

This probability is really small. For eg. for t = 10 log n, this would be≤ 2e10 lognn10 logn2−100. log2 n/4 =
o(1) Hence we can conclude that with high probability, G has Erdos property.
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Note that the Erdos statement is a probabilistic statement doesn’t really produce such a graph.
The problem that we are interested in is to give an explicit construction of a graph G on n-vertices
with no clique or independent set of size O(log n).

5.1 How to get an explicit graph

We notice that in the proof of the Erdos statement, we did not use full independence of the graph,
rather we only used independence related to clique size.

Main Idea: Instead of taking G from a uniform distribution, we pick G from
(
t
2

)
-wise inde-

pendent distribution. This requires smaller amount of randomness but the proof would still hold
true, and we will be able to enumerate over all possible settings of the randomness because of
reduced randomness.

More formally, pick the edges of G in a
(
t
2

)
-wise independent manner. This needs O(t2 log(n2)) bits

of randomness. For t = 10 log n, this reduces to O(log3 n).

Going over all 2O(log3 n) settings of these bits and checking which of these graphs have big cliques
or independent sets (this takes time 2O(log2 n)), we finally output the graphs that have no clique or
independent sets.
Note that checking for a clique in a graph is NP-hard, but checking for a big clique (of size log n)

can be done in the time stated before. The over-all time complexity of this procedure is 2O(log3 n)

which is much better than 2n
2

which is the time it would have taken apriori. This is pretty close
to being a polynomial (also called quasipolynomial).
A disadvantage of this approach is that eventually we will have to check for existence of clique in
the graphs which cannot be done in time better than 2O(log2 n)). Hence we cannot hope to achieve
a polynomial time algorithm using this approach.

6 ε- Bias

Distributions have properties that make them look like totally uniform distribution from certain
point of view. K-wise independence is one such property that looks totally random from the point
of view of looking at only small number of coordinates at a time. ε- bias is also another notion of
pseudo randomness that looks at it from the point of view of certain properties involving parities.

Definition 15 (ε- Bias). A collection of random variables (x1, . . . , xn) ∈ {0, 1}n is called ε- biased
if ∀S ⊂ [n], S 6= φ, we have:

Pr[
⊕
j∈S

xj = 0] ∈

[
1− ε

2
,
1 + ε

2

]
(3)

In other words, we take subsets of bits, look at their parity and look at the resulting distribution.
The distribution should be ε close to uniform. Smaller the ε, more like uniform the distribution
looks. To remove the complications arising out of the use of set, we have an alternative definition
that uses vector instead:
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Definition 16. A collection of random variables (x1, . . . , xn) ∈ {0, 1}n is called ε- biased if ∀y ∈
{0, 1}n, y 6= φ, we have:

Pr[< y, x >= 0] ∈

[
1− ε

2
,
1 + ε

2

]
(4)

Fact 17. Zero bias implies uniform distribution.

Theorem 18. There exists ε- bias distributions on {0, 1}n which are uniform distributions over a
multi-set of size O(n/ε2).

In other words, there are sets of size O(n/ε2) such that the uniform distribution over such sets is ε
biased. If you knew this set and you could index these elements, that gives you a very efficient way
to sample a distribution which is ε biased. For a set of size poly(n), we need O(log n) bits to specify
an element. Instead of sampling n uniformly random bits and getting a zero biased distribution,
we can get away with just O(log n) bits of randomness to get ε biased distribution for some small
ε. Though, the theorem doesn’t give an explicit construction of such a set.

Proof. Take a parameter m to be fixed later. Pick z1, ..., zm ∈ {0, 1}n independently and uniformly
at random. We want to show that with high probability over the choice of z1, ...zm, we have
∀y ∈ {0, 1}n, y 6= φ,

|{i ∈ [m]s.t. < y, zi >= 0}| ∈

[
1− ε

2
m,

1 + ε

2
m

]
(5)

We fix y ∈ {0, 1}n, y 6= 0. Fixing y induces a split on the space of {0, 1}n where one of the partition
corresponds to zi such that < zi, y >= 0 and the other corresponds to zi such that < zi, y >= 1.
These two partitions should be roughly equal. We wish to bound the bad event that these partitions
are uneven, i.e. there are either too many or too few zsi in the partition of zi such that < zi, y >= 0.
More formally we bound the following probability:

Pr[|#({i ∈ [m]s.t. < y, zi >= 0})−m/2| > εm

2
] (6)

We can use Chernoff bound to bound the above probability:

Pr[|#({i ∈ [m]s.t. < y, zi >= 0})−m/2| > εm

2
] < eΩ(ε2m) (7)

Next we take a union bound over all choices of y 6= 0:

Pr[∃y ∈ {0, 1}ns.t.|#({i ∈ [m]s.t. < y, zi >= 0})−m/2| > εm

2
] ≤ 2neΩ(ε2m) (8)

This is ≤ e−Ω(n) if m = Ω(n/ε2). We have shown that the probability of this bad event is expo-
nentially small.

In the next class, we will study construction of ε-biased sets as well as their applications in de-
randomization.
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