
Lecture 4 : Explicit constructions using zig-zag product and SL=L
Topics in Pseudo-randomness and Complexity Theory (Spring 2018)

Rutgers University
Swastik Kopparty

Scribe: Vishvajeet N, Mik Zlatin

1 Recap

We started out with a goal to reduce the probability of error in randomized computation. We saw
that using independent runs of the randomized algorithm and then taking majority helps us amplify
the success probability. However, this method uses a lot more randomness, often a costly resource,
and we would like to amplify the success probability using almost the same amount of randomness
as the original algorithm. In some sense, we wanted correlated samples which appeared close to
random on a larger space. We tried placing an expander on the space of all possible random strings
that the algorithm can use, and then choose a random vertex and selected its neighbours as our
strings for subsequent runs. This gave us a way to use the same amount of randomness as in one run
of the original algorithm, since the only randomness in thi procedure was in choosing one vertex.
Once the vertex was chosen, the set of strings used for sequential runs was completely determined.
The expander mixing lemma guaranteed us that the probability of a majority of neighbours being
bad was low. Despite the randomness being the same, this method did not amplify the success
probability as good as independent runs did. We turned our attention to random walks. Random
walks involve correlated random steps and we can thus save the total randomness used. If we take
a sufficiently long random walk on a graph, the distribution becomes close to uniform (converges).
We proved that random walks on expanders converge quickly, and thus if we take one on an ex-
pander, it doesn’t get stuck in the set of (bad) strings which give the wrong answer and eventually
heads out into the (good) set, in probability. Given a good expander graph, we showed that the
probability of error could be reduced significantly using this method and thus the problem boiled
down to the construction of a family of expanders, deterministically. It’s easy to get expanders of
high (polynomial) degree by repeated squaring of small graphs, however, that means our random
walks require more randomness at each step. We are thus looking for expander graphs of constant
degree which can be found deterministically. Zig-zag product is one way to decrease the degree
while keeping the expansion close to the original. Thus, we can interleave squaring and zig-zag
product to get a constant degree expander, as we shall see.

2 Zig - Zag Product

Let’s recall the zig-zag product that we defined in the last class. We took a big D-regular graph
G with N vertices and expansion λG, and a small d-regular graph H on D vertices with expansion
λH and claimed that the zig-zag product of these two graphs G z©H is a d2-regular graph with ND
vertices and expansion 1− (1− λH)2(1− λG). We will try to show this.

1

Let’s remind ourselves the definition of the zig-zag product.

Definition 1. Zig-zag product If G is a D-regular graph on the vertex set [N]. H is a d-regular
graph on the vertex set [D], then G z©H is a d2-regular graph on the set [N]× [D]. A vertex (i, j)
has its (k1, k2)-th neighbour as vertex (i∗, j′′) i.e. (i, j)[(k1, k2)] = (i∗, j′′) if it can be obtained using
the following set of rules:

• Take the edge labelled k1 out of the vertex j in H, you will reach j′ i.e. j[k1] = j′

• Next, take the j′-th neighbour of i in G. We land at vertex i∗, of which i is the j∗-the
neighbour. i.e. RotG(i, j′) = (i∗, j∗).

• Finally, take the k2 neighbour of j∗ in H and we arrive at j′′. i.e. j∗[k2] = j′′.

Before we analyse the expansion of this graph, let’s recall this lemma which we have already proved
in the last class.

Lemma 2. G is a λ-expander, if and only if M , the normalized adjacency matrix of G can be
written as M = (1− λ)J + λE, where J is the all 1/N matrix and E has ||E|| ≤ 1

The above lemma says that if the second eigenvalue of the adjacency matrix is close to 1, then the
error term E becomes large and the distribution is further away from the uniform distribution J .
Expanders have secdon eigenvalue small, and they can be thus thought of as trying to be like J -
the adjacency matrix of a complete graph. For a complete graph, taking just one step means that
the distribution becomes completely uniform.

If we can express the normalized adjacency matrix of G z©H as in the above lemma, we’re done.
Observe that each vertex in G is blown up into a set of vertices of size [D] - a ‘cloud’ of vertices
of H. We look at a step in the random walk on G z©H as a set of 3 steps : (1) A random step
within the cloud. (2) A step between clouds, according to the edges of graph G and (3) A random
step within the corresponding cloud. The first and the third steps are random, the second step is
deterministic. Each vertex in G is replaced by a cloud of vertices in H. Thus, the transition matrix
of the first step has copies of H on every vertex of G, and so does the third step. The second step
is a permutation matrix, which just gives the cloud to jump to, when we input the cloud which we
are in, and the second parameter - edge label. Thus, the adjacency matrix is expressed as B C B,
where B = IN ⊗MH

1 and C is a permutation matrix of order [N][D]× [N][D] such that :

C(u,k),(v,l) =

{
1 if u[k] = v and v[l] = u in G

0 otherwise

Thus, MG z©H = BCB = (IN ⊗MH)C(IN ⊗MH)

Using lemma 2, can write MH = (1− λH)JD + λHEH

MG z©H

= (IN ⊗ ((1− λH)JD + λHEH))C(IN ⊗ ((1− λH)JD + λHEH))

1The adjacency matrix of H

2

= (1−λH)2(IN⊗JD)C(IN⊗JD)+(1−λH)λH(IN⊗JD)C(IN⊗EH)+(1−λH)λH(IN⊗EH)C(IN⊗JD)
+ λ2H(IN ⊗ EH)C(IN ⊗ EH)

Let’s go over properties of matrix norms again.

Definition 3. Matrix norm over the reals

||M || = supx6=0
||Mx||
||x||

where x is a vector over the reals of appropriate dimension.

Some standard properties of matrix norms which we will use are mentioned in the following lemma
without proof.

Lemma 4. Matrix norm properties

1. ||αA|| = α||A|| where α is a real number

2. ||A+B|| ≤ ||A||+ ||B||

3. ||A⊗B|| ≤ ||A|| · ||B||

4. ||A ·B|| ≤ ||A|| · ||B||

We analyse the last 3 terms separately using properties of norms.

Claim 5. Norms

||IN || = 1

||JD|| = 1

||C|| = 1

||IN ⊗ JD|| = 1

The claim follows from the fact that IN and C are permutation matrices, so their norm is 1. JD
is the adjacency matrix of the complete graph, so its norm is 1. The last equality follows from
property 3 of lemma 4.

Claim 6. (IN ⊗ JD)C(IN ⊗ EH) = E′ with ||E′|| ≤ 1

Proof: Using property 4 of lemma 4,

(IN ⊗ JD)C(IN ⊗ EH)
= ||IN ⊗ JD|| · ||C|| · ||IN ⊗ EH ||
= ||IN || · ||JD|| · ||C|| · ||IN || · ||EH || using property 3 of lemma 3 = 1 ∗ 1 ∗ 1 ∗ 1 ∗ ||EH ||
= ||EH || ≤ 1

Thus, (IN ⊗ JD)C(IN ⊗ EH) is a matrix with norm less than 1. We call it E’.

3

Similar is the case with
(IN ⊗EH)C(IN ⊗ JD) and (IN ⊗EH)C(IN ⊗EH). We summarize in the following claim; proof is
just as in claim 6.

Claim 7. (IN ⊗ EH)C(IN ⊗ JD) = E′′ and (IN ⊗ EH)C(IN ⊗ EH) = E′′′ with ||E′′|| ≤ 1 and
||E′′′|| ≤ 1

Thus,

MG z©H

= (IN ⊗ ((1− λH)JD + λHEH))C(IN ⊗ ((1− λH)JD + λHEH))
= (1−λH)2(IN⊗JD)C(IN⊗JD)+(1−λH)λH(IN⊗JD)C(IN⊗EH)+(1−λH)λH(IN⊗EH)C(IN⊗JD)
+ λ2H(IN ⊗ EH)C(IN ⊗ EH)
= (1− λH)2(IN ⊗ JD)C(IN ⊗ JD) + (1− λH)λHE

′ + (1− λH)λHE
′′ + λ2HE

′′′

= (1− λH)2(IN ⊗ JD)C(IN ⊗ JD) + [(1− λH)λH + (1− λH)λH + λ2H]E′′′′

= (1− λH)2(IN ⊗ JD)C(IN ⊗ JD) + [1− (1− λH)2]E′′′′

for some E′′′′ with ||E′′′′|| ≤ 1

(1−λH)λHE
′+(1−λH)λHE

′′+λ2HE
′′ = [(1−λH)λH +(1−λH)λH +λ2H]E′′′′ follows from property

2 of lemma 4.

Let’s analyse (IN ⊗ JD)C(IN ⊗ JD). It can be seen that it is equal to MG ⊗ JD. Now we apply
lemma 2 to MG and substitute.

Thus,

MG z©H

= (1− λH)2((1− λG)JN + λGEG)⊗ JD + [1− (1− λH)2]E′′′′

= (1− λH)2(1− λG)JND + (1− λH)2λGEG + [1− (1− λH)2]E′′′′

= (1− λH)2(1− λG)JND + [1− (1− λH)2(1− λG)]E′′′′′

for some E′′′′′ with ||E′′′′′|| ≤ 1

where the last equality follows from property 2 of lemma 4 again.

Using the ⇐ direction of lemma 2, we have managed to prove the following theorem.

Theorem 8. If G is a D-regular graph with N vertices and expansion λG, and H small d-regular
graph on D vertices with expansion λH , the zig-zag product G z©H is a d2-regular graph with ND
vertices and expansion 1− (1− λH)2(1− λG).

4

3 Deterministic Construction of Expanders

We will use zig-zag product to construct constant degree expanders, the idea being that squaring
gives us better expansion at the cost of degree and zig-zaging gives a bigger graph while roughly
preserving the expansion and decreasing the degree, so interleave them.

Consider the following algorithm :

Algorithm 9. Explicit construction

G0 is any non-bipartite connected D1/10-regular graph on N0 vertices
For i = 1 to k {

G′i = G10
i−1

Gi = G′i z©H ;H is a constant degree d expander of size D and λH ≤ 1− 0.1682

}

Claim 10. Gk is a graph of size N0d
k and is d2-regular.

Analysis of the eigenvalue :

1− λGi+1 = (1− λH)2(1− λ10Gi
) ≥ 1/4(1− λ10Gi

)

If εi = 1− λGi ,

1− λGi+1 ≥ 1/4(1− (1− εi)10) ≥ 1/4 · (1− (1− 5εi)) ≥ 5
4εi

since (1− εi)10 ≤ 1− 5ε for all values of εi < 0.16822

Thus, εi grows geometrically as long as it is smaller than 0.1682. If we choose k to be logN0, then
the spectral gap becomes Ω(1), which is what we want. The number of vertices is also polynomial
in N0. In polynomial time, we have constructed a graph which is an expander of constant degree.

Let’s analyse the space complexity of the above construction. There are two types of cosntructions
:

• Explicit construction

This type of graph construction means that the adjacency matrix of the graph can be found
out in time polynomial in the size of the graph.

• Strongly explicit construction

In this type of graph construction, given a pair of vertices, we can output whether they are
connected or not, in time polynomial in the logarithm of the size of the graph.

Observe that the above construction is explicit but not strongly explicit.

20.1682 is a root of the function (1− x)10 − (1− 5x)

5

4 Undirected Deterministic s-t Connectivity

The problem: Given an undirected graph G = (V,E), and two vertices s, t ∈ V , we want to
determine whether there is a path from s to t in G.

We have seen several algorithms to solve this problem before. The obvious method of using BFS
or DFS runs in polynomial time but requires O(n) bits of memory. We then analyzed Savitch’s
algorithm, which reduces the memory requirement to O(log2 n), but takes O(nlogn) time, which is
not polynomial in n. Finally, we saw a randomized algorithm involving lazy random walks that
runs in polynomial time, requires O(log n) space, and is correct with high probability.

We will now use the theory of expanders to produce a polynomial time deterministic algorithm that
only requires O(log n) space. Note that this essentially means that we are asking for a strongly
explicit (deterministic) construction.

Algorithm 1 Reingold(2005)

1: procedure foo(G, s, t)
2: d← 1000
3: Fix a d-regular expander H on d20 vertices.
4: Let G0 be a d2-regular transformation of G
5: for i = 0; i ≤ O(log n); i++ do
6: G′i+1 ← (Gi)

10

7: Gi+1 ← G′i+1 z©H
8: end for
9: At this point, GO(logn) has diameter at most O(log n), since it is a good expander (a random

walk with O(log n) steps is close to uniform on good expanders). Thus we can check all possible
paths of length O(log n)from s to t.

10: return Yes, iff a path was found.
11: end procedure

Analysis: Since G is d2-regular, there are at most dO(logn) paths of length O(log n). So the algorithm
only checks a polynomial number of paths, and thus takes polynomial time. To iterate through the
paths, we just need to store a counter in [d2] for each depth of the recursion, to keep track of which
edge to travel down next. Thus we have to store O(log n) bits.

Interesting Facts: There are other ways of obtaining deterministic algorithms with this space and
time complexity, but they all are connected to the theory of expanders. See Derandomized Squaring
by Rozenman-Vadham. Algorithm for s-t connectivity in directed graphs with O(log n) space is an
open problem.

5 k-Wise Independence of Random Variables

Definition 11. A probability distribution (x1, x2, . . . , xn) is k-wise independent if any subset of
size at most k is independent.

Example 12. Let x1, x2 be uniform random variables from {0, 1}. Let x3 = x1 ⊕ x2. Then

6

(x1, x2, x3) is 2-wise independent. ♦

Example 13. Let x1, x2, . . . , xm be uniform random variables from {0, 1}. Define for each S ⊆ [m]
with |S| > 0, xS =

⊕
i∈S xi. Then each (xS) are pairwise independent.

Proof: Take S1 6= S2. We want to show that XS1 and XS2 are independent. Let yi ∈ Fm
2 be the

indicator variable on Si. Let x be a random vector in Fm
2 . We must show that for b1, b2 ∈ F2:

Pr[〈y1, x〉 = b1 and 〈y2, x〉 = b2] = Pr[〈y1, x〉 = b1] · [〈y2, x〉 = b2].

The R.H.S is clearly equal to 1
4 , since for any vector x that gives 〈y1, x〉 = b1, we can associate

another vector x̄ such that 〈y1, x̄〉 = b2, so each term on the R.H.S is a half. To analyze the L.H.S,
we look at the values of x that solve: [

y1
y2

]
·

(x1
x2

...
xm

)
=

[
b1
b2

]
We will establish a bijective correspondence between solutions to this equation for each of the 4
combinations of b1 and b2. This will prove that the L.H.S is also 1

4 . Consider x0 a solution to the
above equation for (b1, b2) = (0, 0). Since S1 6= S2, we know y1 6= y2 at some coordinate, say i.
Then by flipping the ith bit of x, we obtain a solution for (b1, b2) = (1, 1). Flipping any other bit
further divides these into solutions to (b1, b2) = (1, 0) and (b1, b2) = (0, 1). Thus the set of possible
x values is partitioned equally into solutions for each possible pair of b values and the L.H.S is
1
4 . ♦

References

• Entropy waves, the zig-zag graph product, and new constant-degree by Omer Reingold, Salil
Vadhan, Avi Wigderson : https://arxiv.org/abs/math/0406038

• Undirected ST-connectivity in log-space by Omer Reingold

• Derandomized Squaring of Graph by Eyal Rozenman, Salil Vadhan

• Expander Graphs and Their Applications by Shlomo Hoory, Nathan Linial, Avi Wigderson

• https://lucatrevisan.wordpress.com/2011/03/07/cs359g-lecture-17-the-zig-zag-product/

7

