
Lecture 2 : Expander Graphs, Mixing lemma and Applications to
randomness

Topics in Pseudo-randomness and Complexity Theory (Spring 2018)
Rutgers University
Swastik Kopparty

Scribe: Danny Scheinerman, Harsha Tirumala

1 Expander graphs and the Mixing lemma

Recall that for a d-regular graph G we associate the adjacency matrix, A, and the normalized
adjacency matrix M . As G is d-regular, we have M = 1

dA. The eigenvalues of M lie in [−1, 1].
We used the fact last class that if all (except the first) eigenvalues are sufficiently less than one in
absolute value, then a random walk on the graph approaches uniform quickly. Let’s formalize that.

Let p : V → R be a probability distribution on the vertices. We will use p interchangeably
with the vector in Rn whose i-th coordinate is p(i). Then, M jp is the distribution given by first
choosing a random vertex according to p and then doing a j-step random walk. Let v1, . . . , vn be
an orthonormal basis for M with v1 = (1

√
n, . . . , 1/

√
n). The eigenvalues are 1 = λ1, λ2, . . . , λn.

Then we can write

M jp =

n∑
i=1

αiM
jvi

=

n∑
i=1

αiλ
jvi

= α1v1 +

n∑
i≥2

αiλ
jvi

Thus we can conclude that ‖M jp− α1v1‖22 �
n∑
i=1

α2
i ·max

i≥2
|λi|2j ≤ max

i≥2
|λi|2j .

Now let’s characterize a class of graphs that have max
i≥2
|λi| small and thus we expect the random

walk to approach uniform quickly.

Definition 1. A λ-expander graph is a regular graph for which all eigenvalues (but one) of the
normalized adjacency matrix are at most λ in absolute value.

Theorem 2. For all d ≥ 5, for all n sufficiently large there exists a d-regular 1/2-expander graph.

This is challenging to prove. We may prove it later, but we will use this often. In fact more is true:

Theorem 3. Let d ≥ 5. A random d-regular graph is a 1/2-expander graph with high probability.

1

Theorem 4. For all d ≥ 5, for all n sufficiently large there exists a strongly explicit d-regular
1/2-expander graph.

Let’s be explicit about what “explicit” means.

Definition 5. A graph is explicit if given n in time poly(n) we can compute an adjacency matrix
for the graph.

Definition 6. A graph is strongly explicit if given n, i ∈ [n] and j ∈ [n] we can find the j-th
neighbor of i in time poly(log(n)).

This guarantee is important since the size of the input is log n bits and thus, the poly(logn) time
complexity is a poly-time algorithm for establishing the j-th neighbor of vertex i “on-demand”

Example: Let V = F2
p. That is, the vertex set of our graph is pairs of points (x, y) with each

coordinate lying in the prime field Fp. Let S =

{(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
1 −1
0 1

)
,

(
1 0
−1 1

)}
. For

each (x, y) ∈ V join the vertex A(x, y) for each A ∈ S. The resulting graph, G, is 4-regular (note
that S is closed under inverses). It turns out that G is a λ-expander graph with λ < 1.

If G is a d-regular, 1/2-expander graph then the random walk starting at a fixed vertex is o(1) close
to uniform after O(log n) steps. By “close” we mean L1 or statistical distance:

Definition 7. Given distributions p : V → R and q : V → R, we define the distance ∆(p, q) =∑
x∈V
|p(x)− q(x)| = ‖p− q‖1. We call this distance the L1 or statistical distance.

This distance metric has the following nice property. If ∆(p, q) < ε then for any E ⊆ V , |p(E) −

q(E)| < ε. This follows since |p(E) − q(E)| =

∣∣∣∣∣∑
x∈E

p(x)− q(x)

∣∣∣∣∣ ≤∑
x∈E
|p(x) − q(x)| ≤

∑
x∈V
|p(x) −

q(x)| = ∆(p, q), where we have used the triangle inequality to establish the first inequality. This
means that if p and q are ε-close in statistical distance and we know that p(E) is small then q(E)
is small (up to an added ε).

So let u = α1v1 = (1/n, 1/n, . . . , 1/n) be the uniform vector. We have that
∥∥M jp− u

∥∥2

2
≤ 1

22j
<

1

n10
. So it is close in L2 distance. To establish statistical distance we use the Cauchy-Schwarz

inequality:

n∑
i=1

aibi ≤
(∑

a2
i

)1/2 (∑
b2i

)1/2
. One useful inequality that follows from this arises

from letting bi = 1 for each i. Then we have
n∑
i=1

ai ≤
(∑

a2
i

)1/2√
n. Using this we have

∥∥M jp− u
∥∥

1
≤
∥∥M jp− u

∥∥
2

√
n ≤ O

(
1

n5

)
.

Theorem 8 (Expander mixing lemma). Let G be a d-regular λ-expander graph. Let A,B ⊆ V be
two sets of vertices (possibly overlapping). Let e(A,B) = |{(a, b) ∈ E(G) : a ∈ A, b ∈ B}|. That

2

is e(A,B) is the number of edges joining a vertex in A to a vertex in B. This is standard notation.
Then ∣∣∣∣e(A,B)− d

n
|A||B|

∣∣∣∣ ≤ λd√|A||B|.
Note that the estimate e(A,B) ≈ d

n |A||B| is what one would expect for a random d-regular graph
on n vertices.

Proof. Let 1A : V → R be the indicator function of the set A. Similarly, define 1B. We can

write the eigen-decomposition of these functions: 1A =

n∑
i=1

αivi and 1B =

n∑
i=1

βivi. As before λi is

the eigenvalue associated to vi and λ1 = 1. Furthermore, note that α1 = 〈1A, v1〉 = |A|/
√
n and

similarly β1 = |B|/
√
n. Then we can express e(A,B) as follows:

e(A,B) =
∑
i,j

1A(i)1B(j)Aij

= d 〈1A,M1B〉

= d

〈
n∑
i=1

αivi,

n∑
j=1

βjλjvj

〉

= d
n∑
i=1

αiβiλi (Recall that 〈vi, vj〉 = 0 if i 6= j)

= d

α1β1λ1 +
∑
i≥2

αiβiλi


= d
|A||B|
n

+ d
∑
i≥2

αiβiλi

So we have our main term. We just need to bound the right hand term:∣∣∣∣∣∣
∑
i≥2

αiβiλi

∣∣∣∣∣∣ ≤ d
∑
i≥2

|αiβi|

λ

≤ dλ

∑
i≥2

α2
i

1/2∑
i≥2

β2
i

1/2

(Using Cauchy-Schwarz)

= dλ|A||B|

as desired.

2 Limits of expansion

In this section, we will establish the limits of expansion that can be achieved given a d-regular, λ-
expander graph. Smaller values for the second-largest eigenvalue (absolutely speaking) of a matrix

3

lead to stronger guarantees on the mixing nature of the graph.

Exploiting expansion using graph power

Definition 9. Given a multigraph G with adjacency matrix A, the t-th power of G is the multigraph
on the same vertex set V (G) with the adjacency matrix At.

The edge count of the vertex pair (i, j) ∈ V (G) x V (G) in Gt equals the number of walks of length
t from i to j in G. Note that self loops are treated as single outgoing/incoming edge, i.e. Ai,i is
the number of self loops (not twice the number of self loops which may also seem natural).

Lemma 10 (Graph power expansion). If G is a d-regular, λ-expander graph, then Gt is a dt-regular,
λt-expander graph.

Proof. It is easy to see that if G is d-regular, Gt is dt-regular. So, let us look at the expan-
sion parameters. Let G have eigenvalues λ1, λ2, . . . , λn corresponding to eigenvectors v1, v2, . . . , vn
respectively. Then for all i ∈ [n] we have :

Mvi = λivi

⇒M tvi = λtivi

⇒ Atvi = (dλi)
tvi

That is, Gt has the same eigenvectors as G with eigenvalues λt1, λ
t
2, . . . , λ

t
n if λ1, λ2, . . . , λn are the

eigenvalues for the normalized adjacency matrix M .

Starting with a d ≥ 5, 1/2-regular expander graph (existence guaranteed by theorem 2), we can
construct a d-regular, 1/d0.1-expander graph using the graph power expansion property discussed
above.

Corollary 11. For all d ≥ 5, for all sufficiently large n, there exist d-regular 1/d0.1-expander graph.

An Ω(1/
√
d) expansion limit for graph derivatives

Let G be a d-regular, λ-expander graph with eigenvalues λ1, λ2, . . . , λn. Also, let λ = max
2≤i≤n

|λi|. We

will see that graph power expansion has an Ω(1/d) expansion limit given a d-regular λ-expander
graph.

Consider the graph G2 with the adjacency matrix A2. The matrix entry A2(i, j) equals the number
of walks of length 2 between vertices i, j ∈ G. The eigenvalues of A2 are d2λ1, d

2λ2, . . . , d
2λn.

Fact 12. The trace of any matrix H equals the sum of the eigenvalues of H.

4

The above fact will help establish a lower bound on the second-largest eigenvalue of G as follows :

Tr[A2] =

n∑
i=1

λi(A
2)

where λi(A
2) represents the i-th eigenvalue of the matrix A2.

⇒ Tr[A2] =

n∑
i=1

(dλi)
2

≤ d2 + (n− 1)(dλ)2

⇒ λ ≥

√
dn− d2

(n− 1)d2

Since we think of d� n, we have :
λ ≥ Ω(1/

√
d)

The above analysis reveals the extent of expansion we can hope to ”squeeze” out of a given d-regular
expander.

Theorem 13. Ramanujan graphs achieve λ ≥
√
d.

3 Application : Randomness in computing

In this section, we will see how the mixing properties of expanders can be used to bring down
randomness requirements of randomized algorithms.

Suppose we have a function f : {0, 1}n → {0, 1} and we are given a randomized algorithm A with
the following guarantee :

∀x ∈ {0, 1}n Pr[A(x, r) = f(x)] ≥ 0.9

i.e. the randomized algorithm A has an error probability of 0.1 at most. Typically we want a
stronger guarantee on the error rate : we want the error rate to be a quickly decreasing function
in the size of the input. We look at how much randomness is used up to provide this guarantee for
evaluating f .

Majority Polling : ”Brute force” use of randomness

A simple and natural method to lower the error rate of evaluating f(x) is to run the algorithm
A(x, r) for uniformly and independently selected random runs r1, r2, . . . , rt ∈ {0, 1}m and to return
the majority poll returned by the selection of runs. The idea is that it is less likely that a majority
of the runs will fail compared to an individual run. The analysis of the error rate follows :

Let Yi be the indicator variable for A(x, ri) 6= f(x). i.e. Yi = 1A(x,ri)6=f(x). From the guarantee
that error rate of A is at most 0.1, we have:

∀i ∈ [t] Pr[Yi = 1] ≤ 0.1

5

⇒ E(

t∑
i=1

Yi) =

t∑
i=1

E(Yi) ≤ 0.1t

where the above equality follows from the linearity of expectation principle. The majority polling
algorithm fails when more than half fraction of the runs result in errors i.e. when

∑t
i=1 Yi ≥ 0.5t.

We will use the Chernoff bound to get an error-bound for majority polling as follows:

Pr[|
t∑
i=1

Yi − E(

t∑
i=1

Yi)| > εt] ≤ e−Ω(ε2t)

where ε = 0.4 corresponds to the LHS representing error case probabilities.

If the randomized algorithm runs in time T and uses m random bits per run, then in time O(tT)
and with O(mt) random bits, we can reduce the error probability of evaluating f to e−Ω(t).

Randomness is an expensive resource. So, although the majority polling method provides the
required guarantee on the error rate, we look for more efficient randomized algorithms.

Bad proposal : naive ”Leader” neighborhood sampling

1. Select a ”leader” candidate r0 ∈ {0, 1}m uniformly at random.

2. Pick the next t strings {r1, r2 . . . , rt} ∈ {0, 1}m according to lexicographic order.

3. Run the algorithm A on each of these t strings.

4. Return A ∗ (x) = Majority ({A(x, ri)}ti=1)

Analysis :
Fixing x, let B represent the set of bad strings for x:

B = {r : A(x, r) 6= f(x)}

Now, let B∗ be the set of bad ”leaders” for x i.e. those ”leaders” with ≥ d/2 bad strings for x :

B∗ = {s : A∗(x, s) 6= f(x)}

Note that depending on the distribution of B, it is possible the set B∗ is as large as the set B
i.e. it has (0.1)2m elements. This happens when all the bad strings for x occur in lexicographic
succession.

The above algorithm needs randomness only to select the leader - and hence uses m bits of ran-
domness. The time complexity of this algorithm is O(tT). The error rate in the worst case is 0.1,
however, and thus this algorithm is not good enough.

One way of sampling the random runs efficiently is to pick a ”leader” run uniformly at random
and then pick a group of runs deterministically based on the choice of the leader (eg: pick ”leader”
randomly and then the next t consecutive binary strings in {0, 1}m).

6

Good proposal : Expander-based ”Leader” neighborhood sampling

We will show that the mixing property of expander can be leveraged to pick robust neighborhoods
for sampling runs.

1. Draw a d-regular, 1/d0.1-expander graph G on the vertex set {0, 1}m.

2. Pick a leader s ∈ {0, 1}m uniformly at random.

3. Let N(s) = {r1, r2, . . . , rd} ∈ {0, 1}m be the neighbors of s in G.

4. Run A on the set N(s).

5. Output A∗(x, s) as the majority of A(x, ri) where i ∈ [d].

Analysis :
Let B and B∗ represent the set of bad strings for x and the set of bad ”leaders” for x respectively.

Claim 14. |B∗| ≤ 10
d0.2
|B|

Proof. Since B∗ is the set of ”bad leaders” for x, we have:

e(B,B∗) ≥ d

2
|B|

Applying the expander mixing lemma on the sets B,B∗ we have :

|e(B,B∗)− d

2m
|B||B∗|| ≤ dλ

√
|B||B∗|

⇒ d

2
|B| ≤ e(B,B∗) ≤ d

2m
|B||B∗|+ dλ

√
|B||B∗|

⇒ |B∗|(1

2
− |B|

2m
) ≤ λ

√
|B||B∗|

⇒
√
|B∗| ≤

λ
√
|B|

1
2 −

|B|
2m

≤ λ

0.4

√
|B|

⇒ |B∗| ≤ λ2

0.16
|B| ≤ 10

d0.2
|B|

So, when t = d, this algorithm runs in time tT + poly(m) and uses m bits of randomness to give an
error probability O(1

t0.2
). Note that the poly(m) time requirement is needed to reveal the structure

of the strongly explicit expander graph G.

7

”Random walks on expanders mix quickly”

We will now show that using a random walk on the expander graph to select the t runs G for A∗

results in even better error bounds for evaluating f .

Concretely, consider a d-regular, λ-expander graph G on the vertex set {0, 1}m. Pick a leader r0 ∈
{0, 1}m uniformly at random and take a random walk r0, r1, . . . , rt of length t in graph G from r0.
The vertices on the walk are the strings that we run A∗ on. Output the majority of A∗(x, ri) as
the estimate for f(x) where i ∈ [t].

This algorithm runs in time t(poly(m) + T) and uses m + t log(d) bits of randomness. Further
analysis follows in the next lecture.

8

